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ABSTRACT 

The Internet of Things (IoT) is a new model that connects physical objects and the Internet and has become one of 

the most important technological developments in computing. It is estimated that by 2022, one trillion physical objects 

will be connected to the Internet. The poor accessibility and lack of interoperability of many of these devices in a vast 

heterogeneous landscape make it difficult to design specific security measures and implement specific defences 

mechanism in addition, IoT networks are still open and vulnerable to network disruption attacks. Therefore, there is a 

need for additional security tools related to IoT. Intrusion Detection System could serve this purpose. Intrusion 

detection is the process of monitoring and analyzing network traffic in order to detect potential security breaches and 

unauthorized access to a IOT network. It involves the use of various technologies and techniques to identify and 

respond to potential threats in real-time. Network intrusion detection helps organizations protect their valuable assets, 

including sensitive data, intellectual property, and financial resources, from cyberattacks. By detecting and responding 

to potential security breaches in a timely manner, network intrusion detection systems can help organizations prevent or 

mitigate the impact of security incidents, minimize downtime and financial losses, and maintain the integrity of their 

operations and reputation. Weighted soft voting is a technique used in network intrusion detection to improve the 

accuracy and reliability of the detection process. It involves combining the results of multiple intrusion detection 

systems (IDS) based on decision tree, random forest and XGBoost using a weighted approach that assigns different 

levels of importance to each system based on its performance and reliability. The basic idea behind weighted soft voting 

is to give more weight to the predictions of IDS that have higher accuracy and lower false positive rates, and less weight 

to those that have lower accuracy and higher false positive rates. The proposed approach can help reduce the impact of 

false alarms and increase the sensitivity and specificity of the intrusion detection process. 
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1. Introduction 

Honeypots are security mechanisms that are meant to detect, 

divert, or prevent efforts to make unauthorized use of information 

systems. Honeypots are also known as baiting devices. A honeypot 

is often a computer, a network, or a piece of data that gives off the 

appearance of being part of a susceptible system, but which is in fact 

isolated and monitored by professionals in the field of information 

security[1]. Honeypots are designed with the purpose of luring 

attackers to a computer system that is not currently being used. This 

allows the attackers to be observed and their methods to be 

scrutinized. This knowledge may subsequently be put to use to 

strengthen security measures, as well as to devise improved methods 

for detecting attacks and responding to them. Honeypots may be 
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used for the purposes of identifying new threats and vulnerabilities, as well as gathering intelligence on 

attackers and the tactics they employ[2]. They can also be used to trick attackers into thinking they have 

successfully compromised a real system when, in reality, they are interacting with a fake system that is 

designed to collect information about them. This can be accomplished by using a combination of social 

engineering and technical trickery. 

A network intrusion detection system, often known as a NIDS, is a kind of security system that 

examines the data flow on a network for indications of inappropriate usage, illegal access, or hostile behavior. 

The primary objective of a network intrusion detection system (NIDS) is to detect and notify security 

workers of possible threats in real time[3]. A network intrusion detection system (NIDS) is often made up of 

several hardware and software components that, when combined, function to monitor and analyze network 

traffic[4]. These components may include sensors or agents that record and analyze network traffic, a central 

management console that receives alerts and offers centralized control, a database or repository that saves 

and analyses security data, and a centralized management console that receives alerts. 

The Network Intrusion Detection System (NIDS) employs a wide range of methods, including as 

signature-based detection, anomaly-based detection, and behavior-based detection, to identify potentially 

harmful or suspicious activities on the network[5]. The process of matching network traffic to known patterns 

or signatures of recognized dangers is what is involved in signature-based detection. A method of network 

security known as anomaly-based detection searches for patterns of activity on the network that depart from 

what is considered normal or anticipated behavior. Analysis of user and network behavior is performed 

under the guise of behavior-based detection in order to spot anomalous or suspicious behavior[6]. 

Honeypots are often used as a component of network intrusion detection systems (NIDS), which are 

designed to identify and react to assaults on networks. Honeypots are designed to imitate genuine systems, 

services, and vulnerabilities on a network before being put there[7]. They are intended to entice attackers and 

serve as targets for such attacks. As attackers engage with the honeypot, they leave behind traces of their 

activity. These traces might include logs, network traffic, and modifications to the configuration settings of 

the system. Security professionals are able to examine these traces to acquire insight into the tactics, 

motivations, and tools used by the attackers. On the basis of this information, security professionals are able 

to create or update intrusion detection rules, signatures, and other steps to safeguard the actual systems that 

are connected to the network. Honeypots have a number of uses, one of which is to trick attackers into 

thinking they have successfully breached a genuine system while, in reality, they are dealing with a dummy 

system. This may be used to divert their attention and confuse them. 

