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ABSTRACT

Modern businesses depend on efficient management and evaluation of product quality performance to assure that

they are on the right track, and process capability analysis is used to gauge business performance in practice. Consequently,

the lifetime performance index (LPI) C;, where L is the lower specification limit, is used to gauge a process potential

and performance. This paper examines distinct estimators of €, under Pareto distribution using generalized order

statistics (GOS), which is very helpful in a variety of real-world applications. Results for progressive type II censoring

(PTIC) and first-failure censoring are two particular situations. Using symmetric and asymmetric loss functions, the

Bayesian estimator was built, then utilized to produce the C; hypothesis testing technique. A simulation study and real

data analysis have been investigated to study the behavior of different estimates for C; under different schemes, namely

PTIIC and the progressive first failure censored scheme.
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1. Introduction

The main purpose of the economic field is to meet the
requirements of the customer, and one of the main requirements of
the customer is the lifetime of the product; a longer lifetime means a
better product. Montgomery!!) proposed the process capability index
C; for evaluating the lifetime performance.

u—1L

C
L o

e

where u, L and o, are the process mean, the lower specification

limit, and the process standard deviation, respectively. A larger Cj,
value indicates a better process quality. Kane” provided a
comprehensive discussion of capability indices which includes
estimation procedures, sampling properties, and application strategies
in a manufacturing environment, these indices measure larger-the-
better-type quality characteristics. Hong et al.’l developed a
maximum likelihood estimate (MLE) with Pareto distribution. Hsu
et al.'¥! employed fuzzy inference to evaluate the lifetime performance
index (LPI) when sample data from the Pareto model with censored
information was imprecise, based on the right type I censored (TIIC)
samples. Hong et al.® used a TIIC sample, created an MLE of C,
and developed a confidence interval (CI) for the LPI of Pareto
distribution. Lee et al.l! constructed a uniform minimum variance
unbiased estimator (UMVUE) of C; based on the TIIC sample under
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the assumption of an exponential lifetime, then the UMVUE of the LPI is utilized to develop a hypothesis
testing procedure in the condition of known L.

Leel”! used the max P-value method to select the optimum value of the shape parameter S of Weibull
distribution, then, he constructed the MLE of C; based on progressive type 11 censoring (PTIIC) samples from
Weibull distribution, Further, a hypothesis testing procedure was developed for known L, Hsu et al.!¥! offered
an approach for evaluating LPI using fuzzy inference for Pareto distribution. Hong et al.l’! obtained the MLE
of C; under progressive first failure censored (PFFC) samples from Weibull distribution and developed a
hypothesis testing procedure about ;. Ahmadi et al.['% obtained the MLE of C; for Weibull distribution on
the basis of the PFFC data. This estimate was used for developing the CI for C,. Wu et al.'!l estimated C,,
under the Burr XII distribution with the upper record values.

Ahmadi et al.l'?! investigated statistical inference for C;, based on generalized order statistics (GOS).
Various point and interval estimators for the parameter C; were obtained and optimal critical regions for the
hypothesis testing problems concerning C, were proposed. Recently, Ahmadi et al.['*! assumed that the
lifetimes of products are independent two-parameter exponential distribution, with a known L, and estimated
C, based on GOS. Ahmadi and Doostparast!!* calculated C; using PFFC samples based on Pareto
distribution with a known scale parameter. Hassan et al.l'! considered a MLE of C; under Burr Type III
distribution based on PTIIC. Shaabani and Jafari!'® provided an inference study on LPI of gamma distribution
through point and interval estimation. Wu et al.l'”! studied the experimental design for LPI of Rayleigh
distribution under progressive type I interval censoring.

The concept of GOS presented by Kamps!'®! enables a common approach to structural similarities and
analogies. Well-known results can be subsumed, generalized, and integrated within a general framework.
Several schemes of censoring can be described in terms of order statistics and can be presented by GOS.

The random variables:

X(1,n,k),X(2,n,k),..., X(n,n,, k) are called GOS arising from distribution function F(x) with
density function f(x), the joint probability density function (PDF) of the above quantities is given by:

n-1 n-1
fX(l,n,ﬁ,k),...,X(n,n,ﬁ,k) (xl' . --'xn) = k(l_[ Vr) <1_[ (1 - F(xi))nif(xi)> (1 - F(xn))k_lf(xn) @)
r=1 i=1
FL0)<x; <...<x, <F71(1)
where y, =k+m—1r)+N,>1 forall r€{1,2,..,n—1}, N, =Y n; with n€N, n>2, k=0
and 1 = (nl,nz,...,nn_l) € Rn_l.

The GOS contains the following schemes:

1) Ordinary order statistics in case of n; =0,i =1,2,...,n—1 and k = 1.

2)  GOS is reduced to usual record values from a sequence of independent and identically distributed (iid)
random variables in case of ny =n, =...=n,,_; =—1,and k = 1.

3) GOS is reduced to the first m h-record values from a sequence of iid random variables in case of n; =
n, =...=n,_1=-—1,and k = h.

4) PTIIC order statisticsincaseof n; =R;, i=1,....,.n—1, k=R, +1 and n =m.

5) PFFC order statistics if n; =k(R; +1)—1 for i=1,...,.n—1 and k = h(R, + 1).

Our aim in this research is to use data transformation to examine hypothesis testing techniques with the
UMVUE of C; and use it to judge the efficiency of any product. In this paper, we assume the lifetimes of the
product follow the Pareto distribution, which is a useful model in lifetime data, and we develop Bayesian and
non-Bayesian statistical inference for C; using GOS. Then, we develop a testing procedure and the power
function of the test under both Bayesian and non-Bayesian approaches, using it to find (1 — &) one-sided CI

2



for C; to determine whether LPI meets the required level or not. Also, a simulation study is presented
depending on two special cases of GOS, which are the PTIIC and PFFC schemes. Finally, real data are
employed to assess the statistical performances of the MLEs and Bayesian estimates (BEs) for C; of the
Pareto distribution.

The next sections of the paper are organized as follows: in section 2 some properties of C; and the
connection between it and the conforming rate were given. Section 3 provides an estimation of €; and finds
its UMVUE. Section 4 gives a statistical test technique for C; using a non-Bayesian approach and finds the
power function of the given test. Section 5 investigates the Bayesian estimator of C; under symmetric
(squared error (SE)) and asymmetric (linear exponential (LINEX)) loss functions. Section 6 gives a statistical
test technique for C; in the Bayesian approach and gives the power function of the test. Section 7 provides a
simulation study and real data is examined. Finally, some concluding remarks are provided in section §.

