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ABSTRACT 

The control tasks related to interaction tracking are mainly limited in robot manipulators-based traditional 

applications. In this, the desired motivations are specified based on the trajectories and the desired positions. The robots 

are programmed by using the teach-and-playback method in such applications that are assumed to be more convenient. 

Moreover, the advancements in sensing and robotic methodologies fulfill the satisfactory requirements of more 

demanding tasks. Several instructions are provided for interacting robots with humans in order to perform a sequence of 

more difficult tasks. It does not require learning the motions, but it only requires learning the positions of the motions in 

such applications, and this position is learned by using the robot controller. The major aim of this research work is to 

develop a new Transfer Expert Reinforcement Learning (TERL) method to offer efficient interaction between humans 

and computers. In this developed model, Reinforcement Learning (RL) is utilized to observe the movement of the robotic 

arm. Then, robot movement is considered with the help of a deep learning approach named Recurrent Neural Network 

(RNN) along with inputs of kinematic movement. Finally, the proposed model achieves a superior rate than conventional 

approaches in human to human-to-robot interaction model. 

Keywords: human to robot interaction model; skill transfer knowledge; transfer expert reinforcement learning; 

reinforcement learning; recurrent neural network 

1. Introduction 

During the last decades, autonomous robots have held a better 

place in a variety of industrial domains, especially in Industry 4.0 

practices[1]. Robots are mainly useful in many daily life activities in 

addition to industrial applications. In complex environments, robots 

are used to tackle various tasks, which include household management, 

eldercare assisting, transferring parcels in natural urban environments, 

and interacting autonomous robots with humans[2]. To process these 

application domain requirements, the robots are needed to process a 

large amount of data during the accomplishment of hundreds of various 

manipulation and motor skills in a noisy sensor environment, which 

may depend on the desired tasks’ complexity[3]. Moreover, the system 

can be more complex with the addition of intrusive objectives like 

disturbance compensation and obstacle avoidance in dynamic 

environments[4]. Manual programming skills are not sufficient for the 

development of intelligent autonomous systems under these 
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circumstances, and they can assist humans in supporting daily life tasks in complex environments[5]. The nature 

of the interaction is the other challenge aroused in this situation, and user experience should be considered here 

to provide higher integration in day-to-day life activities[6]. Furthermore, the quality of life may also be 

improved by using this user experience robot activity[7]. When the robot is functioning in a nearby place, the 

user should feel very comfortable and safe[8]. 

In this instance, human-related factors like pleasantness and controllability due to user feedback might be 

helpful for enhancing the human–Robot Interaction (HRI), which may depend on factors like shared 

autonomy[9]. High dimensional data are processed to obtain the robot skill learning approaches from the robotic 

arms[10]. The teaching process should be more complex in humanoids when the learning skills are processed 

through large dimensional datasets[11]. In various robotic assistance strategies, the determination of human 

feedback is in high demand for a very detailed selection of content and amount of transferred knowledge 

skills[12]. Most Artificial Neural Networks (ANN) use closed-loop feedback control methodologies to process 

huge amounts of parameters[13]. In this skill transfer knowledge, the synaptic weights from various layers are 

chosen to provide efficient interaction[14]. In the autonomous adaptation methodologies, the cognitive models 

of the multisensory integration and the probabilistic models of the human feedback are utilized instead of 

broadly using psychometric questionnaires[15], and this may enhance the robot strategies, where the main 

objective is to learn the transfer knowledge related motor skills from newly adapted samples. 

The main contributions of the developed skill transfer knowledge model for providing efficient human-

to-robot interaction are given as follows: 

• To develop a new TERL method for providing efficient interaction between humans and computers. The 

concept of skill transfer knowledge by integrating the concept of TERL with the consideration of the 

robotic arm movement. 

• To introduce RL for attaining action features from the robotic arms to maximize the reward signals. 

• To develop an RNN network for effectively learning the transfer skill knowledge from the robotic arms 

for providing better human-to-robot interaction. 