Honeypots are an effective method for detecting and warding off intrusions into IOT networks. 

Honeypots are a kind of decoy device that are meant to give the impression of being weak in order to draw in 

attackers. When an attacker interacts with the honeypot, their activities are recorded and then analyzed so 

that security flaws in the system may be identified and mitigated[8]. This knowledge may afterwards be put to 

use to strengthen the defense of the actual systems that are connected to the network. 

Honeypots have a variety of applications for preventing intrusions into networks, including the 

following: 

1) Early detection of attacks: The use of honeypots allows for the detection of assaults prior to their arrival 

at key systems. Administrators are able to monitor incoming traffic and identify unusual behaviour on 

the network if they place honeypots at key spots on the network. 

2) Improved incident response: When an assault is discovered, the information that was acquired from the 

honeypot may be utilised to formulate a response that is more effective to the attack. The data may be 

used to determine the strategies and tools utilised by the attacker, which in turn can assist the security 

team in the development of countermeasures and the prevention of future attacks. 
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3) Deception and distraction: Honeypots are a useful tool for diverting the attention of potential attackers 

and convincing them to waste their time and resources on a fake system. This may be especially helpful 

in deterring targeted assaults, in which the perpetrators may have a very strong desire to break into a 

particular system. 

4) Vulnerability testing: In order to evaluate the efficacy of the security measures implemented throughout 

the network, honeypots may also be deployed. Monitoring the activities of attackers allows security 

teams to locate vulnerabilities in their defences and determine what needs to be done to resolve such 

vulnerabilities. 

2. Literature 

Alhajjar et al.[9] discussed the adversarial aspect of the challenge faced by network intrusion detection 

systems (NIDS). The primary emphasis is on the assault viewpoint, which encompasses methods for 

producing adversarial instances that are able to circumvent a wide range of machine learning models. To be 

more explicit, the authors investigate the use of evolutionary computation (particularly, particle swarm 

optimization and genetic algorithm) and deep learning (especially, generative adversarial networks) as 

instruments for the development of adversarial examples. In order to evaluate the efficacy of these 

algorithms in avoiding a NIDS, they apply them to two data sets that are open to the public. These data sets 

are the NSL-KDD and the UNSW-NB15. Additionally, they compare the efficacy of these algorithms to the 

performance of a baseline perturbation method known as Monte Carlo simulation. 

Dina and Manivannan[10] provided an in-depth analysis and critical review of machine learning (ML)-

based intrusion detection methods that have been published in academic papers during the last 10 years. For 

researchers that are working on ML-based intrusion detection systems, this survey would serve as a 

complement to existing broad surveys on intrusion detection as well as a reference to current work done in 

the field.  

Bangui et al.[11] proposed a brand new machine learning model that makes use of Random Forest and a 

posterior detection based on coresets as a means of enhancing the performance of intrusion detection systems 

(IDSs). This model aims to both improve the accuracy of intrusion detection and boost its overall efficiency. 

da Costa et al.[12] focused on exhaustive research into the most recent state of the art literature pertaining 

to Machine Learning Methods and their applications in Internet-of-Things and Intrusion Detection for the 

purpose of protecting IOT networks. So, the purpose of this study is to do research that is both contemporary 

and in-depth on important works that deal with several intelligent approaches and their applicable intrusion 

detection architectures in computer networks, with a focus on the Internet of Things and machine learning. 

More than 95 publications on the subject were examined for this study, and those works covered a wide 

variety of topics relating to security concerns in IoT systems. 

El Kamel et al.[13] demonstrates a technique to the prediction of network intrusion warnings that is based 

on deep learning. It has been shown that a deep learning model based on the Gated Recurrent Unit (GRU) is 

capable of learning dependencies in security warning sequences and producing probable future alerts when 

given a history of alerts from an attacking source. The model has been presented. 