2. The LPI and the conforming rate
Assuming the lifetime of a product follows Pareto distribution. Let X have Pareto distribution with PDF
fx(;0) =0x~O+D x> 1,0 >0 (3)
Using the transformation Y = In(X), then the distribution of Y is an exponential distribution, with the
following PDF and the cumulative distribution function (CDF)
fr(y;6) =6e~%,y >0,6 >0 4
and,
Fr(y;0)=1—¢e79,y>0,60>0 (5)
A longer lifetime equates to higher financial results. As a result, a lifetime is a form of quality attribute
where the longer the better. Because the logarithmic transformation Y = In(X) is one-to-one and strictly
increasing, then the transformed data set of Y and the original data set of X have the same effect when
evaluating lifetime performance, moreover the calculations became easier. There are various properties,
including the following:
e (; can be written as

C, = = =1-06LC, <1 (6)

where L is the lower specification limit.

e  The failure rate function r(y;8) is defined by:
fe=%

r(v;0) = T— (7)

&
(1—e79)
If the lifetime of the product exceeds the lower specification limit, then the product is labeled as a

conforming product. Otherwise, the product is labeled as a non-conforming product. The conforming rate is
defined as:

oo

P=POrz0=[ fO)y=[ se¥dy=e —ei <, <1 ®)
L L
where Y is the lifetime variable with PDF f(y) and CDF F(y). In Table 1 we give some values of P, for
some values of C;.

Table 1 gives different C; values and the corresponding B. values, and shows that there is a strictly
increasing relationship between conforming rate B. and the LPI. This relationship is also graphically depicted
in Figure 1. For any unlisted values of C; interpolation can be used to get their corresponding P, values. It
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is obvious that the relation between C; and P. is one-to-one, so C; is an effective tool to estimate P,.

Table 1. LPI versus conforming rate.

C, P, C, P, C, ]
—0o0 0 0.06 0.3906 0.54 0.6313
—4 0.0067 0.08 0.3985 0.56 0.644
-3.8 0.0082 0.1 0.4066 0.58 0.657
-3.6 0.0101 0.12 0.4148 0.6 0.6703
34 0.0123 0.14 0.4232 0.62 0.6839
-32 0.015 0.16 0.4317 0.64 0.6977
-3 0.0183 0.18 0.4404 0.66 0.7118
-2.8 0.0224 0.2 0.4493 0.68 0.7261
—2.6 0.0273 0.22 0.4584 0.7 0.7408
2.4 0.0334 0.24 0.4677 0.72 0.7558
22 0.0408 0.26 0.4771 0.74 0.7711
-2 0.0498 0.28 0.4868 0.76 0.7866
-1.8 0.0608 0.3 0.4966 0.78 0.8025
—-1.6 0.0743 0.32 0.5066 0.8 0.8187
-14 0.0907 0.34 0.5169 0.82 0.8353
-1.2 0.1108 0.36 0.5273 0.84 0.8521
-1 0.1353 0.38 0.5379 0.86 0.8694
—0.8 0.1653 0.4 0.5488 0.88 0.8869
—0.6 0.2019 0.42 0.5599 0.9 0.9048
-0.4 0.2466 0.44 0.5712 0.92 0.9231
-0.2 0.3012 0.46 0.5827 0.94 0.9418
0 0.3679 0.48 0.5945 0.96 0.9608
0.02 0.3753 0.5 0.6065 0.98 0.9802
0.04 0.3829 0.52 0.6188 1 1
P, Versus C_
. =
; -
S \ T T T T T
-4 -3 -2 -1 0 1
C.

Figure 1. Conforming rate P. versus LPI C;.



3. UMVUE of LPI
Our aim in this section is to get UMVUE of LPI. Let y= (y(1,n,,k),...,y(n,n,, k)) bethe GOS

data from exponential (8) distribution, and y; = y(i,n,fi, k), i = 1, 2,...,n, then by substituting Equations
(4) and (5) in Equation (2) the likelihood function of Y will be:

n—-1
L(9|X) = k(l_[ yr)(gn)e—9(2?:—11yi(ni+1)+kyn)l )
r=1

Putting y,, = k, let the spacing statistics W; =y; —y;_4, i = 1,2,...,n, where y, = 0, and it is easily
to show that Y™, y;W; = X1 y;(n; + 1) + ky,,. As a result, Equation (9) can be written as follows:

n-1

LOly) = k(| [ meme-oEtarm), (10)
r=1

This joint PDF belongs to the exponential family of distributions, from Theorem (5.6) of Lehmann!"! and
Theorem (7.5.2) of Hogg et al.*%), we deduce that Y}]-; y;W; is a complete and sufficient statistic for 6.

According to Ahmadi et al. and Ahsanullah!'>?!! the random variable 20 Y-, y;W; follows x?
distribution with 2n degrees of freedom, written yZ,. Furthermore, we demonstrate that the estimator C, =
1—(n—-1DLEE, ;W)™ is unbiased estimator of Cj.

-1

EC)=E|1-(mn-1L (Z Vin> =E (1 ~ (= DEOL 7w y.w->
i=1 = o
1
20 Z?=1 ini>.

. 1 . .
It is clear that the term ——=;——— has an inverted y? with mean
20 %, ViWi

=1-(n-— 1)(29)LE<

1 _ )
21y 5° the previous equation takes

the following form:

- 1
E(C,) = 1—(n—1)(29)Lm= 1-0L. (11)

Equation (11) proved that C, is unbiased estimator of C;, according to Theorem (7.4.1) in Hogg et al.l
and corollary (1.12) in Lehmann and Casella®?, then C, is UMVUE of Cj.

20]

4. Testing procedure for the LPI and the power function of the test

In this section, we study the testing procedures for the LPI and the power function of the test.

4.1. Testing procedure for the LPI

Create a statistical test technique to determine whether the LPI complies with the necessary standard.
Assuming that the required value of LPI is more than C where C is the target value. Our aim is to test the null

hypothesis.
Hy:C, < C. (12)
The product is unreliable.
Against the alternative hypothesis.
H;:C, > C. (13)

The product is reliable.

The UMVUE C, of C, is used as the test statistics, the rejection region can be expressed as

{EZlEZ > CO}. With specified significance level a, the critical value C, can be calculated as follows:
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P(C,>ColC,=0)=a

P(1 (m-DL ¢ I1-6L=0)
= —— —-0L=C)=a.
oyw T
Putting W* =Y, y;W;.
P(l (= DL 10 —1_6)
ﬁ — = =
W ol L ¢
P(l m=DL_ce 1_6) 1
= —_ = —_—] = —_
w ! L : 14
P(l 29(n—1)L<C p 1—C> 1 (14)
= _— =—|=1-
20w~ = Col L *
21-C)(n—1
:>P(29W*S (1-CX ))=1—a-
1-C,

As we know 20W* ~ )((ZZn) and from Equation (14) using the inverse of X(22n) (INVCHI), then
INVCHI(1 — a,2n) is the lower (1 — a) percentile of )((ZZn), o)

20-0)(n—-1)
= INVCHI(1 — a, 2n).
1-Cy
Then, the following critical value can be derived:
20-C)(n—-1
¢ —1_ 20-00-D s

~ INVCHI(1 — a,2n)’

where C is the target value, a is the specified significance and n is the observed number of GOS samples.

