
Journal of Autonomous Intelligence (2024) Volume 7 Issue 3 

doi: 10.32629/jai.v7i3.1059 

1 

Original Research Article 

Detection of lanes, obstacles and drivable areas for self-driving cars 

using multifusion perception metrics 
A. Kishore Kumar, Venkatesh Palanisamy* 

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, 

India 

* Corresponding author: Venkatesh Palanisamy, venkatesh.palanisamy@vit.ac.in 

ABSTRACT 

Autonomous vehicles have been a recent trend and active research area from the onset of machine learning and deep 

learning algorithms. Computer vision and deep learning techniques have simplified the operations of continuous 

monitoring and decision-making capabilities of autonomous vehicles. A navigation system is facilitated by a visual 

system, where sensors and collectors process input in form of images or videos, and the navigation system will be making 

certain decisions to adhere to the safety of drivers and passers-by. This research article contemplates the model of obstacle 

detection, lane detection, and how the vehicle is supposed to act in terms of autonomous driving situation. This situation 

should resemble human driving conditions and should ensure maximum safety to both the stakeholders. A unified neural 

network for detecting lanes, objects, obstacles and to advise the driving speed is defined in this architecture. As far as 

autonomous driving is considered, these target elements are considered to be the predominant areas of focus for 

autonomous driving vehicles. Since capturing the images or videos have to be performed in real-time scenarios and 

processing them for relevant decision making have to be completed at a swift pace, a concept of context tensors is 

introduced in the decoders for discriminating the tasks based on priority. Every task is associated with the other tasks and 

also the decision-making process and hence this architecture will continue to learn every day. From the obtained results, 

it is evident that multitask networks can be improved using the proposed method in terms of accuracy, decision-making 

capability and reduced computational time. This model investigates the performance using Berkeley deep drive datasets 

which are considered to be a challenging dataset. 

Keywords: autonomous vehicle; deep learning; image processing; self-driving car, multi-task network 

1. Introduction 

Recent statistics released in global report on road safety by 

World Health Organisation reveal that nearly 1.35 million people died 

in road traffic accidents, according to 2018. Another recent study 

claims that nearly 50,000 accidents occur in America alone, and most 

of them occur due to presence of obstacles[1]. These press reports 

indicate that obstacles are the serious concern to be addressed 

irrespective of autonomous or manual driving scenarios. Having 

accounted for over hundred deaths and nearly 10,000 accidents, 

obstacles on the road must be removed by the respective officials. 

From various reports, it is also understood that 90% of the drivers 

cause these accidents due to errors and misjudgment. In order to 

address these issues, departments of the government and car 

manufacturers should work together by considering different factors 

and extending their support to predict and act accordingly. There has 

been intensive research and huge investments deployed by car 
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manufacturers for developing at enormous vehicles and cognitive robots to be launched in this society[2]. 

European Nation has invested nearly 1 billion euros for accomplishing futuristic cars and accident-free roads. 

Google, and Waymo have defined the onset of autonomous vehicles and tested them in different states of 

America long back in 2009. Ford and BMW as also assisted Uber for designing and deployment of autonomous 

vehicles on roads. Ever since its onset from 2009, this technology has become a common ground for many 

states in America and consistently monitored with specialized regulations[3]. It is a projection by Victoria 

transport policy that autonomous vehicles would be common in the Year 2040. Adaptive cruise control is the 

miniature version of autonomous cars upon which intelligent Lane changing control, emergency braking 

systems, light detection and ranging, traffic signal detection, street sign detection, vehicle to vehicle 

communication, object avoidance system, collision avoidance system are deployed. 

Autonomous Road vehicles are becoming more common in the recent past where many manufacturers 

have involved themselves in research and development for bringing in more sophisticated and fully automated 

vehicles. Google has been a significant example where they have invested almost 20 years of research and 

Tesla has been successful in launching such vehicles[4,5]. The core expectation of autonomous vehicles is to 

sense the presence of obstacles, altering the lanes for positioning the vehicle to avoid any accidents and ends 

maintaining a particular route. These two are the common problems that need to be addressed in any research 

and still, there is a minimal progression in this domain[6]. The proposed solutions, apart from solving these two 

predominant problems, have to be reliable, robust, efficient, and affordable. The common techniques used for 

detecting obstacles in a long-range are Radar, laser scanners, computer vision, and various deep learning 

algorithms. Many techniques have investigated the approach of sensor fusion to address the drawbacks of 

individual methodologies and mechanisms[7]. Concerning the detection of neighbouring vehicles, computer 

vision, and Laser scanners detect the presence of search vehicles and guide the autonomous vehicle accordingly. 