Guarascio et al.[14] suggested the creation of a platform for Orchestrated Information Sharing and 

Awareness, which would make it possible for various threat detection systems and other information 

awareness components to work together. ORISHA is supported by a decentralised Threat Intelligence 

Platform that is built on a network of linked Malware Information Sharing Platform instances. This 

configuration allows ORISHA to communicate with a variety of Threat Detection layers that are operated by 

a variety of companies. Threat Detection Systems within this ecosystem benefit from one another by 

exchanging information, which enables them to improve the prediction accuracy of their underlying models. 
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Doubtful situations, also known as examples with low anomaly scores, are presented to the knowledgeable 

individual who plays the role of the oracle in an Active Learning system. With its integration with a 

honeynet, ORISHA makes it possible to bolster the knowledge base with more examples of successful 

attacks, which in turn leads to the production of accurate detection models. 

Danilov et al.[15] provided investigations with the intention of doing an analysis of the ways for creating 

synthetic data in order to fill honeypot systems. In the context of honeypot systems, the relevant target 

objects are divulged, which is followed by the selection of the produced data kinds. The currently available 

means of production are being looked at. Techniques for assessing the quality of the data produced by 

honeypot systems are also studied in this study. 

Shahid et al.[16] provided a comprehensive online deception system with high levels of user engagement. 

This system is supported by a hybrid attack detection module, which is made up of a deep learning-based 

classifier mixed with a cookie analysis engine that assists in the profiling of potential attackers. Malicious 

HTTP (Hypertext Transfer Protocol) requests are sent from the detection module to a dockers-based 

deception system, which is managed and controlled by a docker controller. The containerized strategy that 

has been suggested makes the system more efficient, cuts down on latency, and improves runtime 

development. In addition to offering effective session management and scenario-based emulation, the 

essential characteristic of attacker profiling enables the proposed system to cope with attackers carrying 

zero-day attack payloads. This is a significant advantage. When evaluated in a real-time context, the 

suggested deception system has a high level of attacker involvement and can protect against all main types of 

attacks against web applications. In addition, the framework that has been suggested is scalable, flexible, and 

allows for simple framework update, which makes it appropriate for use even in IoT (Internet of Things) 

networks. 

Lampe and Meng[17] presented an in-depth analysis of the various IDSs that are based on deep learning 

and are used in automotive networks. We compile a number of different deep learning strategies, classify 

them according to the topologies and methods that they use, and emphasise the unique contributions that 

each one makes. In addition to this, we investigate the assessment of every method with regard to the 

datasets, attack kinds, and metrics. 

Kilincer et al.[18] examined the literature studies that make use of the CSE-CIC IDS-2018, UNSW-NB15, 

ISCX-2012, NSL-KDD, and CIDDS-001 data sets. These data sets are utilised extensively in the 

development of IDS systems. In addition, max-min normalisation was carried out on these data sets, and 

classification was carried out using support vector machine (SVM), K-Nearest neighbour (KNN), and 

Decision Tree (DT) algorithms. These are examples of traditional techniques to machine learning. 

Tang et al.[19] created a novel dynamic security defence system by combining a TCP REPAIR-based 

dynamic honeypot selection architecture with a deep learning-based intelligent firewall. This should be your 

starting point. Encrypted or unencrypted attack traffic, as well as its many permutations, are distributed 

across the intelligent firewall in an exact manner by the system. The benign traffic is sent to the target system, 

while the traffic that has been designated as malicious is used to dynamically choose honeypots that will 

reply in accordance with the attack procedure. 

Srinivasan and P[20] proposed an Ensemble Classifier Algorithm with Stacking Process (ECASP) to 

choose the best characteristics provided as input to the machine learning classifiers to evaluate the 

performance of botnet detection. 

Matheen and Sundar[21] In order to transfer knowledge from source domain data to target domain and 

integrate it, researchers propose a deep transfer learning-based Lecun network P-Lenet technique in this 

work. This will result in an effective intrusion detection system (IDS) that will improve detection accuracy 

for any wireless multimedia sensors networks (WMSN). Anomaly detection was emphasised as the major 
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mechanism in the suggested solution to avoid attacks on the software defined network (SDN) platform in 

real time. In this article, the Lecun network (LeNet) was examined, and a new version of the network known 

as the Lenet was suggested. 

Here Literature which was taken mainly focuses on the Detecting Intrusion with Machine Learning 

which classifies the action as Normal or as Intrusion when compared with deep learning as it is a part of 

machine learning and also research which was taken contributes Security of Internet of things. 