4.2. The power function of the test
The power of the statistical test is the probability of correctly rejecting the false null hypothesis. Applying
the null hypothesis Equation (12) against the alternative hypothesis Equation (13), we get a size a test with
the rejection region {fz > Co}. The power P(C;) ofthetestat C;, = C;(> C) isthen
P(Cy) = P(C, > Cp)
21-C)(n—1)
|C, = C1>
INVCHI(1 — a,2n)
n—1)L 20 -0)(n—-1 1-C
:P(l_u L 20-0m-1D )
w INVCHI(1 — a, 2n) L

=P(G>1—

(16)

_p (zew* . OINVCHI(1 — a, 2n)L o 1-— cl)
- 1-C L
1—C,)INVCHI(1 — a,2n
= P(zew* > ( v = C( )).

To find (1 — a) one-sided CI for C; using the pivotal quantity 26W~*, where 20W* ~ )((ZZn),
employing INVCHI(1 — a,2n) function which represents the lower (1 — «) percentile of X(Zzn)-
PQOW* <INVCHI(1—a,2n)) =1—a
2m—-1D(A-C
P( ( )1 -G

— <INVCHI(1—@a,2n) |=1—-«a
1-C,

(17)

(1 —C)INVCHI(1 — a, 2n)
Plc,>1- =1-
= <CL = Z(n — 1) a,
where €, =1—6L and T =1 - 222

From Equation (17), the level (1 — ) one sided CI lower bound (LB) for C; is:
6



LB (1—C,)INVCHI(1 — a, 2n)
- 2n—-1)

Hence, the decision rule for the test is “if ¢ & [LB, ), then the LPI meets the required level.

(18)

5. Bayesian inference for C;

Bayesian inference has received great attention because of its validity in inference more than the
traditional method that depends on frequencies. It treats parameter as a random variable and it combines its
prior distribution denoted by m(8) with the information contained in the sample denoted by L(y|6) to get

the posterior distribution of the parameter.

5.1. The BE of C; under symmetric loss function

Let 6 have gamma prior distribution with hyper-parameters a and b,
a

6) = 6% e %%, a>0,b>0. 19
T(0) = oy 647 e (19)

Using the Bayes’ theorem, the posterior distribution of 8 comes from Equations (10) and (19),
T[(gly) e 9a+n—1e—9(2?=1yiwi+b), (20)

then m(0|y) ~ I'(a + n, Y™, y;W; + b). Further, the BE of 8 under SE loss function L(8,0) = (8 — 6)?
Y i=1

is the mean of the posterior density which is

By = e 21
From Equations (6) and (21), we have
(a+n)L

6, =12
bse = TS YW+ b

Let W** = Y™, y;W; + b, then Equation (20) can be written as:
(W**)a+n

n(6ly) = mgam—le—ew**. 22)
Using change of variables (see Casella and Berger®)), let Z = 26W™**, then the PDF of Z is given by:
(Wrya+n -
n(8ly) = T a+n—1,-6W" (23)
So, 20W™ ~ )(%(a +n) provided that “a” is a positive integer and éLsg =1- ((av-;z)L).

Remark 1. The expectation of C Lsg IS

) _q (a+n)bL (24)

20W
From Equation (24), we conclude that the BE (C Lgg) 18 not unbiased estimator of C;. When n = oo,

E(C Lsg) = Ci, so the BE ¢ Lgp 18 asymptotically unbiased estimator.

5.2. The BE C; under asymmetric loss function
Varian®¥ introduced the LINEX as an asymmetric loss function defined by:
L(8,0) x e™®-0) _ 7@ —9) —1,
where 7 # 0 is a known shape parameter, the BE for 8 and C; under LINEX loss function is, respectively,
given by:



~ -1
Oy = —InE(e 0y, (25)
and,
-1
C,,, = —InE(e " (=D)|y). 26
Lx = 7 In (e 1¥) (26)
Using Equation (22), then E (e *(1=61)] y) is determined as below:
E(e‘f(l‘“)b_/) — e_TE(€T6L|X)

. [o'e] (W**)a+n

a+n—1e—(9W**—19L)d9
o I'(a+n)

=e

(W**)a+n

o (1 7L )—(a+n)
=e W **

Then by inserting the previous equation in Equation (26), leads to

. -1 . 7L\~ (@™ a+n L
CLLx:Tln e (1_W**) =1+ . 1n<1—W**).

One can show that CLLX converges to CLSE as T — 0.

= e_T

6. Testing procedure for the LPI in Bayesian approach and the power
function of the test

In this section, we study the testing procedure for the LPI in the Bayesian approach and the power function
of the test.

6.1. Testing procedure for the LPI in Bayesian approach

Here, we create a statistical test technique to determine whether the LPI complies with the necessary
standards. Assuming that the required value of LPI is more than C where C is the target value. Our aim is to
test the null hypothesis Equation (12) against the alternative hypothesis Equation (13). The C Lgp Of Cp is
used as the test statistics, and the rejection region can be expressed as {é Lsg = CO}. With specified significance

level a, the critical value C, can be calculated as follows:
P(éLSE > C0|CL = C) =

=>P(1—((a+—n)L)>co|1—9L=c)=a

W**
(a+n)L 1-C
=>P(1_T>C0|9=T)=“
= P(1 (a+n)L<C 9_1—C 1 (27)
(1-<Glo=—)=1-a
= P(1 29(a+n)L<C 9_1—6 —
A= —Zgww =Cl0=—7)=1-a
21 -C)(a+n
= P2OW™ < ( X )):1—a.

1-Cy
As we know 20W* ~ )((Zz(n +ay) and from Equation (27) using INVCHI(1 — a, 2(a + n)) function that

is the lower (1 — «) percentile of )((Zz(a +n)) SO,



21-C)(a+n)
1-C,
Then, the following critical value can be derived
21-0)(a+n)
~ INVCHI(1 — a,2(a +n))’

= INVCHI(1 — a,2(n + a)).