The continuous changes to highways, roads, streets add a burden to these autonomous vehicles as the system 

may consider small obstacles or debris, water droplets, lights, shadows, and other factors as obstacles. The 

vehicles’ sensors may capture different objects and classify them as potential elements even when they are not. 

Sensors may be classified into active and passive, where LIDAR and RADAR are considered to be active and 

cameras are considered to be passive[8]. The purpose of active sensors is used to measure the distance and 

speed of the vehicle in accordance to be object obstacle with huge precision. Displacement of a vehicle from 

time to time and its correspondence to obstacles are identified with greater accuracy when active sensors are 

deployed. The problem with active sensors utilization is associated with the high-cost factor and lower 

resolution than a camera. This is where the camera will be introduced as a passive sensor, where accuracy is 

lesser but resolution and proper identification are better[9]. Timely detection of obstacles, transferring them 

into the system, and making a timely decision will be a challenge when passive sensors are part of the system. 

One common observation is that, both in the cases of active and passive sensors, detection of small objects 

in a very small area in different forms, shapes and sizes is going to be difficult. There are high chances that the 

gradients of paper, sawdust, mud after the rain, etc., possess the same texture in terms of active and passive 

sensors. All these factors may contribute to false positives for a Lane detection system obstacle detection 

system. Research and development have taken autonomous vehicles to new heights and in recent developments, 

convolutional neural networks have been majorly implemented for obstacle detection and safe navigation[10]. 

During the training phase of a conventional neural network, a very close association that depicts the 

relationship between the road conditions and the driver’s behaviour is monitored, corresponding to the inputs 

updated from the steering wheel and the inputs from active and passive sensors. When the model is deployed 

into the testing phase, based on the obstacles detected during run time, the convolutional neural network 

provides a prediction of a possible Steering Wheel angle for safe navigation. But the chances of training a 

model completely for different types of obstacles are nearly impossible and false positives will provide 

inaccurate information which may lead to unwanted decisions and hence may result in a collision or 



3 

accident[11,12]. Failure of an automatic navigation system may be due to any one of the following reasons, where 

the sensors fail, the transmission of information failure or the software failure. One such example is where a 

Tesla failed to detect an overturned truck on the highway and a pedestrian trying to cross a road in its autopilot 

mode. 

This approach investigates the model and changes required in the conventional system for ensuring 

accuracy and robustness in obstacle detection. A Markov Random Field will be altered for obstacle detection 

and lane detection, where the model considers the areas under a region suitable for driving. Road Segmentation 

and drivable areas were not part of the ecosystem in conventional approaches[13], and the proposed system 

introduced lane line, traffic objects, obstacles and additional perception strategies for intelligent and 

autonomous vehicles. A model of multifusion Network is proposed to consider a wide range of activities 

ranging from classification, detection and semantic segmentation will be fused into the architecture for 

enhanced performance. The proposed architecture intends to process the perception of lanes, other drivable 

areas, traffic objects such as cones, and obstacles using a deep learning model[14]. The image captured from 

active and passive sensors will yield and mark the obstacles using a Markov random field. To be more specific, 

the model includes intensity gradient parameter, curvature cue parameter, and differentiation of variance to 

discriminate the obstacles. Moreover, to increase the computational performance, subnets are included as a 

context tensor for processing the information in a parallel fashion. On the whole, the proposed method proves 

to improve efficiency and performance without any computational overheads. The computational resources 

are used in parallel subnets, thus eliminating the serial processing approach. After analysing the distance 

between the vehicle and the obstacle, speed of the vehicle, the deep learning model will navigate the 

autonomous vehicle into probable and drivable areas[15]. Deep learning and sensor fusion for obstacle detection 

in autonomous vehicles indeed hold significant promise, but a comprehensive exploration of their advantages 

and limitations within the context of our research is crucial. 

1.1. Advantages 

Enhanced Perception: Deep learning algorithms, particularly Convolutional Neural Networks (CNNs), 

excel at recognizing complex patterns in sensor data, improving the vehicle’s ability to perceive and classify 

obstacles accurately. 

Adaptability: Deep learning models can adapt to changing environments and learn from vast datasets, 

making them versatile for different road conditions and scenarios. 

Real-time processing: Modern hardware acceleration allows for real-time processing of deep learning 

models, enabling rapid decision-making for obstacle avoidance. 