• To train the RNN network to decrease the error difference between the desired and predicted movements 

for a robot. 

The overall sections used to arrange this skill transfer knowledge learning model are described as follows. 

Section II points out the description of traditional human-to-robot interaction models with skill transfer 

knowledge and its merits as well as demerits. Section III gives a description of the proposed model and the 

principles behind TERL. Section IV enumerates RNN-based skill transfer learning. Finally, Sections V and VI 

explain the results and discussions as well as the conclusion. 

2. Literature survey 

2.1. Related works 

In 2017, Ramirez-Amaro et al.[16] presented a human activity recognition framework based on the 

observation of semantic representations. The difficulties and the challenging issues aroused during the transfer 

of skills and tasks were addressed in this model. The demonstrator’s behaviors have been determined by robots 

with a higher-level understanding of semantic representations. The essence of the activity has been captured 

from these observations, and it should indicate the aspect of the demonstrator's actions to be performed to 

achieve the specified activity. According to the object properties and human motions, an essential semantic 

representation was obtained. Furthermore, the semantic rules accomplished in distinct conditions were 

validated. Different labeling strategies, time restriction capabilities, and various execution tasks of different 

participants were demonstrated by using quantitative and qualitative analysis. This analysis proved that the 
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obtained rules were valid for new situations, and the inferred representations depended on the performed task. 

Analyzing the implementation results, the developed model attained highly recognized human behaviors with 

high accuracy. Moreover, the dynamic growth of the ontology-based knowledge representation has been 

improved using the accomplished semantic rules. The flexibility and the capability of inference have been 

increased using this developed model. 

In 2021, Jayaratne et al.[17] designed a new unsupervised skill transfer learning-based distributed 

algorithm to provide better human-to-machine interaction in real-life scenarios. This newly developed 

distributed algorithm has been applicable for skill transfer learning schemes, which needed incremental, 

unsupervised, and ongoing self-learning of multi-tasks for the transfer of knowledge. Moreover, the data 

parallelization algorithm has been utilized to find scalable and distributed properties that have been very 

helpful in handling large volumes of data. This extensive amount of data might be helpful for skill transfer 

learning based on an unsupervised learning algorithm. Here, multiple maps were generated for the 

representation of specific skill knowledge, and then a single embedding was used to project these skills. Within 

an autonomous developmental robotics approach, several algorithms have been demonstrated for skill transfer 

learning and knowledge acquisition. Finally, three computing platforms such as Spark, Hama, and Hadoop, 

were adapted to perform empirical evaluations for validating the computational efficiency of the developed 

unsupervised skill transfer learning framework. 

In 2022, Abiodun et al.[18] developed a learning framework for the replication of new skills that have been 

attained from a human demonstration in order to enable robotic arms. The online data to be obtained from the 

wearable devices formed an interactive interface that has been helpful for giving anticipated motion in a user-

friendly and efficient way. Moreover, appropriate human tutors have been introduced to accomplish complex 

manipulations and control all joints in the real-time robotic manipulator. For instance, low-cost wearable 

devices were used to control the robotic manipulator remotely to enhance sensitivity, adaptability, and human-

robot skill learning. In addition, it provided continuous motion mapping and easy calibration. The human-robot 

interaction has been improved when compared to existing models according to repeatability and skill transfer 

without the need for complex coding skills. 

In 2022, Bhatu et al.[19] implemented an effective skill knowledge transfer framework with the help of 

TERL within humans and computers. The robotic arm movement has been attained by using the advanced RL 

concept. The Fitness-based Coyote Optimization Algorithm (COA) has been introduced to optimize the action 

features from the RL algorithm. Moreover, the Deep Neural Network (DNN) has been adopted to find the robot 

movement with the involvement of kinematic movements. The important contribution of this developed 

approach was to decrease the error that has occurred between the predicted and desired movement for 

increasing the reward. The results demonstrated that the developed model attained more benefits than the 

traditional models. 