3. Proposed ensemble voting classifier 

An Ensemble Voting Classifier is a method of machine learning that makes a prediction by combining 

the results of many separate models into a single composite model. When you have multiple models that are 

trained on different aspects of the same data, or when you want to combine the strengths of multiple models 

to improve the overall accuracy of your predictions, this technique is particularly helpful. It is also useful 

when you have multiple models that are trained on different data sets. An Ensemble Voting Classifier works 

by having each individual model make a prediction based on the input data, and then combining those 

predictions to arrive at a final result for the classification. Combining the results of many models may be 

done in a number of different methods, including the following: 

 Majority voting: The final forecast in this method is derived from the different models' predictions that 

are the most similar to one another. This method is also known as majority voting. For instance, if three 

models predict class A and two models predict class B, then the final forecast would be class A. This 

would be the case if three models predicted class A and two models predicted class B. 

 Weighted voting: Weighted Voting is a methodology in which each individual model is given a weight 

depending on its performance on the training data, and the final forecast is a weighted average of the 

individual predictions. This method is also referred to as “voting with your feet”. 

Figure 1 shows the example of voting classifier. Ensemble Voting Classifiers are adaptable and may be 

used for a broad variety of tasks related to machine learning, including as classification and regression. They 

are especially useful in situations in which the numerous models each have distinct advantages and 

disadvantages, or in which there is a high level of unpredictability in the data. 

 
Figure 1. Voting classifier. 

3.1. Ensemble weighted voting classifier 

A weighted voting classifier is an ensemble technique used in machine learning that combines the 

predictions of multiple models to make a final prediction. Unlike simple majority voting where each model 

has an equal say in the final prediction. i.e., assigning an instance to the class that most base classifiers agree 

on. 

In this type of voting, all classifiers have the same value of votes and they are all equal to 1. Let n be the 

number of classifiers in the ensemble. Assume that Ci is used to represent a classifier in the ensemble E such 

that i = 1, 2, ..., n and ensemble E = {C1, C2, ..., Cn}. 
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The decision of the ith classifier (Ci) is denoted by di,j € {0, 1}, where j = 1, 2, ..., k and k is the number 

of classes. The decision will produce di,j = 1, if ith classifier decides for class cj, and di,j = 0 otherwise. The 

output of the ensemble, in majority voting, can be outlined with the following Equation (1). 

𝑚𝑎𝑥
𝑖≤𝑗≤𝑘

 ∑ 𝑑𝑖, 𝑗

𝑛

𝑖=1

 (1) 

However, the base classifiers in an ensemble typically cannot perform equally well, therefore it may not 

be best to aggregate them equally. In this situation, weighing each classifier according to its performance is 

the best solution. How to properly estimate the weights of classifiers, which may significantly affect the 

performance of the ensemble, is the most crucial topic in weighting systems. A unique weighing technique is 

suggested in this work. 

A weighted voting classifier assigns weights to each model, indicating their relative importance, and 

computes the weighted average of the model predictions to make the final prediction. The weights of the 

models are determined by the performance of the model on the training data. Typically, the better the model 

performs on the training data, the higher the weight assigned to it in the ensemble. The weights of the models 

can be set manually or can be learned from the training data using techniques such as cross-validation. 

The process of building a weighted voting classifier involves the following steps: 

1) As a result, the entire dataset is divided into training and test sets. 

2) Train multiple models on the same training data: Typically, the models used in an ensemble are 

different from each other in terms of the learning algorithm used, the hyperparameters chosen, or the 

way the input data is processed. This diversity among the models helps to reduce the risk of overfitting 

and improves the overall accuracy of the ensemble. 

3) Make predictions using each individual model: Once the models are trained, they are used to make 

predictions on the test data. Assume that there are m instances total in the testing set. Table 1 displays 

the classifiers’ correct and incorrect predictions for each case in the testing. 

4) Assign weights to each model: The weights are assigned to each model based on its performance on the 

training data. The most common approach to assigning weights is to use the accuracy of each model as 

a proxy for its performance. 

5) Compute the weighted average of the model predictions: The predictions of each model are multiplied 

by its weight, and the weighted predictions are summed up to compute the final prediction. 

The proposed approach (Soft voting classifier) is illustrated with an example. A sample data is given in 

Table 1. In the example senario (Table 1), there are three classifiers (C1, C2, C3 and C4) in the ensemble 

and their predictions on five instances in the validation set are listed. The final column in the table shows the 

actual class labels of the instances. There two possible class labels: X and Y. 

Table 1. An example dataset. 