Multimodal sensor fusion: Combining data from various sensors like LiDAR, radar, cameras, and 

ultrasonic sensors through sensor fusion improves redundancy and robustness in obstacle detection. 

Generalization: Deep learning models can generalize from training data to handle novel obstacles or 

scenarios not explicitly encountered during training. 

1.2. Limitations 

Data dependency: Deep learning models require extensive labeled data for training, which can be time-

consuming and expensive to acquire. 

Computation intensive: Deep learning algorithms are computationally intensive and may require 

specialized hardware for efficient implementation. 

Overfitting: Without proper regularization techniques, deep learning models may overfit the training 

data, leading to poor generalization. 
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Interpretability: Deep learning models are often considered "black-boxes," making it challenging to 

interpret their decision-making processes, which is crucial for safety-critical applications. 

Sensitivity to adverse conditions: Extreme weather conditions like heavy rain, snow, or fog can 

challenge the performance of sensor fusion systems, affecting obstacle detection accuracy. 

Sensor reliability: The effectiveness of sensor fusion heavily relies on the reliability and calibration of 

individual sensors, and sensor failures can lead to erroneous obstacle detection. 

Section 2 reviews and presents related models carried out in previous research works. Section 3 presents 

the proposed architecture used for detecting obstacles and drivable areas, section 4 process simulation model, 

and results after the demonstration. Section 5 concludes the presented work with relevant discussions and 

future directions. 

2. Related work 

2.1. Obstacle detection techniques 

Obstacle detection has been primarily focused in this research work, and it has been carried out by 

generating an occupation map in previous methodologies. The process of creating an occupation map involves 

the orthogonal projection of 3D objects which are protruding from ground levels[16]. The road surface is 

considered to be a planar surface and all surrounding environments will be the stated differently. The entire 

planar structure will be divided into number of cells to form a grid. Implemented algorithm will look out for 

presence of any object in either of these cells. Stereo vision sensor was responsible for capturing the occupants 

of each cell and has suitably recognised large objects such as pedestrians, cyclist and passers-by. The road 

boundary was detected using LIDAR, where the Precision and accuracy are affected by the probability function 

which is responsible for estimating the number of measurements available in one cell of the whole grid[17]. The 

common problem with stereo vision sensors is that failure to detect smaller and sudden obstacles rising in front 

of the vehicle. Detection accuracy can also be affected due to presence of excessive noise in the images. 

The next algorithm is known as digital elevation map (DEM), which is considered to be one of the 

prominent algorithms for detecting obstacles and that are highly differentiated from the planar surface[18]. 

Density of every object, including these roads, lanes, and other traffic elements are measured and marked 

inside the DEM cells, based on which the algorithm functioned. The road surface was considered to be a planar 

surface and constituted a surface model for the entire algorithm. This model was extended into a random 

sample consensus applied on to stereo vision sensors, and finally the input was constructed on DEM cell. A 

density base classifier was implemented classify the type of obstacle present in the surface. The theory of 

random sample consensus was further extended into a polynomial fitting approach where curb detection was 

applied over DEM cells[19]. The common problem with all these models was the inability to perform the 

classification of smaller obstacles due to variation of disparity. Outcome in form of DEM cells, expected clear 

images without any noise level and demanded at least one cell which is smooth to indicate the road surface for 

drivable areas. Random sample consensus approach was successful in in estimating the number of vehicles, 

their relative position and displacement with the current autonomous vehicle and the road surface[20]. 

2.2. Fusion techniques 

These deficient algorithms demanded the fusion of high-resolution cameras and three-dimensional 

LIDAR for sensing the surface and better curb detection. From the article surveyed, it is understood that the 

accuracy of obstacle detection depends on equality of fusion methods that includes ranges and visuals[21]. 

Conventional methods of fusion relied upon range information completely for curb detection, that exhibited 

the benefit of obstacles present at a long distance. The purpose of detecting small obstacles is still not resolved 

and hills fusion of three-dimensional LIDAR is recommended along with visual data and range data. 
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Considering the quality of obstacle detection and edge detection in traditional methodologies[22], fusion of 

multi sensors prove to be a better solution for clear images. Concerning the fusion methodologies, the depth 

and density of an image for every scene is reconstructed using sparse range points. The geometrical properties 

of high resolution image followed by propagation of depth information, edge detection, image recovery, depth 

recovery, curb point detection, mapping curb points, factoring and refactoring curb points, refining the curbs 

and parametrization have been simplified[23]. 