Co=1 (28)

6.2. The power function of the test

The power of the statistical test is the probability of correctly rejecting the false null hypothesis. Applying
the null hypothesis Equation (12) against the alternative hypothesis Equation (13), one gets a size a test with
the rejection region {éLsg > CO}. The power P(C;) ofthetestat C;, = c;(> ¢) is then

P(Cl) = P(éLSE > CO)

21-C)(a+n) _
INVCHI(I —a,2(a +n)) ¢+ = C1>
:P(l_(a+n)L>1_ 21-C)(a+n) |9:1—c1>
W INVCHI(1 — a,2(a + n)) L
OINVCHI(1 — a,2n)L 1—c
1-c o= )
(1 —¢))INVCHI(1 — a,2(a +n))
1-c )
The level (1 — @) one-sided credible interval for C; can be done as follows:

:P(CLSE>1—

(29)

=P (ZHW** >

=P (ZHW** >

With pivotal quantity 20W™*, where 20W™** ~ )((22(,1+n)), and INVCHI(1 — a,2(n + a)) function
which represents the lower (1 — a) percentile of )((zz(a +n)-
P(26W* < INVCHI(1—a,2(a+n))) =1—-«
p <2(a +n)(1-C)

< INVCHI(1 - a,2(a + n))> =1-aq,

1-Crg (30)
1-C,)INVCHI(1 —a,2(a+n
o506 A-a2@+m) _,
2(a+n)
where C; =1—60L and éLss =1- (a‘;Z)L, from Equation (30) the level (1 —a) one sided credible

interval LBgg for C; lower credible bound for C; is:
(1—Cp, )INVCHI(1 — @, 2(a + n))
2(a+n) '

LB=1- 31)

Now the decision rule for the test is “if ¢ & [LB, 00)” then the lifetime index meets the required level.

7. Simulation study and real data analysis

In this section, the purpose is to analyze the performance of the estimation methods presented in the
sections above. For illustrative purposes, a real data set is used. Furthermore, a simulation study is used to
investigate the behavior of the proposed methods and to test the statistical performances of the estimates given
the PTIIC and PFFC as two censoring schemes. Calculations have been performed using the R-statistical
programming language, calculations are done by utilizing the bbmle package.

7.1. Simulation study

Here, the simulation study is used to analyze the performance of the proposed estimation methods under
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the PTIIC and PFFC schemes.

7.1.1. Part I: PTIIC scheme

To analyze the performance of estimation methods, including ML and Bayesian, a Monte Carlo
simulation study is employed, under the PTIIC scheme for Pareto distribution. 1000 observations are generated
from Pareto distribution then apply the transformation (Y =InX) for the MLEs under the following
assumptions:

1) True parameter value of Pareto distribution is selected as: 6 = 0.5, and 1.5.

2) Lower specification limit is assumed to be L = 0.25 and 1.

3) Sample sizes of n = 40 and 80.

4) Removed items R; are assumed at different sample sizes n and number of stages m.

5) Table 2 provides the selected censoring schemes, namely scheme 1 (S;), scheme 2 (S,), scheme 3 (S3),

and scheme 4 (S,) at different values of n and m.

Table 2. Numerous patterns for removing items from life test at different number of stages.

n m Censoring schemes
Sy S, Ss3 S4
40 20 (20, 0*19) (10, 0*18,10) (0*°, 10, 10, 0*°) (019, 20)
30 (10, 0*2%) (5, 0*28.5) (0*1% 5,5, 0*1%) (0*29,10)
80 40 (40, 0*39%) (20, 0*38,20) (0*1°, 20, 20, 0*19) (0*39, 40)
60 (20, 0*59) (10, 078, 10) (0*2°, 10, 10, 0*29) (0759, 20)

Here, (5*3, 0), for example, means that the censoring scheme employed is (5, 5, 5, 0).

The MLEs of C, are produced based on the generated data. To solve the numerical equations to get
MLESs, we take the true parameter values as initial values. For the Bayesian method, we compute the BEs using
informative priors (IPs) for the gamma distribution with parameters a = 0.5, and b = 1.5. Such values of [Ps
are plugged-in to evaluate the required estimates. The BEs were computed under two loss functions: SE and
LINEX (r = —0.5,0.5).

All the average estimates are reported in Tables 3 and 4 for 8 = 0.5, L = 0.25 and L = 1, respectively,
and in Tables 5 and 6 for 8 = 1.5, L = 0.25 and L = 1, respectively. Further, the first column denotes the
average estimates (Avg.), and in the second column, related mean squared errors (MSEs).

Table 3. Average estimated values and MSEs of the ML and Bayesian for different PTIIC schemes for Pareto distribution with 6 =
0.5, L = 0.25 and true value of C; = 0.875.

(n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(40, 20) S1 0.8682 0.001 0.8186 0.0034 0.8198 0.0033 0.819 0.0034
S, 0.8676 0.001 0.8817 0.0003 0.8822 0.0003 0.8819 0.0003
S3 0.8667 0.001 0.866 0.0003 0.8667 0.0003 0.8662 0.0003
Sa 0.8675 0.001 0.893 0.0005 0.8934 0.0005 0.8932 0.0005
(40, 30) S1 0.8704 0.0007 0.8031 0.0053 0.804 0.0052 0.8034 0.0053
S, 0.8711 0.0006 0.855 0.0006 0.8555 0.0005 0.8551 0.0006
S3 0.8712 0.0006 0.8393 0.0014 0.8399 0.0014 0.8395 0.0014
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Table 3. (Continued).

(n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
Sa 0.8697 0.0007 0.8712 0.0002 0.8716 0.0002 0.8713 0.0002
(80, 40) S1 0.8724 0.0004 0.7975 0.0061 0.7982 0.006 0.7977 0.0061
S, 0.872 0.0005 0.8817 0.0002 0.882 0.0002 0.8818 0.0002
S3 0.8721 0.0004 0.8585 0.0004 0.8589 0.0004 0.8586 0.0004
Sa 0.8719 0.0004 0.8945 0.0005 0.8947 0.0005 0.8945 0.0005
(80, 60) S1 0.8731 0.0003 0.7852 0.0081 0.7858 0.008 0.7854 0.0081
S, 0.8727 0.0003 0.8519 0.0006 0.8522 0.0006 0.852 0.0006
S3 0.8732 0.0003 0.8288 0.0022 0.8291 0.0022 0.8289 0.0022
Sa 0.8727 0.0003 0.871 0.0001 0.8712 0.0001 0.8711 0.0001

Table 4. Average estimated values and MSEs of the ML and Bayesian for different PTIIC schemes for Pareto distribution with 6 =
0.5, L =1 and true value of C;, = 0.5.