In 2020, Zahedi et al.[20] proposed a kinesthetic human-robot interaction approach that depended on the 

machine learning algorithm with virtual training simulations. The skill level of users has been discriminated 

by using the learned force positional skills. The force data has been attained from the virtual forces that have 

been designed on the basis of Computed Tomography (CT) data in real-time instead of developing from force 

sensors. The practice environment has been achieved by using femur bone drilling, and the residents were 

provoked by haptic feedback, which activated the bone layers' variable stiffness. Here, machine learning tools 

were used for discriminating the skill level of users, and also the performance has been enhanced via the 

resident models. The implementation results ensured that the machine learning framework had proven its 

effectiveness based on the resident models. 
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2.2. Problem statement 

The unstructured and unsupervised learning of complex structures makes it difficult to identify the 

transfer of knowledge skills from robots. Moreover, several complex coding rules are required for learning the 

transfer knowledge skills, and hence, this may increase the computational complexity of the models. Hence, 

several skill transfer knowledge learning approaches are developed for providing the interaction between 

robots and humans, where the merits and disadvantages of these models are summarized in Table 1. Transfer 

learning[16] allows the flexible imitation of observation-based human behaviors. In addition, it effectively 

captures the essence of human activities by using semantic rules. But it produces high errors, and also it does 

not provide better learning results over new behaviors. SOM[17] effectively identifies the transfer of knowledge 

skills from a large amount of data. Furthermore, it provides high computational efficiency. Yet, it needs grid-

based algorithms to reduce the dimension of the large data. The interaction algorithm[18] accomplishes complex 

manipulations in real time. Therefore, the cost required for using wearable devices is very low. COA[19] highly 

decreases the error difference in between the predicted and the desired moment. Moreover, the efficiency of 

the system is highly increased by optimizing the action features. But it requires a high cost to provide the 

interaction between humans and robots. Neural networks[20] enhance the resident’s performance with respect 

to parameters like temperature and completion time. Yet, it needs more realistic virtual simulations to provide 

better learning skills. These issues have promoted us to develop a new human-to-robot interaction model based 

on a deep learning structure. 

Table 1. Features and challenges of traditional human to robot interaction models. 

Author [citation] Methodology Features Challenges 

Ramirez-Amaro et al.[1] Transfer learning • It allows the flexible imitation of 

observation-based human behaviors. 

• It effectively captures the essence of 

human activities by using semantic 

rules. 

• It produces high errors. 

• It does not provide better learning 

results over new behaviors. 

Jayaratne et al.[2] SOM • It effectively identifies the transfer 

of knowledge skills from a large 

amount of data. 

• It provides high computational 

efficiency. 

• It needs grid-based algorithms to 

reduce the dimension of the large 

data. 

Abiodun et al.[3] Interaction algorithm • It accomplished complex 

manipulations in real time. 

• The cost required for using wearable 

devices is very low. 

• The time consumption is high to 

provide flexible task execution in 

this model. 

Bhatu et al.[4] COA • It highly decreases the error 

difference between the predicted 

and the desired moment. 

• The efficiency of the system is 

highly increased by optimizing the 

action features. 

• It requires a high cost for 

providing the interaction between 

humans and robots. 

Zahedi et al.[5] Neural networks • It enhances the resident’s 

performance with respect to the 

parameters like temperature and 

completion time. 

• It needs more realistic virtual 

simulations to provide better 

learning skills. 

3. Architectural view of TERL with RNN for skill transfer knowledge 

3.1. Proposed model and description 

The movement of the robotic arm is guided by using the RL network. It mainly ensures the actions to be 

accomplished by the agents in a real-time environment, and hence, this RL algorithm is described as a well-

performing machine learning algorithm. The major objective of using this RL algorithm is to increase the 
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reward. The action-based features of the robots are effectively learned using the deep learning structure in this 

model. Moreover, the kinematic movement of the robotic arms is obtained by using the RNN network, and the 

skill forces are obtained from the final layer. The desired angle and the torque are measured using this deep-

learning structure. Moreover, the transfer knowledge-related skills are obtained using this RNN, and finally, 

the error between the predicted as well as the desired movement is determined using the learned transfer 

knowledge skills. The feedback from the environment is observed using the RL, and the maximized reward 

signals are obtained by using the changes in the state of actions. The architectural representation of the skill 

transfer knowledge based on the RL network is given in Figure 1. 

