
Journal of Autonomous Intelligence (2024) Volume 7 Issue 4

doi: 10.32629/jai.v7i4.1085

1

Original Research Article

Aiding secure data retrieval incorporated with parallelization

technique in cloud
Bharati P. Vasgi1,*, S. M. Jaybhaye2, Girija G. Chiddarwar3

1 Marathwada Mitra Mandal’s COE, Pune 411052, India

2 Vishwakarma Institute of Technology, Pune 411037, India
3 Marathwada Mitra Mandal’s COE, Pune 411052, India

* Corresponding author: Bharati P. Vasgi, bharativasgi@gmail.com

ABSTRACT

Cloud data owners prefer to outsource data because of ease in maintenance. Data confidentiality of this outsourced

sensitive data is a major task. The searchable encryption technique helps to carry out searches on encrypted data without

decrypting it. In the data outsourcing environment, volume of data is increasing rapidly. Hence the time required to build

the index and to carry out searches is also increasing exponentially. This makes it more difficult to build a system which

is efficient, reliable and can cope up with growing data. In this paper, a parallelization technique to build the index on

outsourced data is proposed. This technique minimizes the time required to construct the index. It also supports secure

ranked retrieval using bucketization technique. The buckets are formed using Hadoop map reduce framework which

achieves significant efficiency. The proposed method prune the keyword dataset, which helps in significant reduction in

the size of index. Through extensive experiments using standard dataset, the performance of the system is validated. The

experimental results show that the proposed system requires less time for index construction and hence improves retrieval

efficiency.

Keywords: data outsourcing; searchable encryption; map-reduce; secure search; buketization; multi-owner; distributed

index

1. Introduction

Recently, there is a huge requirement of data outsourcing for the

purpose of cost saving. For small and medium sized organizations,

the maintenance of storage and computing infrastructure is becoming

difficult day by day. Also for large organizations it is becoming

challenging task to find out people with high technical competency

for challenging assignments. They have to invest huge amounts on

this technical expertise. Therefore, data outsourcing is becoming

reasonable solution for enterprises to relieve their burden. The

security of this outsourced data is the major concern. Any leakage of

this data results in loss of very sensitive information Yang et.al. and

Jung et al.[1,2]. To maintain the security of this outsourced data, data

and queries must be encrypted before they are submitted to cloud

which is managed by third party.

The encryption of this definitely ensures the confidentiality but

limits the simple operations on this encrypted data. Some of the very

common operations like multi-keyword, range search is not supported.

All techniques discussed till now are having high computational

ARTICLE INFO

Received: 1 August 2023

Accepted: 29 August 2023

Available online: 24 January 2024

COPYRIGHT

Copyright © 2024 by author(s).

Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/

2

complexity as size of dataset grows. Hence the proposed system is very effective as it can handle large corpus

by using parallelization techniques. The queries are handled efficiently by using posting lists. The buckets

which are representing keywords in the dataset are pruned, so that more importance is given to significant

keywords and thus users requests are handled in minimum time.

The paper is organized as follows. The related work is described in Section 2. Section 3 discusses the

framework of the system. Section 4 gives design goals. Section 5 gives threat model and section 6 describes

mathematical model, Section 7, 8 represents the proposed system. Section 9 describes security analysis of the

system. Section 10 represents performance evaluation using standard dataset and Section 11 concludes with

conclusion and future work.

2. Related work

Searchable encryption is the most frequently used technique to carry out searches on encrypted data.

Many systems are discussed which uses searchable encryption are presented in Orencik et al.[3], Strizhov and

Ray[4], Cao et al.[5], Cash et al.[6], Chen et al.[7] and Van et al.[8].

Curtmola et al.[9] discusses strong security definitions of searchable encryption. For keyword based

searching bilinear pairings are put forth by various authors. The major drawback of this system is their

computational cost. Inverted index technique is given which is used to carry out searches on sensitive

outsourced data. The scenario where more interactions are expected by the user, this system is not of much use

Orencik and Savaş[10] author proposes multi-keyword search that basically maps sensitive information to

constant length array but supports limited ranking. The detail survey of issues in data outsourcing is discussed

by Vasgi and Kulkarni[11]. Hash based mapping structures are used to retrieve sensitive information from the

encrypted collection suggested by Vasgi and Kulkarni[12]. This system is very efficient as by using hash structure

directly the location in the index is accessed. As currently discussed methods concentrate only on few features

the proposed methods addresses single keyword, multi keyword and secure k-NN retrieval. It also tries to

address Multiowner environment and distributed indexing approach.