Classes 

Instances 

Predicted classes Actual class 

C1 prediction C2 prediction C3 prediction 

1 Y Y X X 

2 X X Y Y 

3 X Y X Y 

4 Y X X Y 

Table 2 shows the changes in the weights of the classifiers for each instance. To begin with, all weights 

are initialized to 1. In each iteration through instances in the testing set, the weights of correctly predicting 

classifiers are only incremented, so the weights of the others are not modified. The weights are incremented 

by the ratio of the number of incorrectly predicting classifiers to the whole number of classifiers (n = 3). For 
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example; there is one incorrect match for the first instance, so the weight of the 3rd classifier is updated by 

3/4. This incremental process finishes with the last item. 

Table 2. Changes in the weights for each instance. 

Classes 

Instances 

Prediction of classes 

C1 prediction C2 prediction C3 prediction 

Initial weights 1.0 1.0 1.0 

1 1.0 + 1/3 = 1.33 1.0 + 0 = 1.0 1.0 + 0 = 1.0 

2 1.33 + 0 = 1.33 1.0 + 0 = 1.0 1.0 + 1/3 = 1.33 

3 1.33 + 0 = 1.33 1.0 + 1/3 = 1.33 1.33 + 0 = 1.33 

4 1.33 + 1/3 = 1.66 1.33 + 0 = 1.33 1.33 + 0 = 1.33 

Final weights 1.66 1.33 1.33 

We have 3 models, A, B, and C, with weights 1.66, 1.33 and 1.33 respectively. If model A predicts 

class 1, model B predicts class 2, model C predicts class 1 then the final prediction would be: 

weighted average = (1.66 × 1) + (1.33 × 2) + (1.33 × 1) = 5.65 (2) 

if the weighted average is greater than threshold value then the final prediction would be class 1. 

Figure 2 shows step_wise classification procedure. The advantages of using a weighted voting 

classifier include improved accuracy and reduced variance compared to using a single model. By combining 

the predictions of multiple models, the ensemble is able to capture more information about the data and make 

more accurate predictions. Additionally, assigning weights to the models helps to reduce the impact of 

poorly performing models on the final prediction, making the ensemble more robust to noise and outliers in 

the data. 

 
Figure 2. Proposed soft voting classifier method. 

3.1.1. Random forest classifier 

Random Forest Classifier is a supervised machine learning algorithm used for classification problems. It 

is an ensemble method that combines multiple decision trees to create a powerful classifier. The steps 

involved in building a Random Forest Classifier are as follows: 

1) Step 1: Data preparation 

 Random Forest Classifier requires labeled data to train the model. 

 Split the labeled data into training and testing sets. Typically, the ratio of the training data to 

testing data is 70:30, 80:20, or 90:10 depending on the size of the dataset. 
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 Feature scaling is not required in Random Forest Classifier as it is based on decision trees. 

2) Step 2: Building the forest 

 Random Forest Classifier builds a forest of decision trees. 

 The number of trees in the forest is a hyperparameter that needs to be set before training. 

 Each decision tree is trained on a random subset of the training data and a random subset of the 

features. 

 The random selection of samples and features helps to reduce overfitting and improve the 

generalization ability of the model. 

3) Step 3: Training the decision trees 

 The decision trees in the forest are trained using the training data. 

 At each node of the tree, a split is made based on the value of a feature that maximizes the 

separation of the data into classes. 

 The process of selecting the best split continues recursively until the leaf nodes are reached. 

 The splitting criterion used in Random Forest Classifier is the Gini impurity, which measures the 

degree of impurity in a set of samples. 

 The objective of each decision tree is to create partitions in the feature space that are as pure as 

possible. 

4) Step 4: Making predictions 

 Once the forest is built, it can be used to make predictions on the testing data. 

 For each test sample, the class labels predicted by all the decision trees in the forest are collected. 

 The final prediction is made by taking the majority vote of all the decision trees. 

 The class with the highest number of votes is chosen as the predicted class for the test sample. 

5) Step 5: Evaluating the model 

 Once the predictions are made, the accuracy of the model can be evaluated using metrics such as 

accuracy, precision, recall, F1 score, etc. 

 If the model performance is not satisfactory, the hyperparameters can be tuned to improve the 

accuracy. 

 Common hyperparameters in Random Forest Classifier are the number of trees in the forest, the 

maximum depth of the trees, the minimum number of samples required to split a node, and the 

maximum number of features to consider when looking for the best split. 

 
Figure 3. Random forest classifier. 