Another variant of obstacle detection algorithms is based on scene flow mechanism where a cloud of 

images is constructed virtually and temporally to analyse how the images relate with each other. Objects 

present in the cloud of images can be discriminated in to surface of the road, object on the road such as bicycles, 

passer-by, traffic signals and so on. Relationship between a particular object in different scenes, are carefully 

analysed for predicting the next movement[24]. This approach was greatly helpful in determining the trajectories 

of moving objects and hence assisted in better decision making. The flow of points connecting between 

different scenes may not be as usual in case of standard object. This approach also lacked recognition of smaller 

obstacles and in case of sparse information[25]. Despite using advanced stereo vision sensors and algorithms, 

these models were capable of composing three-dimensional motion-based approach mapping and were 

efficient in detecting bigger obstacles such as pedestrians, cyclists and other vehicles. 

The next model introduced a vision based neural network with a dedicated classifier which was available 

online. The algorithm was capable of detecting and predicting obstacles present at a long distance, which is 

followed by deep stereo analysis for allowing the vehicle to safely navigate autonomously[26]. With a more 

focus on pedestrian or neighboring vehicle detection, an algorithm implemented category based parameters of 

different images collected at runtime along with geometric parameters. Since the information was vast, 

differences between vehicles with respect to shape, size and other perceptions, the vision sensor faced 

additional challenges to capture smaller obstacles on the path. Numerous research work has been carried out 

to document the different algorithms available for obstacle detection based on stereo based sensors. Stixel 

algorithm is one of the predominant algorithm which used geometric parameters constructed into a cluster-

based access points[27]. The benefit of Stixels algorithm was that, the model was capable of differentiating the 

ground surface on the road and other obstacles by placing them on different verticals on a scenery. The 

algorithm was best known for its representation of surface and obstacles in different verticals. The problem 

with this method was the inability to detect a cluster point for specific obstacles and medium size obstacles 

would be detected unlike the previous methods but not from long distance. This is due to the fact that the size 

of the obstacle decreases with respect to distance[28]. Similar to other methods, this approach failed to detect 

the obstacles with great accuracy in terms of position. 

The next model to be discussed implemented a plane estimation technique based on homographic 

subjected a lot of parameters as a homographical scores, pixel segmentation, line segmentation in a Markov 

random field architecture. Since multiple parameters were included[29], they always collide with each other 

minion the process and appearance based indexing process failed to correlate with each other and hence this 

model failed to detect intricate details of obstacles in form of gradient information. All the methods discussed 

so far as considered the road and driver by areas a flat surface or a free space and hence the obstacles are 

considered to be slightly higher than the planar surface. Deviation in form of geometrical parameters can be 

derived from image and calculated information of cloud resources, or by constructing a disparity histogram to 

determine the height of obstacles. In some techniques, the obstacles were considered to be clothoid or splines 

based on the three dimensional variations from the planar surface. These models required a careful analysis in 

disparity variations and domains after applying multistage filtering. The commonly used data sets were Udacity 

from USA, KTTI, Cityscape which supported proper segmentation of data and images but lack the information 

about optical parameters[30]. 
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Convolutional neural networks (CNNs): CNNs are the backbone of our obstacle detection system, 

primarily used for image-based obstacle recognition. We used popular pre-trained CNN architectures like 

ResNet, VGG, or custom-designed CNNs tailored to the specific requirements of our dataset. These CNNs 

were responsible for extracting features from camera images. 

Recurrent neural networks (RNNs): In addition to CNNs, we utilized RNNs, such as Long Short-Term 

Memory (LSTM) networks or Gated Recurrent Units (GRUs), for sequences of sensor data, such as LiDAR 

or radar measurements. RNNs helped capture temporal dependencies in the sensor data, allowing for better 

context-aware obstacle detection. 

Fusion techniques: To combine information from multiple sensors like cameras, LiDAR, radar, and 

ultrasonic sensors, we employed sensor fusion techniques. This involved merging feature representations from 

various sensors at different stages of the neural network architecture. Fusion strategies included early fusion 

(combining data at input layers), late fusion (combining data at later layers or after feature extraction), and 

attention mechanisms to dynamically weigh sensor contributions. 

YOLO (you only look once): YOLO is an object detection algorithm that we integrated into our pipeline 

for real-time bounding box detection of obstacles in camera images. YOLO is known for its speed and accuracy, 

making it suitable for fast-paced autonomous driving scenarios. 