 
Figure 1. Structural illustration of the developed skill transfer knowledge in robotic arm based on RL. 

3.2. TERL principle 

The TERL framework is used to solve the source-task selection problem, and the inspirational things 

utilized to formulate the TERL architecture are the extracted features from the robotic arms. In the future, 

multiple-skill learning abilities will be faced by using several constraints of animals. 

Approximation of functions: In RL and TERL systems, the natural setups are worked with the function 

approximation in the embodied and robotic models, which consists of continuous states and action spaces. The 

usage of linear function approximators provides several advantages like stability, simplicity, convergence 

speed, and learning speed. The kernel functions and the modularities are leveraged to solve the issues of the 

linearly separable problems. Furthermore, the biological plausibility of the models is enlarged with the help of 

the learning rules accomplished from the locally available information among the linear function 

approximators.  

Actor-critic architecture: The most commonly adopted actor-critic RL method is the TERL approach, 

where separate data structures are used for saving the action policy and valued functions. This is done via the 
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temporal difference algorithm and is explicitly used to describe the procedures for solving continuous actions, 

such as costly and complex. The trial-and-error learning ability of organisms is reproduced precisely by using 

the dynamics of the phasic dopamine and neuromodulator. 

Eliminating source-task selection problem: The components of TERL are effectively classified using a 

mixture-of-experts-based deep learning structure. Here, the neural network classifier is personalized, and it is 

prior to TERL with RL. Here, the source task selection problem is eliminated by using this TERL network, 

which depends on the personalized morality of several applications. Two levels of hierarchies are used for 

producing Critics and Actors, which are a high-level gating network and a low-level experts network. In this, 

the genuine capacity of new tasks is effectively handled by using the two gating networks. 

Determine similarity among source and target tasks without any prior information: Here, the sampling 

among the previous skills is utilized for solving the problem of source-task selection. This can be resolved by 

situating target objects in several positions, and then the representation is tested with different robot arms. 

Moreover, various opportunities are used for forwarding the knowledge, and hence, diverse resemblance 

among these locations is provided by using this approach. The algorithms have the ability to transfer the robot's 

knowledge. The tasks are defined based on the situation that is used to reflect the information between the 

source and target. 

Redundant experts face catastrophic interference: In this, the chance of catastrophic problems has been 

reduced, and it is an important advantage for this solution. Here, new mechanisms are introduced to eliminate 

the catastrophic interference problem and decoupling is used to select the experts for doing the implementation, 

and deep learning is assisted in providing better knowledge results based on the liability signals. The 

advantages of these solutions are given below. 

• More tasks are effectively learned by using the developed deep learning-based mechanism to model the 

brain images.  

• From the beginning of the models, it utilizes experts to solve novel tasks from the previously learned 

skills. 

• Here, the copy experts have existed to provide the system robustness. 

• Based on the specialization and temporal activation, the same set of features is utilized and then classified 

in space.  

4. Recurrent neural network with TERL for skill transfer knowledge 

4.1. Recurrent neural network 

RNN structures[21,22] are mainly used for learning the ictal parameters very efficiently because of their 

ability to encode the hidden layers. The transfer knowledge skills are efficiently determined from the large 

dimensional data obtained from the robotic arms. The previous layer input is considered for taking the resultant 

output. There are three layers mainly present in the RNN network such as batch normalization, maximum 

pooling, and independent RNN. The input sequence is subjected to the independent RNN layer to process them 

in forward order. In the independent layer, the time depends on features extracted from the input features, and 

this dependent feature extraction process is given in below Equation (1) and Equation (2), respectively. 