(n, m) Sch. C,
MLE BE:SE BE:LINEX
T=-0.5 T=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(40, 20) S1 0.4748 0.0158 0.2656 0.0596 0.285 0.0504 0.2722 0.0564
S, 0.4726 0.0149 0.5241 0.0039 0.5324 0.0041 0.5269 0.0039
S3 0.4724 0.0165 0.4616 0.0055 0.4722 0.0045 0.4652 0.0051
Sa 0.4809 0.0147 0.5733 0.0086 0.58 0.0094 0.5756 0.0089
(40, 30) S1 0.4862 0.0098 0.2041 0.0903 0.2194 0.0812 0.2093 0.0872
S, 0.478 0.0095 0.4137 0.0098 0.4221 0.0083 0.4165 0.0093
S3 0.482 0.0095 0.35 0.0249 0.3603 0.0218 0.3534 0.0239
Sa 0.4811 0.01 0.4841 0.0028 0.4907 0.0025 0.4863 0.0027
(80, 40) Sy 0.4819 0.0072 0.1794 0.1046 0.1917 0.0968 0.1835 0.1019
S, 0.4833 0.0074 0.5216 0.0022 0.5259 0.0024 0.5231 0.0023
S3 0.4886 0.0074 0.4317 0.007 0.4377 0.0061 0.4338 0.0067
Sa 0.4867 0.0073 0.5757 0.0074 0.5791 0.0079 0.5768 0.0076
(80, 60) S1 0.4922 0.0047 0.1345 0.1347 0.1437 0.128 0.1376 0.1325
S, 0.4928 0.0044 0.4051 0.0103 0.4095 0.0095 0.4066 0.01
S3 0.4917 0.0043 0.3108 0.037 0.3167 0.0348 0.3128 0.0362
Sa 0.4923 0.0049 0.484 0.0016 0.4873 0.0015 0.4851 0.0016
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Table 5. Average estimated values and MSEs of the ML and Bayesian for different PTIIC schemes for Pareto distribution with 6 =
1.5, L = 0.25 and the true value of C; = 0.625.

(n, m) Sch. C,
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(40, 20) S1 0.6061 0.0089 0.7778 0.0234 0.7796 0.024 0.7784 0.0236
S, 0.6045 0.0084 0.8181 0.0374 0.8193 0.0379 0.8185 0.0376
S3 0.6043 0.0093 0.8066 0.0331 0.8079 0.0336 0.807 0.0333
Sa 0.6107 0.0083 0.8283 0.0415 0.8294 0.0419 0.8287 0.0416
(40, 30) S1 0.6146 0.0055 0.7702 0.0211 0.7715 0.0215 0.7707 0.0213
S, 0.6085 0.0054 0.7982 0.0301 0.7992 0.0304 0.7985 0.0302
S3 0.6115 0.0053 0.7886 0.0268 0.7897 0.0272 0.789 0.0269
Sa 0.6108 0.0057 0.8102 0.0344 0.8111 0.0347 0.8105 0.0345
(80, 40) S1 0.6114 0.0041 0.7674 0.0203 0.7684 0.0206 0.7677 0.0204
S, 0.6125 0.0041 0.8171 0.037 0.8178 0.0372 0.8174 0.0371
S3 0.6165 0.0041 0.801 0.0311 0.8018 0.0313 0.8013 0.0311
Sa 0.615 0.0041 0.8284 0.0415 0.8289 0.0417 0.8286 0.0415
(80, 60) S1 0.6191 0.0027 0.7626 0.0189 0.7633 0.0191 0.7628 0.019
S, 0.6196 0.0025 0.7966 0.0295 0.7971 0.0296 0.7967 0.0295
S3 0.6187 0.0024 0.7829 0.025 0.7835 0.0252 0.7831 0.025
Sa 0.6192 0.0028 0.8099 0.0342 0.8103 0.0344 0.81 0.0343

Table 6. Average estimated values and MSEs of the ML and Bayesian for different PTIIC schemes for Pareto distribution with 8 =
1.5, L =1 and true value of C;, = —0.5.

(n, m) Sch. C,
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(40, 20) S1 —0.5755 0.1423 0.0963 0.3569 0.1254 0.3922 0.1063 0.3688
S, —0.5822 0.1339 0.2624 0.5834 0.2819 0.6133 0.269 0.5935
S3 —0.5827 0.1482 0.215 0.5133 0.237 0.5451 0.2225 0.524
Sa —0.5574 0.1323 0.3045 0.6497 0.3219 0.6778 0.3104 0.6592
(40, 30) S1 —0.5415 0.0885 0.0703 0.3258 0.0911 0.35 0.0774 0.3339
S, —0.566 0.0855 0.1846 0.4696 0.2006 0.4918 0.19 0.4771
S3 —0.554 0.0854 0.1454 0.4174 0.1631 0.4404 0.1514 0.4251
M —0.5567 0.0904 0.2337 0.5396 0.2479 0.5606 0.2385 0.5467
(80, 40) S1 —0.5544 0.0648 0.0613 0.3154 0.0774 0.3337 0.0667 0.3215
S, —0.5501 0.0662 0.2635 0.5841 0.2735 0.5993 0.2669 0.5892
S3 —0.5341 0.0662 0.1982 0.4886 0.21 0.5051 0.2022 0.4941
Sa —0.5401 0.066 0.3091 0.656 0.3179 0.6702 0.3121 0.6608
(80, 60) S1 —0.5234 0.0426 0.0446 0.2968 0.0558 0.3091 0.0484 0.3009
S, —0.5216 0.0396 0.1821 0.4658 0.1903 0.4771 0.1849 0.4696
S3 —0.5251 0.0387 0.127 0.3935 0.1364 0.4053 0.1302 0.3975
Sa —0.5232 0.044 0.236 0.5424 0.2431 0.553 0.2384 0.5459

12



The findings of the simulation study are shown in Table 3 through Table 6, and they include the average
value, and MSE of the MLE and BE under SE, and LINEX loss functions for C; using the chosen PTIIC
schemes. The following conclusions may be drawn from these tables:

e Thebias of C, based on ML method is smaller than its corresponding of C; estimate based on Bayesian
method.
e  The bias of C, based on ML method decreases as n and m increase.

The MSE based on the ML method decreases as n and m increase, which means that the MLE is

consistent.

e For all tables and all schemes, the MSE based on ML method is lower than the MSE of the Bayesian
method.

e  The average of C, using the ML method is generally closer to the true value of the parameter than the
average of C; using the Bayesian method.

e In all four tables, the average of C, based on ML method is closest to the true value for the S; scheme.

7.1.2. Part II: PFFC scheme

In this sub-section, to analyze the performance of estimation methods, including ML and Bayesian, a
Monte Carlo simulation study is employed, under PFFC scheme for Pareto distribution. For the MLEs, 1000
observations are generated from the Pareto distribution then apply the transformation (Y = InX) based on the
following assumptions:

1) The true parameter of Pareto distribution is given as § = 0.5 and 1.5.

2) Lower specification limit is assumed as L = 0.25, 1.

3) Number of groups is n, where n = 40 and 80.

4) Number of items in each group is k given by: k = 3,5. Note that: if k = 1, the PFFC is reduced to

PTIIC.