The basic problem that secure k-NN queries handle is to retrieve the top similar k documents from the

encrypted dataset without actually revealing the original content of document and query Wong et al.[13]

formalizes the formal requirements for secure k-NN search and search top k relevant document to a query

document without leakage of the content of query and document. His method is SCONEDB (Secure

Computation ON Encrypted Data Base). In his method he uses symmetric scalar product preserving encryption

(ASPE) scheme which query and data are encrypted differently. The scalar product between query and data

point is calculated using ciphertext.

Range search is discussed in Shi et al.[14]. The multidimensional range query is suggested by Hore et al.[15]

which utilizes the bucketization technique. In this, data is transformed into various buckets and also query is

transformed into subset of buckets. One of the major drawbacks of this system is false positive rate.

3. The framework

In proposed framework of secure data retrieval using parallelization technique (SDRPT), we provide

privacy preserving search in three different search models: multi-keyword search, k-NN search for documents

(i.e., document similarity) and single keyword search. We consider a data outsourcing scenario that consists

of three entities: data owner, two non-colluding semi honest servers and users. The big picture for the

interactions between the entities is illustrated in Figure 1. The communication among various entities is listed.

Message Communication

1) Sharing of secret key ks

2) Uploading secure bucket index on search server by owner 1

3

3) Uploading encrypted document collection on file server by owner 1

4) Uploading encrypted document collection on file server by owner n

5) Uploading secure bucket index on search server by owner n

6) Merging of multiple index on cloud server

7) Query submitted by end user

8) Top k relevant documents identifiers

9) Top k encrypted documents

10) Top k plaintext documents

Figure 1. Architecture of proposed system.

In the proposed system, secure information retrieval is proposed which facilitates single keyword, multi

keyword and secure k-NN search using map reduce architecture. The architecture shows three important

entities: data user, data owner and two servers. These two servers are semi honest and non-colluding.

4. Design goals

To support secure ranked retrieval in outsourced environment, where size of corpus is growing

exponentially, the proposed system is having following goals

Efficient index construction: As the size of outsourced data increases, size of indexing structures also

increases. Hence conventional linear techniques for index construction are not suitable in cloud environment.

The proposed method constructs the index in parallel by using Hadoop-map reduce architecture.

Support of wide range of query: The proposed system supports single keyword, multi-keyword and

secure k-NN queries. The wide range of queries increases system usability.

Search efficiency: The feature set of outsourced data is pruned. This results in significant reduction in

size of index and consequently increases search efficiency. The searching is analyzed with multiple cases.

Distributed indexing: The proposed system supports distributed indexing. Hence user’s query is

searched by distributing it to various nodes. The final results from respective nodes are merged and given to

the user.

The proposed system uses stemming algorithm Baeza-Yates et al.[16], order preserving symmetric

encryption algorithm Boldyreva et al.[17], secure hash algorithm Stallings.[18], DES Stallings at al.[18], TF-IDF

ranking scheme.

4

5. Threat model

Threat models can be categorized depending upon what information is available to cloud server as:

Known ciphertext model: In this model the data available to cloud server is in encrypted form only. In

proposed system, the data owner outsources encrypted document collection Ce and encrypted index Ie to cloud

server.

Known background model: This model is stronger than known ciphertext model. The cloud server has

additional information as compared with known ciphertext model Katal at al.[19]. This information may be the

partial knowledge of scores stored in the index, access pattern, relation among various search queries and so

on. With the help of this, cloud server can recognize significant information Boneh and Waters[20] and Manning

and Raghavan[21].

6. Mathematical model

A mathematical model helps in describing the system by using mathematical concepts. This section

explains mathematical model of proposed SDRPT technique.

• Variable

 Sij: Score of ith term in jth document;

 x: normal data value;

 p1: Numeric plaintext value;

 p2: Numeric plaintext value;

 ks: Secret key.