Semantic segmentation: For precise pixel-level obstacle segmentation in images, we implemented 

semantic segmentation networks like U-Net, FCN (Fully Convolutional Network), or DeepLab. These 

networks provided fine-grained information about obstacle boundaries, which is crucial for path planning and 

obstacle avoidance. 

Transfer learning: Leveraging pre-trained models on large datasets like ImageNet, we fine-tuned these 

models on our specific obstacle detection dataset. Transfer learning helped reduce training time and improve 

detection performance, especially when data for our specific task was limited. 

Data augmentation: To mitigate the data scarcity challenge, we applied data augmentation techniques 

like random rotations, translations, flips, and brightness adjustments. Data augmentation increased the 

diversity of our training dataset, leading to more robust models. 

Loss functions: We designed custom loss functions tailored to our detection task, which incorporated 

both classification and regression components. These loss functions helped optimize the model’s performance 

by penalizing false positives and false negatives differently. 

The current study required modifications in the existing datasets, since they lack the potential information 

for detecting small obstacles in short ranges. However, 

1) The dataset may not adequately capture rare or extreme events (e.g., uncommon traffic scenarios, severe 

weather conditions, or rare road obstacles). 

2) The dataset may not account for the evolution of obstacles over time, such as changes in object behaviour 

or road conditions. 

3) The dataset may over represent certain types of obstacles (e.g., vehicles) while underrepresenting others 

(e.g., animals or unusual objects). 

The optimal dataset would require steering angle data from autonomous vehicles for the deep learning 

model to safely navigate after processing information from real time high resolution sensors. ZED stereo 

devices are mounted on vehicles in the Lost and Found Dataset, which would be a significant element for this 

research work. The obstacles of small size and shapes are annotated and mapped by MRF architecture[31], along 

with drivable area detection technique implemented in the deep learning model for safe navigation. The model 

processes the real time information captured from the sensors and advice the steering angle to maintain or 

modify for a hindrance free driving experience. 
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3. Proposed methodology: Multifusion perception technique 

The proposed architecture contemplates a Multi-Fusion network, which is divided into three major 

modules, with respective functionalities. Various stochastic techniques including curvature potential, the 

gradient of grid cells and measuring the depth of each cell are potential elements of the Markov random field, 

to determine the obstacles present on the roads. The predominant three techniques analyse every image[32] with 

respect to pixel-based information to extract meaningful patterns and organize them for further orientation of 

the training model. In the proposed architecture, regions of interest are generated based on gradient information 

and depth variance of every pixel of captured images. The benefits of implementing AND Gates are analysed 

along with the functionalities of Markov random field technique. The second stage of this proposal 

concentrates on understanding the segmentation process is required for determining traffic lanes, drivable areas, 

and other filtering techniques required for outlier detection. The final model would integrate the prediction of 

changes required in the steering wheel angle for safe navigation without hitting the objectives[33]. The 

sensitivity of a sudden presence of an obstacle is measured by an Obstacle Closeness Factor (OCF) to portray 

a level of impact and accident risk. The Obstacle Closeness Factor (OCF) is a critical parameter in assessing 

the sensitivity of an autonomous vehicle’s obstacle detection system to sudden obstacles and plays a significant 

role in enhancing safety during navigation. OCF is a metric that quantifies how close an obstacle is to the 

autonomous vehicle concerning its current speed, trajectory, and time to collision. It essentially measures the 

proximity of an obstacle in relation to the vehicle’s ability to react and avoid a collision. 

The architecture of the proposed method is depicted in Figure 1, where the different stages are split into 

different modules for their dedicated specificities. The input of the architecture is provided by optical encoders 

where the images are attained from two stereo vision sensors and the input image is processed for depth 

estimation. Semi global block matching algorithm[34] is implemented for measuring the depth of images 

obtained from stereo vision sensors. From these images, disparity variance, picture gradients, and depth 

curvature are calculated and presented for the next set of operations[35]. Altogether, these three parameters of 

combined into a unary cue to simplify the process of Markov random field and hence derive a pair wise 

potential element. 

 
Figure 1. Architecture of the proposed model. 

3.1. Image preprocessing using Markov random field technique 

Different methods have implemented different forms of Markov random field due to its enhanced benefits 

of inference and learning methodologies. The various problems associated with long and short vision of the 

sensors have been removed when Markov random fields are implemented. Image restoration, construction of 

grid cells, edge detection, annotation, segmentation and various other processes are related to image and scene 

derivations. During this process, Markov random field has proven to be a suitable technique for deriving 

inferences. This approach concentrates on smaller and medium size obstacles, segmentation off images have 

to be derived with an additional cost function for Markov random things to operate with better performance. 
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Every image will be represented with various elements Xi spread over different random process of Xn. The 

position of individual elements is represented by pos which belongs to all the positions covered by all the 

elements P. Every pixel position will be indicated unary element and its association with other elements derived 

by the following cost function. 