5) Removed items R; are similar to those for PTIIC in Table 2.

The MLEs of C} is produced based on the generated data. To solve the numerical equations to get MLEs,
we take the true parameter values as initial guess values. For the Bayesian method, we compute BEs using IPs
with parameters a = 0.5 and b = 1.5. Such values of IPs are plugged-in to evaluate the required estimates.
The Bayes estimates were computed under SE and LINEX (t = —0.5, 0.5) loss functions.

All the average estimates for methods are reported in Tables 7 and 8 for 8 = 0.5, L = 0.25, and L =
1, respectively, and in Tables 9 and 10 for 8 = 1.5, L = 0.25, and L = 1, respectively. Further, the first
column donates Avg. estimates, and the second column is the related MSEs.

Table 7. Average estimated values and MSEs of the ML and Bayesian for different PFFC schemes for Pareto distribution with 8 =
0.5, L = 0.25 and true value of C; = 0.875.

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(3, 40,20) S1 0.8686 0.001 0.8146 0.0039 0.8158 0.0038 0.815 0.0039
S, 0.8699 0.001 0.8821 0.0003 0.8826 0.0003 0.8822 0.0003
S3 0.8694 0.0009 0.8325 0.002 0.8335 0.0019 0.8328 0.002
M 0.8684 0.001 0.8934 0.0005 0.8938 0.0005 0.8935 0.0005
(3,40, 30) S1 0.8709 0.0006 0.8016 0.0056 0.8026 0.0054 0.8019 0.0055
S, 0.871 0.0006 0.8544 0.0006 0.8549 0.0006 0.8546 0.0006
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Table 7. (Continued).

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
S3 0.872 0.0006 0.8142 0.0038 0.815 0.0037 0.8145 0.0038
Sa 0.8699 0.0006 0.8716 0.0002 0.872 0.0002 0.8717 0.0002
(3, 80, 40) S1 0.8704 0.0005 0.7933 0.0068 0.7941 0.0067 0.7935 0.0067
S, 0.8721 0.0004 0.8812 0.0001 0.8814 0.0001 0.8812 0.0001
S3 0.8723 0.0005 0.8191 0.0032 0.8197 0.0032 0.8193 0.0032
Sa 0.8722 0.0005 0.8946 0.0005 0.8948 0.0005 0.8947 0.0005
(3, 80, 60) Sy 0.8723 0.0003 0.7834 0.0085 0.7839 0.0084 0.7835 0.0084
S, 0.8725 0.0003 0.8512 0.0006 0.8515 0.0006 0.8513 0.0006
S3 0.8729 0.0003 0.7999 0.0057 0.8004 0.0056 0.8 0.0057
Sa 0.8732 0.0003 0.8711 0.0001 0.8713 0.0001 0.8712 0.0001
(5, 40, 20) S1 0.8687 0.001 0.8139 0.004 0.8151 0.0038 0.8143 0.004
S, 0.8682 0.0009 0.881 0.0002 0.8815 0.0002 0.8812 0.0002
S3 0.8681 0.001 0.8227 0.003 0.8239 0.0028 0.8231 0.0029
W 0.8702 0.0009 0.8942 0.0006 0.8946 0.0006 0.8943 0.0006
(5, 40, 30) S1 0.8715 0.0006 0.801 0.0056 0.802 0.0055 0.8013 0.0056
S, 0.8695 0.0006 0.8539 0.0006 0.8544 0.0006 0.8541 0.0006
S3 0.8705 0.0006 0.8077 0.0047 0.8086 0.0046 0.808 0.0046
W 0.8703 0.0006 0.8719 0.0002 0.8723 0.0002 0.872 0.0002
(5, 80, 40) S1 0.8705 0.0005 0.7933 0.0068 0.794 0.0067 0.7935 0.0067
S, 0.8708 0.0005 0.8803 0.0001 0.8806 0.0001 0.8804 0.0001
S3 0.8722 0.0005 0.8079 0.0046 0.8085 0.0045 0.8081 0.0046
W 0.8717 0.0005 0.8944 0.0005 0.8946 0.0005 0.8944 0.0005
(5, 80, 60) S1 0.8731 0.0003 0.7835 0.0084 0.7841 0.0083 0.7837 0.0084
S, 0.8732 0.0003 0.8516 0.0006 0.8518 0.0006 0.8517 0.0006
S3 0.8729 0.0003 0.7928 0.0068 0.7933 0.0067 0.793 0.0068
Sa 0.8731 0.0003 0.8714 0.0001 0.8716 0.0001 0.8715 0.0001

Table 8. Avg. estimated values and MSEs of the ML and Bayesian for different schemes of PFFC for Pareto distribution with 6

0.5, L =1 and the true value of C; = 0.5.

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 T=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(3, 40, 20) S1 0.4696 0.0176 0.2458 0.0688 0.2662 0.0584 0.2528 0.0651
S, 0.4731 0.0167 0.5212 0.0041 0.5296 0.0043 0.524 0.0042
S3 0.475 0.0158 0.3229 0.0354 0.3394 0.0294 0.3285 0.0333
Sa 0.4768 0.0151 0.5717 0.0083 0.5784 0.0091 0.574 0.0086
(3, 40, 30) S1 0.4805 0.01 0.1957 0.0951 0.2114 0.0856 0.201 0.0918
S, 0.4854 0.0098 0.4146 0.0098 0.423 0.0083 0.4174 0.0093
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Table 8. (Continued).