• Parameters

 C: Set of files to be outsourced, C= {f1, f2, …, fn}.

 T: Set of distinct terms derived from the file collection, T= {t1, t2 …tm1}.

 q: Query given by user.

 Tq: Set of terms present in query, Tq = {q1, q2, …, qm2}.

 m2: Total terms present in query q.

 α: Threshold value.

 β: Total number of buckets.

 dq: Query document.

 I: Bucket Index.

 Ie: Secure bucket index.

 Ks: Secret key used for HMAC.

 n: Total number of documents in the collection.

 tterm: Pruned set of total features.

 ᴨ(Bi): Signature of Bucket Bi.

 ti: ith term.

 toutput: Temporary output vector with structure (docid, score).

 foutput: Final output vector with structure (docid, score).

• Decision variable

α: The value of α decides the size of pruned collection. If the value is larger, resultant collection’s size

becomes smaller and vice-versa. The selection of α is important step as it effects on performance of the system.

• Independent function

 Sij: Score calculation of i-th feature in jth document.

 Dec(x): Decryption of element x.

5

 Enc(x): Encryption of element x.

 OPE (Enc, Dec, ks) order preserving symmetric encryption for every plaintext if (p1  p2) then Enc

(p1, ks)  Enc (p2, ks).

 Mapper (documnets): (keyword, document-id, score).

 Reducer (keyword, document-id, score) (keyword, list).

• Model

𝛼 = {High, low, Average} (1)

High, low, average value indicates size of pruned dataset.

𝐵𝑘 = (𝑖𝑑(𝑓𝑗), (𝑆𝑗𝑘)) (2)

ᴨ(𝐵𝑘) = 𝐻𝑀𝐴𝐶𝑘𝑠(𝑆𝐻𝐴(𝐵𝑘)) (3)

𝑉𝐵𝑘 = (𝐷𝐸𝑆 ((𝑖𝑑(𝑓𝑖)), (𝑂𝑃𝑆𝐸(𝑆𝑗𝑘)) | 𝑖𝑑(𝑓𝑗)Є 𝐶) (4)

7. Proposed system

This section gives details of the proposed framework. The secure search algorithm is basically consisting

of secure index generation by using map reduce framework. This secure index is outsourced to search server

and encrypted dataset is outsourced to file server. The encrypted index and data, prevents search server and

file server to learn any secret information.

7.1. Secure index construction using parallelization technique

Secure and searchable index is created by using buckets. First of all, features are extracted from document

collection. In proposed technique documents are partitioned into buckets. As secure hash algorithm is used to

form bucket signature. The documents having common features share the same bucket. This helps in retrieving

exact matching documents.

Every document in bucket is represented as (Document_id, score), score is calculated using following

formula.

𝑆𝑖𝑗 =
1

|𝑓(𝑤𝑗)|
 (1 + 𝑙𝑛𝐹𝑖𝑗) (5)

Every bucket is identified by signature of respective keyword which is calculated by using secure hash

algorithm. A sample bucket creation is shown in Figure 2.

Figure 2. Secure index generation.

6

Since document collections are larger in size, map reduce technique is proposed for parallel index

construction. The index generation system consists of three modules bucket index creation using map reduce,

bucket signature calculation and secure bucket index creation.

7.1.1. Bucket construction using parallelization technique

Collections are generally very large in outsourced environment, so it is difficult to construct the index

linearly. Parallelization techniques can be used for efficient index construction. The proposed system discusses

index construction by using map reduce technique. map reduce is designed for large datasets. the index

construction process described here is the application of map reduce. The input dataset is divided into small

chunks and these chunks are processed in parallel. A master node is responsible for assigning and reassigning

tasks to various worker nodes. A map and reduce phase of MapReduce divides the input task into smaller tasks

so that the entire task can be executed efficiently. The details of this working are shown in Figure 3.

Figure 3. Bucket construction using map-reduce.

Initially the collection of data is split into small chunks such that the total work distribution is done evenly

among worker nodes. These splits are assigned by master node runtime. If any worker node finishes the task

master node assigns it the next chunk. If any worker node fails during the processing, its task is reassigned by

master node to other available worker node.