𝐻𝑖𝑟 = 𝜗𝐻𝑖(𝑤𝑒𝐻𝑖 ∗ 𝐼𝑛𝑟 + 𝑟𝑒𝑐𝑛𝐻𝑖 ∘ 𝐻𝑖𝑟−1 + 𝐹𝐻𝑖) (1) 

𝑜𝑝𝑟 = 𝜗𝑜𝑝(𝑤𝑒𝑜𝑝 ∗ 𝐻𝑖𝑟 + 𝐹𝑜𝑝) (2) 

The hidden layer, input layer, and output layer vectors are indicated by the terms 𝐻𝑖𝑟, 𝐼𝑛𝑟 and 𝑜𝑝𝑟. 

The recurrent unit vectors are indicated by 𝑟𝑒𝑐𝑛𝐻𝑖 the weight matrix of the input layer is indicated by the 

term 𝑤𝑒𝐻𝑖, and the output layer weight matrix is indicated by the term 𝑤𝑒𝑜𝑝, respectively. The rectified linear 

unit activation functions are indicated by the terms 𝜗𝐻𝑖 and 𝜗𝑜𝑝, respectively.  
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Here, the training is provided to the RNN for learning the efficient features, and hence the convergence 

speed of the learning process is improved. Moreover, the usage of the RNN network for learning skills may 

avoid overfitting issues as well as generalization issues. To accomplish this, the batch normalization layer is 

inserted into the independent layer separately, and then the maximum pooling layer is added to this layer. Here, 

the relevant behaviors are retrieved by using the maximum pooling layer, where the specific temporal value is 

assigned for extracting the features with high sensitivity. The final classification of features is performed using 

the fully connected layer in the RNN. The efficiency of the skill-learning process is highly enhanced by using 

this RNN network. By using this feature extraction, the reward gets increased, and the error between the 

predicted and desired value gets decreased. 

4.2. RNN-based arm movement 

Motor babbing data are used in the RNN to train the features obtained from the robots. Here, the input 

given for the RNN process is kinematic movement, and the output obtained from the RNN network is skill 

forces. Moreover, the computation torque is performed in the RNN network, and the determination of desired 

angles is also done in this network. By using this obtained desired angle value, the entire target movements are 

to be trained from the robotic arm. Best transfer knowledge skills are attained by using this RNN model. Finally, 

the minimum error is obtained by using this RNN-based skill transfer knowledge learning. The error is 

determined between the predicted as well as desired movement values. The RNN-based skill transfer learning 

process to provide better human-to-robot interaction is given in Figure 2. 

 
Figure 2. Diagrammatic representation of RNN-based skill transfer knowledge in TERL. 

5. Results and discussion 

5.1. Experimental setup 

The developed skill transfer knowledge-based human-to-robot interaction model has been executed in 

MATLAB 2020a, and two test cases were taken to evaluate the performance of the implemented TERL-RNN. 

The reaching time analysis and the reward analysis over two test cases were considered for validating the 

effectiveness. Moreover, the robotic arm movement of the developed TERL-RNN among RL, RL+RNN, and 

TERL was utilized to test the performance. 

5.2. Reward and reaching time analysis 

The performance of the developed TERL-RNN-based human-to-robot interaction mechanism is validated 

with respect to reward and reaching time given in Figures 3 and 4, respectively. Here, two test cases are 

considered for conducting this experiment. The developed TERL-RNN model provides better effectiveness in 

terms of reward when compared to other models. Moreover, the reaching time is also very low when compared 

to other RL-based models. The implemented TERL-RNN-based model attained 84.61%, 54.54%, and 77.77% 
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improved reaching time than RL, RL+RNN, and TERL concerning test case 1. The main aim of this 

computation is to maximize the rewards and also to minimize the reaching time. The maximum rewards 

generate better communication between human and robots and also the minimum reaching time helps to get 

the signals in a faster way of robots. While analyzing Figure 3, the given designed method clearly shows that 

it attains minimum reaching time and maximum rewards. 

 
Figure 3. Reaching time analysis on developed TERL-RNN-based skill transfer knowledge model using (a) test case 1; (b) test case 2. 

