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ABSTRACT 

A crucial part of a Speech Recognition System (SRS) is working on its most fundamental modules with the latest 

technology. While the fundamentals provide basic insights into the system, the recent technologies used on it would 

provide more ways of exploring and exploiting the fundamentals to upgrade the system itself. These upgrades end up in 

finding more specific ways to enhance the scope of SRS. Algorithms like the Hidden Markov Model (HMM), Artificial 

Neural Network (ANN), the hybrid versions of HMM and ANN, Recurrent Neural Networks (RNN), and many similar 

are used in accomplishing high performance in SRS systems. Considering the domain of application of SRS, the algorithm 

selection criteria play a critical role in enhancing the performance of SRS. The algorithm chosen for SRS should finally 

work in hand with the language model conformed to the natural language constraints. Each language model follows a 

variety of methods according to the application domain. Hybrid constraints are considered in the case of geography-

specific dialects. 

Keywords: speech recognition system; natural language; speech processing; language model; speech technology; 

ensemble methods 

1. Introduction 

Usage of new technology upon SRS[1–3] would help researchers 

in finding new ways and methods to apply new enhancements. To 

understand this specialization of SRS, a deep understanding of the 

fundamentals of SRS is mandated. 

Computers are not designed to work in an analog environment. 

Digital computers are not capable of processing analog signals from 

analog environments. But the fundamental of SRS is the analog sound 

input obtained from an analog environment[4–6]. For this reason, the 

analog properties of a received sound signal should be pre-processed 

and converted to its corresponding digital form, so that, a computer 

can recognize and process those signals as digital data. To recognize 

and understand the information from the analog world peripheral 

devices such as microphones play a major role in recording and 

digitalizing these analog signals with the help of certain utility 

software and applications. During this activity of pre-processing, the 

quality of peripheral devices (e.g., microphone) used in this activity 

may influence the details of such digital data. This means that pre-

processing activity should include the mechanisms to differentiate and 

isolate any unnecessary details added to the original input sound. 
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When the sound/voice is recorded unnecessary physical attributes[7] of the sound/voice are added in the digital 

form of it. But only useful information should be processed and digitized, for this, selective useful information 

will be traced. 

Spectrogram is a mechanism that is used to find detailed insights into a recorded/received sound/voice[8–

10]. The insights into the ‘recorded sound’ shall be obtained by creating a visualization of the digital features 

of the recorded sound/voice using a spectrogram. Understanding the idea behind a spectrogram is a must to 

get more details from the recorded sound/voice. To create a spectrogram of the given sound, three important 

steps should be followed: 

1) Capture the sound. 

2) Cluster the sound waves into blocks based on time units. 

3) Apply fast Fourier transform. 

For an illustration, consider Figure 1 which represents ‘three spoken words’, and consider it is 

represented in analog format. 

 
Figure 1. Analog model of speech wave. 

The sound waves from the analog signals can be plotted “as-it-is”, but, in a time-series format. The sound 

wave from the analog environment is represented in a time-divided graphical representation in the following 

Figure 2. Now it is easy to recognize the width of each block in time units and the height of the individual 

blocks as the amplitude of the soundtrack at a particular unit of time[11]. Now for each such state, a numerical 

value will be assigned. The essence of converting those analog units into a number system is to provide a 

digital representation to a set of features available from the input sound. And height of the blocks is considered 

for a numerical value and shall be considered as the digital representation[12,13] of the sound recorded at that 

specific time period. This means the conversion of analog sound is recorded in a digital format which can be 

traced for further details. 

 
Figure 2. Time-divided speech wave in digital format. 

Even after digitizing the sound the process of creating a spectrogram isn’t completed. To complete the 

process three important properties of sound should be considered: 

1) Frequency of the sound recorded. 

2) Density of the sound. 