The map phase of MapReduce maps the splits of input data into (key, value) pairs. In proposed system

this (key, value) pair is (keyword, document-id, score). The mapper class is also known as parser. Each working

parser writes its output to intermediate files called as segment file or posting file as shown in Figure 3. The

parser designed in this process partitions the keys into j term partition, so that parsers can write (key, value)

pair to respective partition. In the proposed system partitions are created in lexicographical order as shown in

Figure 3.

In the reducer phase same keywords from all intermediate files are reduced to single list. This will make

processing of the keywords fast and easy. The reducer collects all document ids from intermediate files for a

particular keyword and prepare buckets for each keyword. This bucket is also called as posting file. This

process is illustrated by giving a simple example as below.

Scheme of map and reduce functions

map: input → list(key, value)

reduce: (key, list(value)) → output

Instantiation of the schema for index construction

Map: document collection → list (keyword,docID,Score)

Reduce: ((termId1, list(dociD, score)), (termid2, list(docid, score)),………) → (bucket1, bucket2)

Sample example for bucket index creation

7

map: (d2: internet, protocol), (d1: WSN, internet, NIC, internet)→((internet, d2), (protocol, d2), (WSN, d1),

(internet, d1), (NIC, d1))

reduce:

((internet, (d2, d1, d1)), (protocol, (d2)), (WSN, d1), (NIC, d1))→ ((internet, (d2:1, d1:2)), (protocol, (d2:1)),

(WSN, (d1:1)), (NIC, (d1:1)))

Example 1: Shows the general schema of map reduce functions. Here inputs and outputs are key-value

pairs and buckets respectively. All these MapReduce jobs run in parallel. As it splits index construction in

smaller tasks, it can scale up to large data collection provided with the support of underlying hardware

architecture.

The map function results in key-value pairs. All values i.e. document ids for a given keyword are collected

into a bucket in reduce phase. This bucket is then used for secure retrieval. These two functions help in

construction of bucket index. For simplicity keyword frequency is shown in the list, but real time this frequency

is replaced by scores.

7.1.2. Bucket signature calculation

For all T = (t1, t2, ………tm1), m1 feature’s signatures are calculated by applying secure hash algorithm. Thus

constant length signature is generated for each bucket. Each feature is hashed with a standard secure hash

function. In the feature set T, there are many features with very low relevancy scores. Use of all these features

may have adverse effect on index construction and index utilization. Hence feature set is pruned by using

standard threshold value α. All the features having score above α are only considered for index construction.

Assume that after pruning we get β buckets. With this pruning, search efficiency will improve but may have

drawback that documents with rare features cannot be searched.

After the bucket signature calculation, document identifiers are distributed to β buckets according to their

signatures. Let Bk be the bucket identifier for the kth feature. The content of vector bucket Bk is given as in

Equation (4). Note that each document can be mapped to various buckets depending upon the dominant

features they hold.

7.1.3. Secure bucket index creation

Bucket identifiers and bucket data holds very sensitive information. This information must be encrypted

before outsourcing. The bucket identifiers contain very useful information like the features it holds and the

features it does not hold. To avoid adversary to learn from this, bucket signatures and contents are encrypted

using cryptographic techniques. Bucket content e.g., document identifiers are encrypted using standard data

encryption algorithm and scores are encrypted using Order Preserving Symmetric Encryption. Also bucket

signatures are secured using HMAC. The key ks is securely shared between data owners and data users. Since

the key ks is not known to search server and file server, the system is secure against brute force attack. The

secure bucket identifier is denoted as in Equation (3). The encrypted content of the bucket vector is denoted

by Equation (4).

Since scores are very sensitive information as they furnish importance of keyword in document collection,

they are encrypted before outsourcing. These scores are encrypted using order preserving symmetric

encryption which maintains order of the scores even after encryption.

The details of secure index construction is given in Algorithm 1.