 

Figure 4. Reward analysis on developed TERL-RNN-based skill transfer knowledge model using (a) test case 1; (b) test case 2. 

5.3. Robotic movement analysis 

The robotic movement analysis with implemented TERL-RNN is analyzed, which is illustrated in Figures 

5 and 6, respectively. Here, two test cases are used to get the robotic movement. The actual and the predicted 

movement of the RL, RL+RNN, TERL, and TERL+RNN are given in the plot. These robotic movement values 

are more helpful in analyzing the error that occurred after learning the transfer skill from the robots. The X 

and Y terms used in the plot represent the path for matching the features from the data to find the error. 

Here, the communication of knowledge is an important skill among humans for proficiently training the 

latest theory. The expert network can reveal a robot with the help of the latest theory by using physical 

movement and written language. Then, the knowledge is transferred to other robots or humans. Especially, the 

impacts of effective human-to-robot knowledge transmission generate a chance of a robot performing new 

activities. While taking Figures 5 and 6, the simulation outcomes show the robotic movements of the 

developed and actual model. From Figures 5 and 6, the dotted lines are considered as the actual movements 

of the robots and also the blue lines are considered as the movements of the robots. From the result validation, 

the designed model like actual robotic movements shows better performance than the other baseline 

approaches. 
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Figure 5. Robotic movement analysis on developed TERL-RNN-based skill transfer knowledge model in respect to (a) RL; (b) 

RL+RNN; (c) TERL; (d) TERL+RNN on test case 1. 

 

Figure 6. Robotic movement analysis on developed TERL-RNN-based skill transfer knowledge model in respect to (a) RL; (b) 

RL+RNN; (c) TERL; (d) TERL+RNN on test case 2. 

5.4. Performance validation in terms of robotic movement 

The obtained robotic movement values of two test cases are given in below Table 2. Here, RL, RL+RNN, 

TERL, and TERL+RNN models are used to estimate the effectiveness of the developed human-to-robot 

interaction mechanism. From the above results, the TERL+RNN-based model provides better robotic 

movement results than the other models, and the errors are highly reduced using this model.  
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Table 2. Robotic movements among two test cases. 

Obtained robotic movement 

Techniques Testcase-1 Testcase-2 

RL 0.072893 0.16936 

RL+RNN 0.18925 0.19768 

TERL 0.20123 0.10631 

TERL+RNN 0.040708 0.09229 

5.5. Ablation experiment of the designed TERL-RNN-based skill transfer knowledge model 

The ablation experiment of the developed TERL-RNN-based skill transfer knowledge model for two test 

cases is shown in Table 3. Thus, the developed model attains elevated outcomes than the other baseline 

approaches. 

Table 3. Ablation experiment of the developed TERL-RNN-based skill transfer knowledge model among two test cases. 

Obtained robotic movement 

Techniques Testcase-1 Testcase-2 

TERL+LSTM 0.07245 0.07021 

LSTM 0.07542 0.07487 

TERL+GRU 0.05988 0.06154 

TERL+SVM 0.05245 0.06845 

TERL+ANN 0.06544 0.07845 

Proposed TERL+RNN 0.04566 0.05454 

6. Conclusion 

An efficient skill transfer knowledge-based human-to-robot interaction scheme was developed to learn 

efficient skills from robotic arms to support various real-time applications. The robotic movement was taken 

as an important factor in this model. The action features from the robotic arm and the input kinematic 

movements were evaluated using the RNN model. The significant goal of this developed model was the 

minimization of error and maximization of reward. The error has been evaluated from the predicted as well as 

the desired movement. Experimental analysis was considered to validate the effectiveness of the developed 

model in terms of reward, reaching time, and robotic movement in two cases. The suggested TERL-RNN-

based model achieved with 77.77%, 71.42%, and 88.23% improved reaching time than RL, RL+RNN, and 

TERL according to test case 2. The developed TERL-RNN-based human-to-robot interaction mechanism gave 

higher effectiveness in terms of maximized reward and minimized error, among other techniques. 
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