𝐶𝑜𝑠𝑡(𝑋) = ∑ 𝐶𝑜𝑠𝑡𝑢

𝑃

𝑝𝑜𝑠

+ ∑ 𝐶𝑜𝑠𝑡𝑝𝑎𝑖𝑟 (𝑋𝑖, 𝑋𝑠)

𝑃

𝑝𝑜𝑠

 (1) 

where 𝐶𝑜𝑠𝑡𝑢 indicates the unary cost of individual elements and 𝐶𝑜𝑠𝑡𝑝𝑎𝑖𝑟 (𝑋𝑖, 𝑋𝑠) indicates the total cost of 

associated elements in the given space. Xi to n represent the random variable associated with different nodes, 

which are identified by the texture, shape, size and ground truth of 0 or 1 is used to indicate whether this is an 

obstacle or not. Cost function this determined independently with respect to gradients, depth variance and 

curvature respectively. The gradient potential is represented by the following Equation (2). Whenever colour 

images are involved, partial derivatives are calculated in terms of horizontal and vertical axis. Image gradients 

are considered in this research rather than edge detectors tournament the need of thresholding whenever weaker 

gradient is detected. The proposed method builds stronger cues, implementing image gradients. 

𝐶𝑜𝑠𝑡𝑢 
𝑔 (𝑥, 𝑦) = √𝐺𝑖 (𝑥, 𝑦)2 + 𝐺𝑗 (𝑥, 𝑦)22

 (2) 

where 𝐺𝑖 (𝑥, 𝑦)2 𝑎𝑛𝑑 𝐺𝑗(𝑥, 𝑦)2
 are considered to be horizontal and vertical partial derivatives respectively. In 

order to detect small obstacles, curvature is an important element to be considered and calculated along with 

gradient and depth. Curvature is defined as 1 for curves and 0 for straight lines, where the immediate curves 

indicate obstacles and 0 will indicate lanes or roads. The next parameter to be included is known as depth 

variant potential, to indicate the presence of any obstacle or changes in depth of pixel information. This is 

calculated by moving to the horizontal cell of the entire grid. Variance is measured by the following Equation 

(3) which is a representative form of multiple square Windows placed horizontally. Differences between each 

pixel are estimated by Whor where the sudden changes are presented as depth. 

𝐷𝑒𝑝𝑡ℎ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ([𝐷𝑒𝑝𝑡ℎ (𝑖 −
𝑊ℎ𝑜𝑟

2
, 𝑗) : 𝐷𝑒𝑝𝑡ℎ (𝑖 +

𝑊ℎ𝑜𝑟

2
, 𝑗)]) (3) 

3.2. Multi-fusion perception 

The previous module detected the presence of drivable areas, traffic objects which act as an obstacle and 

the present module we discuss how the Road conditions are perceived and the recommendations are given for 

safe navigation. The proposed architecture includes a context tensor for merging the inputs obtained from the 

previous module and attain a perception. The encoder is responsible for extracting meaningful information and 

patterns for detecting the presence of an obstacle. There are various convolutional neural networks presented 

in the literature for this purpose. The technique used in the proposed methodology is to implement a VGG16 

and a feature pyramid map with deep learning modalities. The size of the input image would assume the size 

of the width, height, and channel. The recommended dimensions of the encoder would be W/16, H/16, 512. 

The connections between the layers are revoked and the purpose of this encoder is to differentiate the features 

between deep and shallow and hence that them into proper perceptions. Multi fusion network indicates that 

different layers would be merged together to consider both Deep and Shallow features together. Element Mean 

operation, for all X elements mentioned in the previous module, is proposed and hence the final feature map 

would be derived as the following dimensions W/4, H/4, 256. 