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 T=-0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
S3 0.4802 0.0105 0.2487 0.0655 0.2624 0.0586 0.2534 0.0631
M 0.485 0.0087 0.4864 0.0025 0.4929 0.0023 0.4886 0.0025
(3, 80, 40) Sy 0.4883 0.0067 0.1703 0.1106 0.1829 0.1024 0.1746 0.1078
S, 0.4888 0.0072 0.5224 0.0022 0.5266 0.0024 0.5238 0.0023
S3 0.4817 0.0075 0.2695 0.0548 0.2793 0.0503 0.2728 0.0533
Sa 0.4889 0.0072 0.5765 0.0075 0.5799 0.008 0.5776 0.0077
(3, 80, 60) Sy 0.4888 0.0048 0.1278 0.1395 0.1372 0.1325 0.131 0.1371
S, 0.4875 0.0044 0.403 0.0106 0.4074 0.0098 0.4044 0.0103
S3 0.4909 0.0045 0.194 0.0945 0.202 0.0896 0.1967 0.0929
Sa 0.4958 0.0044 0.4849 0.0015 0.4882 0.0013 0.486 0.0014
(5, 40, 20) S1 0.4696 0.0176 0.242 0.0707 0.2626 0.0601 0.249 0.067
S, 0.4731 0.0167 0.5205 0.0041 0.5289 0.0043 0.5233 0.0041
S3 0.475 0.0158 0.2847 0.0506 0.3032 0.0426 0.291 0.0478
Sa 0.4768 0.0151 0.5717 0.0083 0.5784 0.0091 0.574 0.0086
(5, 40, 30) S1 0.4805 0.01 0.1943 0.0959 0.2101 0.0863 0.1997 0.0926
S, 0.4854 0.0098 0.4142 0.0099 0.4226 0.0084 0.4171 0.0094
S3 0.4802 0.0105 0.2243 0.0785 0.2389 0.0704 0.2292 0.0757
Sa 0.485 0.0087 0.4864 0.0025 0.4929 0.0023 0.4886 0.0025
(5, 80, 40) S1 0.4883 0.0067 0.168 0.1121 0.1807 0.1038 0.1723 0.1093
S, 0.4888 0.0072 0.522 0.0022 0.5263 0.0024 0.5235 0.0023
S3 0.4817 0.0075 0.2258 0.0769 0.2367 0.0709 0.2295 0.0748
Sa 0.4889 0.0072 0.5765 0.0075 0.5799 0.008 0.5776 0.0077
(5, 80, 60) S1 0.4888 0.0048 0.127 0.1401 0.1364 0.1331 0.1301 0.1377
S, 0.4875 0.0044 0.4028 0.0107 0.4072 0.0098 0.4042 0.0104
S3 0.4909 0.0045 0.1656 0.1127 0.1742 0.107 0.1685 0.1107
Sa 0.4958 0.0044 0.4849 0.0015 0.4882 0.0013 0.486 0.0014

Table 9. Avg. estimated values and MSEs of the ML and Bayesian for different PFFC schemes for Pareto distribution with 6 = 1.5,
L = 0.25 and true value of C; = 0.625.

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
S1 0.6061 0.0087 0.7755 0.0227 0.7773 0.0233 0.7761 0.0229
S, —0.6033 0.0089 0.8169 0.037 0.8182 0.0374 0.8173 0.0371
(40,20 S3 0.6027 0.0096 0.7847 0.0256 0.7863 0.0261 0.7852 0.0257
Sa 0.6074 0.0086 0.828 0.0414 0.8291 0.0418 0.8284 0.0415
S1 0.61 0.0057 0.7692 0.0208 0.7705 0.0212 0.7696 0.021
(3.40.30) S, 0.6133 0.0056 0.7983 0.0301 0.7993 0.0304 0.7986 0.0302
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Table 9. (Continued).

(k, n, m) Sch. C;
MLE BE:SE BE:LINEX
T=-0.5 7=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
S3 0.6119 0.0058 0.7754 0.0227 0.7767 0.023 0.7759 0.0228
M 0.6112 0.0058 0.8103 0.0344 0.8112 0.0347 0.8106 0.0345
S1 0.6147 0.0043 0.7662 0.02 0.7672 0.0202 0.7665 0.0201
S, 0.6135 0.0039 0.8169 0.0369 0.8175 0.0371 0.8171 0.037
G, 8040) S3 0.6119 0.0042 0.7777 0.0233 0.7786 0.0236 0.778 0.0234
Sa 0.615 0.0041 0.8284 0.0414 0.8289 0.0417 0.8286 0.0415
S1 0.6196 0.0025 0.7619 0.0188 0.7626 0.0189 0.7621 0.0188
S, 0.6189 0.0027 0.7964 0.0294 0.7969 0.0296 0.7966 0.0295
G, 80,.60) S3 0.6201 0.0023 0.769 0.0208 0.7697 0.0209 0.7692 0.0208
Sa 0.6172 0.0024 0.8093 0.034 0.8098 0.0342 0.8095 0.0341
S1 0.5998 0.0104 0.775 0.0226 0.7768 0.0231 0.7756 0.0227
S, 0.606 0.0097 0.8175 0.0372 0.8187 0.0377 0.8179 0.0374
(5.40.20) S3 0.6044 0.0092 0.7797 0.024 0.7814 0.0245 0.7802 0.0242
Sy 0.6054 0.0089 0.8278 0.0413 0.8289 0.0417 0.8281 0.0414
S1 0.615 0.0048 0.7694 0.0209 0.7707 0.0213 0.7698 0.021
S, 0.6089 0.0053 0.7977 0.0299 0.7987 0.0302 0.798 0.03
.40.30) S3 0.6084 0.0058 0.7723 0.0217 0.7736 0.0221 0.7727 0.0219
A\ 0.6104 0.0057 0.8098 0.0342 0.8107 0.0346 0.8101 0.0344
S1 0.6191 0.0035 0.7663 0.02 0.7673 0.0203 0.7666 0.0201
S, 0.6147 0.0043 0.8171 0.037 0.8177 0.0372 0.8173 0.037
. 80 40) S3 0.617 0.0042 0.7727 0.0218 0.7736 0.0221 0.773 0.0219
A\ 0.6174 0.004 0.8286 0.0415 0.8291 0.0418 0.8288 0.0416
S1 0.6153 0.0026 0.7617 0.0187 0.7624 0.0189 0.7619 0.0188
S, 0.6186 0.0024 0.7963 0.0294 0.7968 0.0295 0.7964 0.0294
5. 80,.60) S3 0.6215 0.0027 0.7661 0.0199 0.7667 0.0201 0.7663 0.02
Sa 0.6169 0.0026 0.8094 0.034 0.8098 0.0342 0.8095 0.0341

Table 10. Avg. estimated values and MSEs of the ML and Bayesian for different PFFC schemes for Pareto distribution with 6 =
1.5, L =1 and true value of C;, = —0.5.

(k, n, m) Sch. (

MLE BE:SE BE:LINEX
T=-0.5 T=0.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
(3,40,20)0 S, —0.6007 0.1664 0.0863 0.3449 0.116 0.3805 0.0965 0.3569
S, —0.5759 0.1554 0.2606 0.5809 0.2802 0.6109 0.2673 0.5911
Ss3 —0.5825 0.1471 0.1249 0.3917 0.1522 0.4264 0.1342 0.4034
S4 —0.5785 0.1416 0.3022 0.646 0.3197 0.6742 0.3081 0.6556
(3,40,30) S —0.54 0.0759 0.0676 0.3227 0.0885 0.3468 0.0747 0.3308
S, —0.5646 0.0846 0.1829 0.4674 0.199 0.4896 0.1883 0.4748
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Table 10. (Continued).