3) Time taken to create this continuous sound. 
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Once these properties are specified and recorded, other properties of the recorded sound should be taken 

care of. The first and foremost such property is linguistics[14–16]. After constructing a spectrogram for an input, 

the linguistic properties of the sound wave should be considered. The basic linguistic property to be extracted 

from the sound wave is a phoneme. A phoneme is the fundamental element of a linguistic construct. A phoneme 

is a sound that is pronounced for 20–40 milliseconds and continuous data of phoneme are recognized as a word 

spoken. According to the SRS applications, and the considered linguistic of study, a phoneme shall be 

considered as a unit of sound that distinguishes each spelled word. 

When phoneme changes, with a higher probability, the meaning of that spelled word may also change in 

accordance with phoneme variation. As an example, consider the three words, “turn”, “ten” and “tins” which 

are three different words distinguished by phonemes. 

This article is organized to explain the methods and models in section (2), algorithm selection criteria is 

elucidated in section (3), an End-to-End Neural SRS system is pitched as an alternative model in section (4), 

and section (5) concludes. 

2. Methods and models 

Languages are spoken by different people with different physical properties such as age, gender, emotion, 

accent, and context that influence the variations in speech and pronunciation. Variations shall be recognized 

by interleaved hollow phonemes. These variations represent the uniqueness of natural human languages. Any 

technologies used for speech recognition should then include the facilities to identify any phonemes. Phonemes 

(Table 1) are very basic units in speech recognition, so any technologies used for SRS may use phonemes to 

recognize the words spelled from the analog environment. Any speech recognition system does it using two 

important techniques. The first one is the HMM[17,18], and the second one is the Artificial Neural Networks 

(ANN)[19]. 

Table 1. Three words input listed with the corresponding phoneme sequences. 

Word Phoneme 

Turn /tɜː(er) n/ 

Ten /tɜː(eh) n/ 

Tins /tɜː(ih) n/z/ 

2.1. The role of HMM 

It is used to reconstruct the right phrase by putting the right phonemes at the correct places of that phrase 

under construction. HMM does it using statistical probabilities; statistical probability decides on the sequence 

of phonemes, particularly about a phoneme in the sequence which precedes or succeeds the other one. HMM 

does it in three layers: 

Layer-1: The first layer of the model checks the statistical probabilities at the acoustic level, for whether 

the correct phoneme is heard or not. The factors behind this are the physical properties including the human 

emotions of the speaker[20]. Here, the influence of such physical properties needs to be understood. 

Layer-2: In the second layer of the model, HMM makes sure that the phonemes are recognized in proper 

order. These sequences of phonemes are considered time-series data[21,22] and ensured each phoneme is in its 

correct position. If the sequence tends to provide any meaningless words, then the alternative phonemes are 

reconsidered for presumably misplaced phonemes[23]. 

Similarly, it is possible to evaluate any linguistic properties including the grammar of the language. Once 

a word is constructed out of a sequence of phonemes it should be ensured that this new word is meaningful in 

the phrase under construction. 
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2.2. Artificial neural networks 

The fundamental idea[24] of a neural network is based on the “simulation of a human brain”, such that, it 

contains several neurons which are organized into several layers, and nodes from each adjacent layer are 

connected to each other, shown in Figure 3. The above figure represents a complete model which takes the 

audio signals as continuous input signals and turns them into a sequence of meaningful words, perfectly aligned, 

as per the requirement of the context. The model above includes convolutional layers at the initial level to learn 

the features, then, a set of dense layers to take in the learned features of convolution layers. Then, LSTM layers 

will be employed to learn the continuous sequence of words according to the context. Finally, dense layers 

will be used to predict time-sequenced words. Varieties of connections are demonstrated to produce different 

versions of network structures in correspondence with the requirement of any application domain. Here, the 

speech recognition model is a hybrid combination[25] of HMM and ANN. 

 
Figure 3. ANN model for SRS system. 

2.3. Dealing with the physical properties of speech 

The acoustic model will be a neural network that takes in the speech waves as input and provides a 

sequence of text. In order to do this, this neural network model should be trained with a proper and precise 

dataset according to the application domain. The construction of the model depends on the type of problem for 

which this solution is required. As it is understood that the speech waves are recognized in sequential structure, 

it requires a capable neural network to process this time series data. A recurrent Neural Network (RNN) is the 

best-known solution for such problems which involve time-series data[26]. 