8

Algorithm 1 Secure bucket index construction

1: Input: Set of document C= {f1, f2, f3……}
2: Output: Secure buckets
3: Class Mapper

4: Method MAP (totaldoc n)

5: for all documents f ∈ C do

6: for all term t ∈ document f1 do

7: Emit (term t, score, doc-id)
8: end for
9: End for
10: end Mapper
11: Class Reducer

12: Method Reducer (term tterm, list)

13: For all term t ∈ tterm do

14: If list already exist for term t then
15: Append term to the list of t else

16: Create new list for term i
17: End If
18: End For
19: Emit ((termt1, listt1), (termt2, listt2),………… (termttterm, listtterm))
20: End Reducer
21: For i=1 to tterm do
22: Calculate bucket signature π(Bi)= SHA(ti)
23: While (elements in ith bucket) do

24: Vectorbucket VBt = (DES (DOCid), OPSE(Score))
25: End while
26: End for
27: Output secure bucket index Ie

7.2. Secure query generation and searching

Secure query generation is very important. Secure hash algorithm is applied to all the keywords in the

query. There are three types of queries supported in this system.

• Single keyword.

• Multi keyword.

• k-NN query.

Let the set of keywords in query Q = Tq, the secure query signature is calculated as

Sig(Tq) = (SHA (q1)…….SHA(qm2)) (6)

There are m2 buckets required to be accessed for corresponding query signature Sig (Tq). If m2 = 1, it is

single keyword search. In this case the signature of queried keyword and bucket identifier is checked. If both

matches, top k documents are retrieved from the bucket and given to file server. From there file server pick up

those top k documents in the encrypted format from the collection and delivers it to the user. As the keys are

already shared between owner and user, user can now decrypt the documents.

Every bucket contains document identifier and relevancy score of data elements which are mapped to that

bucket. When multikeyword queries are submitted by users, search server has to calculate document score

which is spread across multiple buckets. Suppose given query includes keywords k1, k2, k3. The buckets

representing these three features are considered. All the documents present in these buckets are unioned and

their respective scores are added to get the final results. If user is interested in top k documents, then k

documents having top scores are retrieved. All these top k documents may have all keywords {k1, k2, k3} or

some keywords. Thus this technique helps not only to retrieve exact matching documents but also partial

matching documents.

For multi-keyword logical ORing of all respective m2 buckets are performed and documents are sorted as

per their score. Top k documents are then retrieved as explained above. Similarly, for k-NN query, keywords

are extracted from query document, and for all those keywords logical ORing of all respective buckets is

9

performed as shown in Equation 9. Assume document is having m2 keywords. Top k documents matching to

input query are retrieved as per discussed above.

𝑄𝑢𝑒𝑟𝑦(𝐷𝑜𝑐) = (𝐵(𝑘1)𝑂𝑅 𝐵(𝑘2)𝑂𝑅 𝐵(𝑘𝑚)) (7)

Details are given in Algorithm 2.

Algorithm 2 Secure query generation and searching

Input: Encrypted document collection E(C), query document da, secure index I, top k need

Output: Relevant documents
Initialization: toutput=Null, foutput=NULL, k=1
1: Search Server
2: Tq=Conflate(dq)
3: Secure query generation, T₁=(sig(q₁), sig(92)sig(qm2))
4: Search for all features present in input query document
5: foutput= V Bq₁
6: for i=2 to m2 do

7: for j=1 to m1 do
8: if(sig(qi)=sig(tj)) then
9: toutput= V Btj
10: while(toutput!=NULL) do
11: if(element of toutput is present in foutput) then
12: Update score of doc-id in foutput by adding score from toutput
13: else
14: append(doc-id, score) from toutput to foutput

15: end if
16: end do
17: end if
18: end for
19: end for
20: Retrieve top k elements from foutput
21: Transfer these top k elements to file server
22: File Server

23: Retrieve all top k documents from encrypted collection C
24: Transfer top k documents to user
25: End user
26: Decrypt the retrieval documents by using shared secret

8. Distributed indexing

The prime purpose of distributed index is to spread out the work load of an index. Instead of maintaining

a single index, distributed index maintains multiple indexes to solve user’s request efficiently. The distributed

indexing technique increases availability and fault tolerance of the stored index.

Two evident alternatives available are:

• Partition by features;

• Partition by documents.

In partition by features, dictionary of index terms is partitioned into subsets such that each subset resides

at a single node. To access the data, each node is attached with the respective posting lists. The master node

routes the query to appropriate nodes by using available metadata. In reality, this allows high degree of

concurrency as a multi-keyword and k-NN query would hit different nodes. The node in a system need to send

appropriate posting lists to a merging node, where the final merging of intermediate results will be done. This

result is sorted as per their relevancy score, and top k encrypted document identifiers are dispensed to file

server. The two important factors that decides the partitioning are occurrence of terms in the collection and

occurrence of terms in the query. The architecture of distributed index on search server is given in Figure 4.