Figure 3 shows algorithm steps for Random Forest Classifier can be summarized as follows: 

a) Prepare the labelled data for training and testing. 

b) Build the forest by training multiple decision trees on random subsets of the data and features. 
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c) Train the decision trees using the Gini impurity criterion. 

d) Make predictions by taking the majority vote of all the decision trees. 

e) Evaluate the accuracy of the model and tune the hyperparameters if necessary. 

Random Forest Classifier is a powerful algorithm that is widely used in various applications such as 

image classification, text classification, and financial analysis. It is known for its high accuracy, robustness, 

and ability to handle large datasets. 

3.1.2. Decision tree 

Decision Tree is a supervised machine learning algorithm used for classification and regression 

problems. It creates a tree-like model of decisions and their possible consequences. The steps involved in 

building a Decision Tree algorithm are as follows: 

1) Step 1: Data preparation 

 Decision Tree algorithm requires labeled data to train the model. 

 Split the labeled data into training and testing sets. Typically, the ratio of the training data to 

testing data is 70:30, 80:20, or 90:10 depending on the size of the dataset. 

 Feature scaling is not required in Decision Tree algorithm as it is based on the level of impurity in 

the features. 

2) Step 2: Building the tree 

 Decision Tree algorithm builds a tree-like model of decisions and their possible consequences. 

 The root of the tree represents the feature that best splits the data into classes based on a criterion 

such as entropy or Gini impurity. 

 The decision tree is built recursively by splitting the data into subsets based on the best feature 

until the leaf nodes are reached. 

 The leaf nodes represent the class labels. 

3) Step 3: Training the decision tree 

 The decision tree is trained using the training data. 

 At each node of the tree, a split is made based on the value of a feature that maximizes the 

separation of the data into classes. 

 The process of selecting the best split continues recursively until the leaf nodes are reached. 

 The splitting criterion used in Decision Tree algorithm can be entropy or Gini impurity, which 

measures the degree of impurity in a set of samples. 

 The objective of the decision tree is to create partitions in the feature space that are as pure as 

possible. 

4) Step 4: Making predictions 

 Once the decision tree is built, it can be used to make predictions on the testing data. 

 For each test sample, the class label predicted by the decision tree is obtained by following the path 

from the root to the leaf node. 

 The class label corresponding to the leaf node is chosen as the predicted class for the test sample. 

5) Step 5: Evaluating the model 

 Once the predictions are made, the accuracy of the model can be evaluated using metrics such as 

accuracy, precision, recall, F1 score, etc. 

 If the model performance is not satisfactory, the hyperparameters can be tuned to improve the 

accuracy. 

 Common hyperparameters in Decision Tree algorithm are the maximum depth of the tree, the 

minimum number of samples required to split a node, and the splitting criterion (entropy or Gini 

impurity). 
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The algorithm steps for Decision Tree can be summarized as follows: 

a) Prepare the labeled data for training and testing 

b) Build the tree by selecting the best feature that splits the data based on a criterion (entropy or Gini 

impurity) 

c) Train the decision tree by recursively splitting the data into subsets based on the best feature until the 

leaf nodes are reached 

d) Make predictions by following the path from the root to the leaf node for each test sample 

e) Evaluate the accuracy of the model and tune the hyperparameters if necessary. 

Decision Tree algorithm is a simple yet powerful algorithm that is widely used in various applications 

such as medical diagnosis, credit scoring, and customer churn prediction. It is known for its interpretability, 

versatility, and ability to handle both categorical and numerical data. 

3.1.3. XGBoost classifier 

XGBoost (Extreme Gradient Boosting) is a popular ensemble machine learning algorithm used for 

classification and regression problems. It is an optimized distributed gradient boosting library designed to be 

highly efficient, flexible, and portable. The algorithm steps for XGBoost classifier are as follows: 

1) Step 1: Data preparation 

 XGBoost classifier requires labeled data to train the model. 

 Split the labeled data into training and testing sets. Typically, the ratio of the training data to 

testing data is 70:30, 80:20, or 90:10 depending on the size of the dataset. 

 Feature scaling is not required in XGBoost classifier as it is based on the gradient boosting 

technique. 

2) Step 2: Building the initial decision tree 

 XGBoost classifier builds an initial decision tree as the base model. 

 The decision tree is built using the training data by recursively partitioning the data into subsets 

based on the best feature that minimizes the objective function. 

 The objective function used in XGBoost classifier is the sum of the loss function and the 

regularization term, which penalizes the complexity of the model to avoid overfitting. 

3) Step 3: Boosting the decision tree 

 XGBoost classifier boosts the initial decision tree by adding more decision trees to improve the 

performance of the model. 