The purpose of the decoder is to sense the drivable areas and represent them into zones between green or 

red lines after careful semantic segmentation. The original size of the input image will be recovered so that 

none of the important areas are eliminated from the consideration. The size of the drivable zones will be 

represented as W, H, 2. The important element of the proposed architecture is the context tensor where feature 

maps are merged together to derive the lanes and drivable areas. Drivable areas indicate that there is enough 
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space for the vehicle to move without hitting any traffic objects, and it is also understood that even the drivable 

areas may process some obstacles such as traffic cones and pedestrians. In previous methodologies, curb 

detection has some important elements and usually gets confused with the lines drawn on the road for 

indicating different lanes. Using the context tensor, this approach has proven to eliminate the confusion and 

hence detect the lane lines with greater accuracy. Curvature cues, depth variance, gradient, and pairwise 

potential constituted the obstacle detection module, which was later merged into the context tensor for drivable 

area detection.  

4. Results and discussions 

There are very few data sets that have focused on obstacles of medium and small size and hence for the 

first module of obstacle detection, we have created our dedicated data set by retrieving nearly 5000 stereo 

images captured by ZED equipment, which are deployed on various vehicles in different environments. These 

sensors were able to capture 30 frames per second with a resolution of 1280 × 720. Another significant video 

database is the Berkeley deep drive dataset which contains videos of different environments conditions and 

vehicles and available open-source. Another significance in this data set is that the videos are highly annotated, 

with proper segmentation of drivable areas, objects on road, and lane marking. This data set has been assisting 

in various research purposes of autonomous driving and hence used in this research by considering 70 percent 

for training the model, 20% for testing, and the remaining 10% for validation of the proposed model. 

Table 1. Obstacle detection performance. 

Parameter DLT net Multi net ERF net Proposed multifusion perception 

Recall 89.4 81.6 77.2 91.2 

AP 68.2 61.0 55.8 72.6 

Speed 9.2 8.2 9.2 9.3 

Table 2. Comparison of the proposed technique over the existing state of art techniques for lane detection. 

Performance 

parameters 

Our approach YOLO (Obstacle 

Detection) 

Faster R-CNN (Obstacle 

Detection) 

Lane net (Lane 

Detection) 

Real-time Performance Yes Yes Not always Yes 

Detection Accuracy High Moderate High High 

Sensor Fusion Yes No No No 

Contextual Analysis Yes No No No 

Efficiency High High Moderate Moderate 

Adaptability High Limited Limited Limited 

Lane Prediction Yes No No Yes 

Semantic Context Yes No No Yes 

Robustness High Limited Limited High 

Parameters used for evaluating the performance of the model are mean intersection over Union and mean 

average precision. Intersection over Union indicates the performance in driving the area suitable for driving 

accurately and mean average Precision is used for detecting smaller and medium-sized obstacles. Multi Fusion 

Perception network has proven to achieve better results when compared to ERFNet which worked on cityscape 

data sets. Configuration of our simulation environment is an Intel(R) Xeon(R) E5-2630 v4, and our GPU is an 

NVIDIA GTX TITAN XP. According to Table 1, the performance of the Multifusion perception network has 

shown better results than ERFNet and DLT-Net without context tensor. Curvature cues, Depth variance, 

gradients measurement in the first module for object detection have increased the performance of the context 

sensor and hence delivered better results during semantic segmentation. The context tensor is a multi-
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dimensional data structure that encodes contextual information from various sources, such as environmental 

data, vehicle state, road conditions, and traffic patterns. This tensor is typically generated or updated at each 

time step as the vehicle navigates through its environment. By analyzing the context tensor, the system can 

predict the future trajectories of detected objects. This prediction is valuable for planning the vehicle’s path 

and making decisions to avoid potential collisions. The runtime of MultiFusion perception network and 

ERFNet is almost similar and our model has shown betterments in the accurate detection of obstacles as listed 

in Table 2. The algorithm continues to learn under different scenarios and the final model has performed much 

better and faster due to better classification and regression strategies. Figure 2 illustrates the performance of 

the proposed model, where Figure 2a illustrates the estimation of curvature cue, Figure 2b showcases how 

the model estimates the depth variance, Figure 2c estimates the image gradients and the decoded image is 

illustrated in Figure 2d. According to Figure 3, the model has successfully identified the drivable areas and 

Figure 4 depicts the detection of other vehicles even during the low light conditions. Figures 5 and 6 

contemplate the collective performance of the proposed model, thereby addressing the driveable areas, lanes, 

and detected obstacles. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) Estimation of curvature cue; (b) estimation of depth variance; (c) estimation of image gradients; (d) restored Image by 

the decoder. 

 
Figure 3. Recognition of drivable Areas. 



11 

 
Figure 4. Detection of other vehicles. 

 
Figure 5. Green zones—Drivable areas, red zone—Other vehicles and obstacles. 

 
Figure 6. Green zones—Drivable areas, red zone—Other vehicles and obstacles. 