This acoustic neural network model[27], should come with computations of low complexities and with 

real-time capabilities. And should be trained with a dataset in which a wide variety of data details should be 

included, to improve the evaluation accuracy and to improve real-time prediction. Whatever a neural network 

learns during training is dependent on the variations in the given data (gender, age, accent, noise, emotions, 

etc.). 

3. Algorithm selection criteria 

The algorithms used in this form of technology include PLP features, Viterbi search, deep neural networks, 

discrimination training, WFST framework, etc.[28]. Google’s recent publications[29,30] on their new inventions 

in speech are very exciting. The algorithms used by Google are available in open-source format. It would be 

better if machine learning communities are using speech recognition along with voice synthesis to bring in the 

power of input recognition for the better. 

3.1. Acoustic model approach 

Acoustic model output = language model + rescoring algorithm. The rescoring algorithm may be a CTC 

Beam Search algorithm. 
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Ensemble methods: 

1) Use a CNN model for feature extraction and with a few final dense layers. 

2) CNN output from dense layers is taken as inputs to another RNN layer to work on phonemes (go to Layer-

1 and -2 of HMM). 

The implementation model: Again, in Figure 4, from the second module, the sub-module of comparison 

and selection of words is done based on the phoneme sequences produced by the first module. Now the 

selection of words is done with the help of a rescoring algorithm[31]. 

Probability dictionaries are used to find the difference between the word spelled and its alternative words 

(with a similar probability of being pronounced). CMU.DICT is such a dictionary[32]. Most language models 

support 20–60 phonemes. The above diagram depicts the architecture to extract the acoustic features which 

are extracted from a raw speech signal; the expected interim output from the acoustic model is likely a phoneme 

sequence that corresponds to the particular speech utterances. 

HMM is a paradigm that is used to learn this mapping between speech utterances and phoneme sequences. 

Each of these acoustic feature (frame) vectors extracted from speech utterances corresponds to a speech 

frame[33]. 

 
Figure 4. Architecture of an SRS system. 

The number of frames that correspond to a particular phoneme depends on the chains of hidden states in 

the HMM[34]. Figure 5 given below represents such dependencies as a graph and the probabilistic values as 

the weights on the arcs. All the weights on available arcs are probabilities. Here a single chain represents just 

one sequence of these phonemes[35]. But the problem here is that—At each point, probabilistic mapping is done 

for each phoneme that is going to appear next. 

 
Figure 5. Mapping of acoustic features to phoneme sequences. 
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The entire model is probabilistic, and in Figure 6 then is simplified by showing a single chain of 

phonemes. And then it provides estimates that forecast “the initial few frames” most likely corresponds to a 

certain phoneme and the transition probability. 

 
Figure 6. Search graph working on phoneme sequences. 

It is the probability of transition from one phoneme to another and thus determines “how many frames” 

are to be formed in correspondence to each phoneme. And then once a particular STATE of transition is 

attained, then there are probabilities for generating each of these frame vectors. These probabilities are derived 

from well-known Gaussian mixture models[36]. So, it is again a probability distribution that determines a 

particular speech vector that could be generated with a certain probability. And provides insights and 

understandings about these probabilities that are learned from training data. 

Now, this is a high-level idea of having a probabilistic model which maps a sequence of feature vectors 

to a sequence of phonemes. So, HMM works at the heart of a speech model for a long period in historical 

reviews on SRS systems[37]. Currently, deep neural networks are used for a similar mapping, with the available 

speech signal, fixed windows of speech frames are extracted and a lookup is performed at a fixed window of 

frames around it, then all of those generated features are put together. And those features are input to a Deep 

Neural Network (DNN), for this, the output is “the most likely phonemes” about to be produced, given for a 

particular set of speech frames[38]. But this is only a posterior probability of the phonemes. In other words, it 

means an estimate is derived on the most likely phoneme next in the speech frame. This also means a 

probability distribution for all the phonemes[39]. 