 Each subsequent decision tree is built using the training data by recursively partitioning the data 

into subsets based on the best feature that minimizes the objective function. 

 The difference between XGBoost and other boosting algorithms is the use of the gradient descent 

optimization algorithm to update the weights of the samples at each iteration. 

4) Step 4: Making predictions 

 Once the XGBoost model is built, it can be used to make predictions on the testing data. 

 For each test sample, the class label predicted by the XGBoost model is obtained by summing the 

predictions of all the decision trees. 

 The class label corresponding to the highest sum is chosen as the predicted class for the test sample. 

5) Step 5: Evaluating the model 

 Once the predictions are made, the accuracy of the XGBoost model can be evaluated using metrics 

such as accuracy, precision, recall, F1 score, etc. 

 If the model performance is not satisfactory, the hyperparameters can be tuned to improve the 

accuracy. 
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 Common hyperparameters in XGBoost classifier are the learning rate, the maximum depth of the 

decision trees, the number of decision trees, the regularization term, and the subsample ratio. 

The algorithm steps for XGBoost classifier can be summarized as follows: 

a) Prepare the labeled data for training and testing. 

b) Build the initial decision tree by recursively partitioning the data into subsets based on the best feature 

that minimizes the objective function. 

c) Boost the initial decision tree by adding more decision trees using the gradient descent optimization 

algorithm to update the weights of the samples. 

d) Make predictions by summing the predictions of all the decision trees for each test sample. 

e) Evaluate the accuracy of the XGBoost model and tune the hyperparameters if necessary. 

XGBoost classifier is a powerful algorithm that is widely used in various applications such as speech 

recognition, natural language processing, and computer vision. It is known for its scalability, accuracy, and 

ability to handle large and complex datasets. 

3.2. Honeypot using weighted voting classifier IDS 

Weighted voting classifier IDS is a machine learning model that combines the output of multiple IDS 

models to improve the accuracy of intrusion detection. Each IDS model is assigned a weight based on its 

performance, and the final classification is determined by combining the output of each model, weighted by 

its assigned weight. To implement a honeypot using a weighted voting classifier IDS, the following steps are 

used: 

Set up a honeypot system: Install a vulnerable operating system on a virtual machine or physical 

server, and configure it to mimic a production system. This can include setting up services, such as a web 

server, FTP server, and SSH server, and configuring weak or default passwords to attract attackers. 

Collect training data: Record network traffic and system logs from the honeypot system when it is 

being attacked. This data will be used to train the IDS models. 

Train IDS models: Train multiple IDS models using the collected training data. Some popular IDS 

algorithms include Snort, Bro, and Suricata. Each model should be trained on a separate subset of the 

training data. 

Assign weights: Evaluate the performance of each IDS model using validation data, and assign a 

weight to each model based on its performance. Models with higher accuracy or fewer false positives should 

be assigned higher weights. 

Combine output: When new network traffic is received by the honeypot system, pass it through each 

IDS model, and combine the output using the assigned weights. If the combined output indicates an attack, 

alert the administrator. 

Evaluate and refine: Periodically evaluate the performance of the IDS models and adjust the weights 

as necessary. Also, update the training data to ensure that the IDS models remain effective. 

4. Experimental results 

In Figure 4, a honeypot intrusion detection system (IDS) is a security mechanism that is designed to 

detect unauthorized access to IOT systems or networks. It does this by employing a system or network that 

gives the impression of being vulnerable but is, in reality, a trap for those who would attempt to gain 

unauthorized access. In this part, we will show the results of the experimental study that was conducted in 

order to validate the suggested model. 
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Figure 4. Proposed Honeypot based on weighted voting classifier. 

4.1. Dataset 

The Intrusion Detection Dataset (UNR-IDD) from the University of Nevada, Reno is used so that 

experimental study may be carried out. The bulk of the UNR-IDD is composed of the port information that 

was gathered from various networks. These phrases refer to the observed port metrics that are recorded in the 

router and switch ports, and they come up in the context of an environment including networking. In addition, 

the data set includes something that is referred to as “delta port statistics,” which illustrates how the total 

magnitude of observed port statistics changed over the course of a certain time period. These port statistics 

are able to deliver a fine-grained analysis of network flows because decisions are made at the port level as 

opposed to the flow level. This is possible because choices are made at the port level. The process of 

recognizing any potential incursions might be sped significantly as a result of this. This Data set helps to 

protect network from port scanning, intrusions and identifying abnormal activity happens in a network. 