(k, n, m) Sch. C;

MLE BE:SE BE:LINEX
T=-0.5 7=0.5

Avg. MSE Avg. MSE Avg. MSE Avg. MSE
S3 —0.5665 0.0928 0.0906 0.3494 0.1106 0.3733 0.0974 0.3575
M —0.5586 0.091 0.2321 0.5373 0.2464 0.5583 0.2369 0.5444
(3, 80, 40) S1 —0.5237 0.0567 0.0578 0.3115 0.074 0.3298 0.0633 0.3176
S, —0.5413 0.0683 0.2636 0.5841 0.2735 0.5994 0.2669 0.5893
S3 —0.532 0.067 0.1043 0.3657 0.119 0.3836 0.1093 0.3717
S —0.5306 0.0639 0.31 0.6573 0.3187 0.6715 0.3129 0.6621
(3, 80, 60) Sy —0.5388 0.0423 0.0414 0.2932 0.0526 0.3055 0.0451 0.2973

S, —0.5257 0.0378 0.181 0.4643 0.1893 0.4755 0.1838 0.468
S3 —0.5141 0.0424 0.0712 0.3264 0.0818 0.3386 0.0747 0.3305
Sa —0.5325 0.0413 0.2339 0.5392 0.2411 0.5498 0.2363 0.5428
(5,40, 20) S1 -0.5912 0.158 0.0842 0.3424 0.1141 0.378 0.0945 0.3544
S, —0.5806 0.1502 0.2597 0.5795 0.2794 0.6095 0.2664 0.5896
S3 —0.5749 0.142 0.1061 0.3685 0.1345 0.4037 0.1158 0.3804
W —0.5696 0.136 0.3029 0.6472 0.3204 0.6753 0.3089 0.6567
(5, 40, 30) S1 —0.5585 0.0895 0.0658 0.3206 0.0868 0.3448 0.0729 0.3288
S, —0.5437 0.0878 0.185 0.4703 0.2011 0.4925 0.1905 0.4778
S3 —0.5593 0.0943 0.0796 0.3365 0.1 0.3605 0.0865 0.3446

W —0.5449 0.0786 0.2353 0.542 0.2495 0.5629 0.2401 0.549
(5, 80, 40) S1 —0.5351 0.0607 0.0564 0.31 0.0727 0.3283 0.0619 0.3161
S, —0.5336 0.0645 0.2638 0.5845 0.2738 0.5997 0.2672 0.5896
S3 —0.555 0.0673 0.0823 0.3394 0.0977 0.3575 0.0875 0.3455
W —0.5332 0.0647 0.3098 0.6571 0.3185 0.6713 0.3127 0.6618
(5, 80, 60) S1 —0.5336 0.0429 0.0415 0.2933 0.0527 0.3057 0.0453 0.2975
S, —0.5374 0.0397 0.1805 0.4636 0.1888 0.4749 0.1833 0.4674

S3 —0.5274 0.0409 0.0574 0.3109 0.0684 0.3232 0.0611 0.315
Sa —0.5125 0.0399 0.2365 0.5431 0.2437 0.5537 0.2389 0.5467

Under the PFFC scheme, the average values and MSEs of C,, C 1. and ¢ gy are listed in Tables 7-10.

These tables lead us to the following conclusions:

e The bias of MLE is smaller than € 1. and C Lsp» that is the bias of MLE of C, is smaller than the
corresponding BE under SE and LINEX loss functions.

o The bias in MLE decreases as n and m increase for the two cases when k = 3 or k =5 except few
cases.
The MSE of the MLE (C;) decreases as n and m increase, indicating that the MLE of C, is consistent.

e The MSE of BE under SE and LINEX loss functions take consistent behavior when C; is small this also
when 6 and L are large.

e The MSE of BE under SE and LINEX loss functions take inconsistent behavior when C; 1is large this
also when 6 and L are small.

e In approximately most situations, the MLE of C; is preferred over the BE under SE and LINEX
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functions.

7.2. Real data analysis

A real data set is analyzed for illustrative purpose as well as to assess the statistical performances of the
MLEs and Bayesian estimation for lifetime index given for Pareto distribution under different progressive
type-1l censoring schemes.

The following data represents wage data (in multiples of 100 US dollars) of a random sample of 30
production-line workers in a large industrial firm. The data are reported as follows:
101 103 103 104 104 105 106 107 108 111 112 112 112 115 115
116 119 119 119 123 125 128 132 140 151 154 156 157 158 198
This dataset was analyzed by Renjini et al.> and found that it’s fitted to Pareto distribution where the
Kolmogorov-Smirnov statistic and P-value are obtained as 0.0947175 and 0.927333 respectively. Table 11
presents various estimates of C; for different PTIIC schemes at the specified L values.

Table 11. Estimated values of the ML and Bayesian for different schemes of progressive type-I1 censoring at life index L for Pareto
distribution given real dataset.

Sch. MLE BE:SE BE:LINEX
T=-0.5 T=0.5

1P Non-IP IP Non-IP IP Non-IP
L=0.25
Sch.1 0.96648 0.93510 0.93475 0.93526 0.93516 0.93491 0.93480
Sch.2 0.96505 0.92949 0.92922 0.92967 0.92955 0.92941 0.92928
Sch.3 0.96490 0.92889 0.92864 0.92908 0.92895 0.92882 0.92870
Sch.4 0.94795 0.78891 0.79652 0.79057 0.78947 0.79803 0.79703
L=0.5
Sch.1 0.93296 0.87000 0.86929 0.87063 0.87021 0.86992 0.86950
Sch.2 0.93010 0.85873 0.85820 0.85947 0.85898 0.85893 0.85844
Sch.3 0.92981 0.85753 0.85702 0.85829 0.85778 0.85777 0.85727
Sch.4 0.89590 0.57558 0.59100 0.58224 0.57783 0.59704 0.59304
L=0.75
Sch.1 0.89944 0.80468 0.80363 0.80610 0.80515 0.80503 0.80410
Sch.2 0.89515 0.78771 0.78693 0.78939 0.78828 0.78858 0.78748
Sch.3 0.89471 0.78591 0.78516 0.78762 0.78648 0.78683 0.78572
Sch.4 0.84385 0.35994 0.38340 0.37498 0.36506 0.39704 0.38804

8. Concluding remarks

The LPI is effective in testing the performance of any process, in this paper we depend on the ML as a
non-Bayesian technique as well as the Bayesian technique using SE and LINEX loss functions. Under Pareto
distribution, using GOS samples, C; was estimated. The power function of the test under ML and Bayesian
methods was calculated and we used it to find (1 — ) one-sided CI for C; to determine whether LPI meets
the required level or not. Additionally, to make sure our technique works as predicted, a simulated study and
real data analysis were completed under the PTIIC and PFFC schemes. The simulation study showed that the
MLE of C; is superior to the Bayes estimate under SE and LINEX loss functions in both PTIIC and PFFC
schemes. Moreover, the MLE based on scheme S5 is preferable to others in the case of PTIIC. Generally
speaking, the MLE is superior to other estimates according to it is consistent.
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