The total feature set present in the collection is distributed across various nodes on cloud search server as

shown in Figure 4. If there are m1 features in the input collection, and n free nodes available on search server

then approximately each node is responsible to maintain bucket structure of m1 features.

10

If any of the node get failed, master node transfers its workload to the next available free node. Thus, it

increases the reliability of the system.

Figure 4. Distributed index.

9. Security analysis

In the proposed system data stored on search server and file server is secure, as it is encrypted by using

standard cryptographic techniques. Hence an attacker or adversary will not learn anything about the data stored

on both servers. Basically the common way to analyses the security of the system is to formalize the leakage

and justify that adversary does not learn anything from this leakage.

Definition 1: Index privacy: The keywords present in the index are secured by using secure hash

algorithms. The document identifiers are encrypted; scores are encrypted using order preserving symmetric

encryption. Hence system is secure as attacker will not be able infer the index.

𝑆(𝐼) = 𝑆𝑒𝑐𝑢𝑟𝑒 (𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑜𝑐𝑖𝑑), 𝑂𝑃𝑆𝐸(𝑠𝑐𝑜𝑟𝑒)) (8)

Definition 2: Data confidentiality: The collection of data which is stored on file server is encrypted using

standard cryptographic algorithm DES, hence it is difficult to infer the data.

Definition 3: Query confidentiality: The query written by end users is secured by using secure hash

algorithm. Therefore, even if adversary learn the query or able to infer the query, he cannot extract any

information.

11

10. Performance evaluation

The complete system is implemented using Java programming language. To support the security

cryptographic libraries are used under Windows 10 operating system. The execution of proposed system is

tested on standard dataset RFC (request for comment). This dataset contains around 8039 text files which can

be downloaded[22]. Initially the testing is done on 500 text files having 1835 keywords. The processor is Intel

CORE i3.

10.1. Index construction

The very important step in secure data retrieval is index construction. Since the outsourced data is huge

in size, the time required to build the index is also more. The proposed method importantly tries to reduce the

time for index construction. The total dataset is divided into equal chunks of data. Each chunk of data is

processed in parallel by applying map-reduce technique. Therefore, time required to build the index is longest

time taken by any of the worker node. Preliminary work is stated in Vasgi, Bharati P et al.[22]. Figure 5 shows

the comparison of proposed method with Wang et al.[23]. From the graph it is clear that parallelizing the index

construction reduces time require to build the index. Table 1 shows the corresponding readings. From the

graph it is very clear that time required by proposed method is significantly less as compared to the method

proposed in Wang et al.
[23]. Crawler based security algorithm is proposed by Wu et al.[24].

Figure 5. Comparison of index construction time.

Table 1. Index construction time in milliseconds.

Documents Proposed method RSSE[23]

50 109 2734

100 145 5406

150 171 6984

200 211 12750

250 248 17681

300 281 20718

350 298 27195

12

Table 1. (Continued).

Documents Proposed method RSSE[23]

400 302 34645

450 365 51377

500 404 71414

10.2. Index size

Figure 6 shows the size of index for various files. It is observed that the amount of memory required by

secured index is more as compared with original plain-text index. The size of the index is proportional to

number of documents. Significant work can be done which will concentrate on index compression techniques.

This will definitely useful in pay as you use scenario of cloud computing.

Figure 6. Index size comparison.

10.3. Search efficiency

In outsourcing environment, many times data users are not interested in all documents matching to their

request, instead they are interested in top k documents. Following are the different ways by which search

efficiency of the system is tested.

SHA variations: The signature of bucket is calculated using SHA. We have demonstrated three variations

of SHA algorithm as SHA-1, SHA-256 and SHA-512. The time comparison for searching multikeyword query

is as shown in Figure 7. From Table 2, it is clear that as the size of signature increases in length, time required

to carry out the search also increases. It indicates that search time is proportional to length of signature. The

time cost of SHA-1 is much more efficient than other variations because of length.