There are two ways in which DNN shall be used in an acoustic model. First, with an HMM, the states are 

derived and then probability distributions are calculated to conclude on “mapping of speech vectors to a 

particular state”. Second, instead of the probability distribution from Gaussian mixtures, the probability 

distribution of DNN is used. By doing this, these HMM and DNN models can be combined and put together 

within an acoustic model. Thus, the mixed values may be the output from such acoustic models. Now, the 

resultant observation probability shall be either extracted out of the Gaussian mixture model, or from the scaled 

posteriors of the DNN. Once the phoneme sequence and corresponding word are identified, now it is time to 

identify the word sequence. 

3.2. To identify the word sequence 

Till now, all those sub-modules are put together to produce intermediate results which are just identified 

as a correct sequence of phonemes. From the speech utterances, the model is trying to identify the sequence of 

words, and in the due course, it identified the correct sequence of phonemes which are actually intermediate 

representations. Now the question is “how to move further to identify the word sequences?” The answer is 

“pronunciation dictionaries”[40,41]. 

Large open-source pronunciation dictionaries are available (Table 2) for usage, and by involving such 

dictionaries, it is possible to extend the model to create a link between phoneme sequence and the expected 

words. And this is the only sub-module in the whole SRS system which has not been learned from the training 

data. This sub-module is connected to a language model, where this new language model itself is also a learned 
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model or trained model. The pronunciation model is an expert-driven model or knowledge-derived dependency 

model. There are several significant works available on these pronunciation models[42]. 

Table 2. Meta Data on Existing Datasets. 

Dataset Meta Data 

Open Source Sampling Speech Annotation 

Voforge YES 8 KHz and 16 KHz 130 Words 

Libri speech YES 16 KHz 1000 Words 

Tedlium YES 16 KHz 118 Words 

Switch board NO 8 KHz 300 Words, Phonemes, Sentiments 

Switchboard and other related works[43], provide a hindrance that the pronunciation model is a restricted 

representation constructed using “sequence of phonemes”. Linguistic datasets are annotated with a very 

detailed level of information to work on transcribed phonetic sequences. Such models provide information 

about ‘linguistic pronunciation’ regardless of the standard pronunciation mapping available in benchmark 

dictionaries[44]. 

3.3. An evaluation model 

Articulatory models are very significant models to track and identify pronunciation variations[45]. Even 

though this articulatory model is not considered a part of the SRS studied, this model shall be used as a tool to 

validate the results of a sub-system that is used to produce words from an identified sequence of phonemes. 

This model is actually a simulation of the human articulatory sub-system which considered speech as an output 

of continuous data produced by articulatory movements. Even though this is used as a validation model here, 

it can also be used as a substitute for the dictionary-based restricted model. Articulatory models work better in 

the case of finding a larger deviation in pronunciation[46].  

In this model, pronunciation is represented as a stream of features. In the human articulatory system, 

certain features may not synchronously move due to certain physical malfunctions; misspelled phonemes may 

be produced without intention. To identify this error, any data with overlapping details shall be probed. In that 

case, if a wobble sound is expected after a nasal sound in sequence but if the nasal sound continues to appear 

with an overlapped wobble sound, then this frame of data can be probed for errors. This error may be caused 

due to the malfunction of the nasal tube. Actually, this framework of the articulatory model works perfectly in 

identifying the pronunciation variation. The combination of a generalized HMM and Dynamic Bayesian 

Network[47] shall be used to implement this model with variable attributes and constraints set up for this model.  

3.4. The final component (language model) 

The final component of this SRS system is a language model[48]. Again, it is a probabilistic model used 

to identify the “most likely next word” to appear in the sequence of words that is under construction. The 

previous sub-module (pronunciation model) tries to find correct words with the help of a sequence of the 

phoneme, whereas, this final module tries to identify the correct sequence of words (one by one). For each 

probable word, the sequence is validated in compliance with the scope of context. The context of the sequence 

will be tried on the basis of the language chosen to work with. To represent a model in a finite state machine 

these models[49,50] will be useful. 