The challenges faced by the proposed approach are listed below. 

Uncommon obstacles: Our system encountered difficulties when faced with uncommon obstacles, such 

as debris, animals, or objects not frequently encountered during training. These challenges highlight the 

importance of continually expanding the dataset to include a broader range of obstacles. 

Fast-moving objects: Detecting and tracking fast-moving objects, such as motorcycles or high-speed 

vehicles, proved to be challenging. Improving the temporal resolution and prediction capabilities of our models 

is an ongoing focus. 

Sensor failures: In cases of sensor failures or occlusions, the system’s performance was adversely 

affected. Developing redundancy and sensor fault detection mechanisms is crucial for maintaining safety and 

reliability. 

Sudden manoeuvres: The system faced difficulties in scenarios where other vehicles executed sudden 

manoeuvres, such as abrupt lane changes or hard braking. Improving the system’s ability to anticipate and 

respond to such manoeuvres is an area of active research. 
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It is crucial to delve into the practical challenges and considerations associated with implementing our 

proposed obstacle detection system in real autonomous vehicles. These insights are valuable for the industry 

and can guide future research and development efforts. Here, we highlight some key practical challenges and 

considerations: 

1) Hardware Requirements: Computational Power: Implementing our system in real autonomous vehicles 

requires substantial computational power. High-performance GPUs or specialized hardware accelerators 

may be necessary to process sensor data and run deep learning models in real-time. The effectiveness of 

our system relies on a diverse sensor suite, including cameras, LiDAR, radar, and more. Ensuring the 

reliability and calibration of these sensors is a complex task. 

2) Data Collection and Annotation: Data Diversity: Building a comprehensive and representative dataset 

is challenging. It requires collecting data across a wide range of geographic locations, weather conditions, 

and traffic scenarios. Annotating data with precise labels is labour-intensive and requires domain 

expertise. Ensuring high-quality annotations for diverse obstacles is critical for model training. 

3) Regulatory compliance: Compliance with Regulations: Autonomous vehicles must adhere to strict 

regulatory standards. Our system needs to meet safety and performance requirements set by regulatory 

bodies, which may vary by region. 

3.1) Ethical dilemmas: Autonomous vehicles may encounter ethical dilemmas in collision-avoidance 

situations. Decisions related to human safety vs. pedestrian safety, for instance, require careful 

consideration. 

3.2) Liability and legal framework: Developing a clear legal framework for liability in case of accidents 

involving autonomous vehicles is an ongoing challenge. 

4) Continuous learning and updating: Continuous Improvement: Our system needs mechanisms for 

continuous learning and updating to adapt to evolving traffic conditions, new obstacle types, and 

emerging technology. 

5. Conclusion and future work 

The proposed method has shown significant presence in terms of obstacle detection in a complex 

environment and predicting the drivable areas the integrating Markov random fields. The process of obstacle 

detection can be challenging at times when there are sudden changes on roads caused by pedestrians, passers-

by, or traffic elements. The process of autonomous vehicles begins with accurate detection of distance and 

altering the trajectory of the vehicle for safe navigation. The proposed deep learning model suggested the cost 

estimation of such obstacles and suggesting the probable areas without any accidents. On the whole, the 

proposed model has delivered nearly 30% of better analysis and prediction of obstacles irrespective of 

autonomous or human driving. Vision-based Navigation systems mentioned in the literature are bound to 

certain limitations which have been removed in this research work. High rate values are provided to sudden 

obstacles which are measured in close calls or short distances. The size of an obstacle is also a huge concern 

for accident-free navigation. In this regard, the proposed multi-fusion perception network combined different 

components of obstacle detection, lane detection, and safe navigation with a context tensor and suitable attested 

using Berkeley deep drive data set. Markov random field has significantly improved the detection accuracy of 

obstacles and other vehicles when compared to other state of art technologies. 

Future work 

Exploration of novel deep learning architectures tailored specifically for obstacle detection and lane 

tracking, with a focus on reducing computational requirements and enhancing accuracy is the future direction 

of the proposed research work. We shall investigate methods for handling occlusions and rare object types 

more effectively. We should be considering ethical decision-making frameworks for autonomous vehicles, 
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addressing scenarios where safety considerations may conflict with legal or moral obligations. This approach 

has exhibited the modern architecture for intelligent transportation in smart cities. Focus on address privacy 

concerns related to sensor data collection and processing, implementing robust data security and 

anonymization measures should be given more emphasis in future. 
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