4.2. Evaluation parameters 

Table 3 shows the evaluation parameter to know the performance of each model. In the fields of 

machine learning and data analysis, some performance measures that are often used include accuracy, recall, 

precision, F1 score, and AUC (Area Under the Curve). The performance of a model in classification tasks, in 

which the objective is to assign labels (such as “positive” or “negative”) to input data, may be evaluated with 

the use of these metrics by comparing them to the data. 

Accuracy: The percentage of a model’s right predictions relative to the total number of forecasts 

produced is what is meant by the term “accuracy”. The formula for determining it is 

(TP+TN)/(TP+TN+FP+FN), where TP represents the number of true positives, TN represents the number of 

true negatives, FP represents the number of false positives, and FN represents the number of false negatives. 

Recall (Sensitivity): The recall of a model is defined as the percentage of true positives that were 

properly detected among all true positives. This is also referred to as a model’s sensitivity. It is determined 

by dividing the number of true positives by the sum of the number of true positives and false negatives. The 

formula for this is TP/(TP+FN). 

Precision: The precision of a model is defined as the percentage of true positives that were accurately 

detected among all positive predictions made. This proportion is compared to the total number of positive 

predictions produced. It is determined by dividing the number of true positives by the total number of 

positive results, where the number of true positives is TP and the number of false positives is FP 

The F1 score of a model is the harmonic mean of its accuracy and recall scores. It is a weighted average 

that takes into consideration both precision and recall, and it is a measure of precision. It is computed as 2 

times (precision times recall) divided by (precision plus recall). 



13 

Area Under the Curve, or AUC for short: The area under the curve (AUC) is a statistic that assesses the 

overall performance of a model based on its capacity to differentiate between positive and negative classes. 

The area under the ROC (Receiver Operating Characteristic) curve, which displays the true positive rate 

(TPR) against the false positive rate (FPR) at various classification thresholds, is how it is computed. The 

FPR refers to the rate of incorrect positive results. 

Table 4 shows the Comparative analysis between the classifiers like SVM, ANN, KNN, etc. 

and Figures 5–9 show the comparative analysis of different evaluation parameters between models. 

Table 3. Evaluation parameters. 

Accuracy 97.7% 

Recall 0.97 

Precision 0.97 

F1 score 0.97 

AUC 0.98 

Table 4. Comparative analysis. 

 SVM ANN KNN Ad boost Gaussian NB Logistic regression Proposed ensemble voting classifier 

Accuracy 49% 59% 85% 61% 67% 74% 97.7% 

Recall 0.49 0.59 0.85 0.61 0.67 0.74 0.97 

Precision 0.50 0.50 0.85 0.56 0.73 0.77 0.97 

F1 score 0.48 0.49 0.85 0.53 0.66 0.73 0.97 

AUC 0.80 0.81 0.91 0.85 0.87 0.88 0.98 

 
Figure 5. Comparative analysis of accuracy. 
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Figure 6. Comparative analysis of recall. 

 
Figure 7. Comparative analysis of precision. 

 
Figure 8. Comparative analysis of F1-score. 
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Figure 9. Comparative analysis of AUC. 

5. Conclusion 

Cowrie: Cowrie is a medium-interaction SSH and Telnet honeypot designed to log brute force and shell 

interaction attempts. It can be configured to mimic specific SSH and Telnet services. A honeypot can work 

in conjunction with an Intrusion Detection System (IDS) as its core by providing an additional layer of 

defense against potential attacks. The IDS monitors network traffic for suspicious activity and alerts security 

personnel if an attack is detected. The honeypot, on the other hand, acts as a decoy system that is designed to 

+lure attackers away from real systems and services. When an attacker tries to penetrate the honeypot, the 

IDS can detect and analyze their actions. Random Forest is a powerful ensemble learning method that 

combines multiple decision trees to produce highly accurate predictions. It is robust to overfitting, which can 

occur when a model is too complex and fits the training data too closely. Decision trees are computationally 

efficient and can handle large datasets with many features. They are also able to perform classification in 

real-time, making them suitable for applications that require fast response times. XGB is a powerful 

ensemble learning method that combines multiple decision trees to produce highly accurate predictions. 

XGB is designed to be highly efficient and scalable, making it suitable for large datasets and real-time 

applications. The proposed ensemble voting classifier produced superior Accuracy of 95%, recall of 0.94, 

precision of 0.94, F1 score of 0.94 and AUC of 0.97. 
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