Estimating word probabilities using the N-Gram language model 

In a working word context, it is concentrated on the counts of particular words in a large text 

corpus/corpus, for a particular natural language. It is done in order to find the frequency of a particular set of 

words (N-Grams) appearing in the corpus. And a relative count of occurrences of such a sequence (N-Grams) 
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is computed to get the probability of occurrence of this sequence (N-Grams) in such an application context. 

For example, Probability 

(“tins”/“Turn ten_A-GRAM_”) = 𝝅 (“Turn ten tins”)/𝝅 (“Turn ten”) (1) 

But this N-Gram-based model has its own disadvantage. It is possible that a machine/component deployed 

to predict the occurrences of a word/sequence might not be trained to predict a certain occurrence. That is, in 

training data the sub-module under training might not see a sequence of words (“Turn ten tins”) to appear, if 

it is so, then “how can the same component predict an unseen combination?” This is the disadvantage of such 

an un-smoothed N-Gram model. 

Problems with un-smoothed N-Gram estimate maximize[51] the likelihood of the observed data overfitting 

the training data. To overcome this disadvantage smoothing techniques like “Good Turing”[52] are used. And 

such smoothing techniques reserve some probability mass to N-Gram that doesn’t occur in the training corpus. 

Based on the technique of distribution of the probability mass, there are a variety of smoothing techniques 

available (Equation (1) is used in smoothing). Actually, the efficiency of those algorithms is based on the 

technique used for the distribution of mass. And the probabilities for unseen N-Grams are provided by the 

trade-off and priority assumed by those smoothing algorithms. There are a wide variety of ways to do this. 

Even though these language models, following N-Grams are estimated as not as enough faster to perform their 

task. Because of these limitations of N-Gram-based language models, there exists a need to build more efficient 

language models. This need shifted the focus of the research community on Artificial Neural networks (ANN) 

and is exploring the options with Recurrent Neural Network (RNN) based models. One of such better works 

identified comes with the combination of a ‘rescoring algorithm’ and an RNN-based model. 

3.5. Next sub-module, the decoder 

Until here, the components of the SRS system discussed will do their part to estimate the sequence of 

phonemes, and then will estimate the sequence of words (N-Grams). Now, the task assigned with a decoder is 

to identify “the most likely word sequence”[53] according to the input speech utterances. This means that the 

results of the previous components are put together to find the most accurate sequence of words from the 

available solution space. At this stage, the estimation problem turns over into a searching problem. 

Figure 7 illustrates a naïve search graph with a particular starting point and leads to provide alternatives. 

Assume that the decoder has to choose between two words while forming a sequence; for example, “ten” and 

“tin”, then it will have to work on a transition process to select any of the alternatives (words) by considering 

the sequence of phonemes extracted from the speech utterances (a look-up to the output of previous sub-

modules). In this context, the words, “ten” or “tin” refer to the phonemes and each phoneme refers to its 

respective HMM module which calculates their probabilities. From the given illustration it is understood that 

for just two alternative words this model is large enough; and when more alternatives and sequences are queued 

in consideration, then this process of construction of a graph and searching through the network of the graph 

itself will become highly time-complex. Normally, this kind of component works with more than 20,000 

words[54], and in such scenarios, the computations involved in this process of graph construction, monitoring, 

and searching will become a task of exponential time complexity. 
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Figure 7. Increased WER obtained in recent works. 

Network of words—The part of decoder 

This graph model can grow very rapidly and then the mapping process[55,56] will get into a much more 

complex task to result in exponential order of time of computations. The graph actually will represent millions 

of states at a time. So, it is almost impossible to search throughout the entire graph for a perfect (combination) 

solution. 

As a resolution to this kind of problem, a suitable “approximate search technique”[57] should be employed. 

Another sub-domain of research in this field is to study the varieties of such useful approximate-search 

algorithms. These algorithms are efficiently made used in the decoder component of an SRS. 

4. An alternative (end-to-end neural SRS system) and analysis 

Although this system under study has a great scope for further research, development, and enhancement, 

an alternative perception in the development of SRS systems is moving towards End-to-End Neural SRS 

systems[58]. End-to-End systems are prone to word errors. Those word errors are measured on the basis of word 

error rate (WER)[59]. A study on WER is done, and the data based on WER is shown in Table 3. The trend of 

recent research works in handling the WER is shown in Figures 7 and 8, and error margins in assessing WER 

are depicted in Figure 9. Figure 10 demonstrates the quality of error-free work done on specific natural 

languages. Regardless of WER, SRS systems are the current trend and, in such systems, the individual letters 

(characters) are learned to be mapped to the acoustic features extracted from the input speech utterances. This 

means it is a component to directly produce character sequences from the input speech vector without working 

on the intermediate search space of “Network of Words”. This leads to a character language model which 

rescores the character sequence by bypassing the pronunciation model. In the principle of these systems, they 

don’t bother whether these words are there in the vocabulary/dictionary or not, because the system not 

predicting the sequence of words, but instead, the system is working on a sequence of characters. 

Table 3. Mitigated word error rate year-wise data. 

Language Corpus Model (%) Word-error-rate Year 

Arabic  TARIC (Tunisian Arabic Railway 

Interaction Corpus) 

Rule based ASR 8 2014 

English Wall Street Journal (WSJ) corpus DNN-HMM 7.14 2015 

Multi-

Linguistic 

Wall Street Journal (WSJ) corpus and 

Corpus of Spontaneous Japanese (CSJ) 

CTC-BLSTM-MAP 6.7 2016 

English 2000 Switchboard evaluation set Confusion network combination + 

LSTM rescoring + ngram rescoring + 

backchannel penalty 

5.1 2017 
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Table 3. (Continued). 

Language Corpus Model (%) Word-error-rate Year 

English Wall Street Journal (WSJ) corpus Pruned algorithm for lattice-

rescoring with RNNLMs 

3.38 2018 

English Google voice-search traffic Bi-LAS + MWER 6.2 2018 

English Google’s voice search and dictation traffic RNN-T + Word Piece 6.8 2019 

English Microsoft data Recurrent Neural Network 

Transducer (RNN-T) 

16.3 2020 

German Swiss German multi-dialect dataset Supervised acoustic pre-training 

(wav2vec) 

13.5 2021 

 
Figure 8. Trends of WER in natural languages. 

 
Figure 9. Error margins for exclusive Languages. 

 
Figure 10. Performances of individual research works based on WER for natural languages. 

Here, each wave corresponds to various phonemes and averages all the character probabilities 

corresponding to those particular phonemes. 

This uses a very popular paradigm, the sequence-to-sequence model which is known as encoder-decoder 

networks with attention[60,61]. But End-to-End systems are not considered to be in the standard stream. 

Researchers may bridge the gap between this end-to-end system and the whole research stream[62]. 

Along with the trial to understand the speech sound, here the efforts are taken to understand the spellings 

from the speech utterances. For a global language like English for which aortography is not so clear it is a 
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critical job to implement such end-to-end systems. 

5. Conclusion 

While studying a complete SRS system and a few alternative components within SRS systems, many 

flaws in the existing systems are identified. These flaws include the systems’ inability to adopt physical 

attributes of speakers such as age, accent, and ability. Efficiency should be improved in handling noisy real-

life settings with many speakers. Better algorithms should be designed to handle pronunciation variability. 

Algorithms should be able to learn any cues in speech and should disambiguate the utterances in the speech 

translation part. There are “N” solutions available for SRS systems. But each of those solutions can be achieved 

using “N” different methods. This means a combination of “N × N” possibilities shall be probed to find an 

efficient solution among the probabilities. The other area which needs to be concentrated on is the resource 

constraints for the solution, which includes the ability of real-time decoding using limited computational power. 

To improve the efficiency of SRS systems, its ability to reduce duplicated effort across the domain should also 

be considered. 
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