Table 2. Multi-keyword search time using SHA variants in milliseconds.

Documents SHA-1 SHA-256 SHA-512

50 412 422 426

100 473 476 490

150 483 495 502

200 543 550 553

250 512 516 597

300 534 542 587

350 540 552 571

400 547 555 577

450 550 562 580

500 556 565 592

13

Figure 7. Comparison of multi-keyword search time using SHA variants.

10.4. Search time comparison in secure and unsecured mode
Secure systems always add additional burden on the existing systems. In most of the scenarios where data

is very sensitive like healthcare data, government documents or bank databases security is utmost important.

The loss or any leakage in this data directly affects organization’s revenue and reputation. Hence organizations

are ready to bare additional burden imposed by secure system. Figure 8 shows 4 different cases with secure

and unsecured indexes.

• Single keyword and Secure Index.

• Single keyword and Plaintext Index.

• Multiple keyword and Secure Index.

• Multiple keyword and Plaintext Index.

Figure 8. Search time comparison in secure and unsecured index.

From the graph it is very clear that secure systems take more time for searching as compared to unsecured

systems. Single keyword and multikeyword searches are shown in Figure 8. Many organizations now a days

are willing to have this additional burden at the cost security.

14

10.5. Secure search: Multiple cases

Figure 9 shows graph of 4 types of queries. The queries vary based on number of keywords they are

using. From the graph it is clear that time require to carry out search for queries with more keywords becomes

comparatively constant. The queries with maximum four keywords are shown in graph.

Figure 9. Secure search: Multiple cases.

10.6. Time comparison on search server and file server

Figure 10 shows comparison of time to carry out search on search server and file server.

In order to show the effect of search over the bulk of documents, we tested the scheme for ten sets of 50

to 500 documents. As Figure 10 shows for 50 documents time on search server is 17 milliseconds and on file

server is 85 milliseconds whereas for 500 documents time on search server is 116 milliseconds and on file

server is 65 milliseconds. Note that time required on file server is more than that of search server. This is

because from file server all relevant files need to be transfer at user’s site. Significant work can be done to

reduce time on file server. If we observe the proportionality between time required on search server and time

required on file server, as number of documents increases this proportionality decreases. It indicates that for

larger data sets time on file server decreases. We also observer from Figure 10 that on average, about 70\%

and 30\% of total search time are spent on file server and search server respectively.

Table 3. Search time on search server and file server in milliseconds.

Documents File Server Search Server

50 85 17

100 91 27

150 94 31

200 95 30

250 100 34

300 103 37

350 106 43

400 110 44

450 113 49

500 116 65

15

Figure 10. Search time comparison on search server and file server.

10.7. K-NN search

Similar to multikeyword search k-NN approach is also tested on RFC dataset. There is a major difference

between multikeyword search and k-NN search. The number of queried terms are much larger than

multikeyword search, as all the important keywords from the document are considered in k-NN approach. In

case of multikeyword we assume that number of keywords in query are small (e.g. less than 10). Figure 11

shows search result for document rfc1179.txt.

Figure 11. Secure k-NN search.

11. Conclusion

In this paper we propose secure search over encrypted data using parallelization technique.

The proposed system is implemented using map reduce architecture and supports privacy search on large

data. Three important variations of secure search are discussed like single keyword, multi-keyword and secure

k-NN. The concept of distributed indexing is discussed. The performance of the method is evaluated using

standard dataset which are freely available. The result shows that the proposed method is very effective and

can be expanded to larger dataset. The future work of the proposed method is to maximize retrieval recall by

using query expansion techniques and to reduce size of bucket index with the help of compression methods.

Author contributions

Conceptualization, BPV and SMJ; methodology, BPV; software, BPV and GGC; validation, BPV, SMJ

and GGC; formal analysis, BPV; investigation, BPV; resources, BPV; data curation, BPV; writing—original

draft preparation, BPV; writing—review and editing, BPV; visualization, BPV, GGC; supervision, BPV;

project administration, BPV; funding acquisition, SMJ. All authors have read and agreed to the published

version of the manuscript.

16

Acknowledgments

This work is supported by Board of College and University Development, Savitribai Phule Pune

University, India (15ENG001320).

Conflict of interest

The authors declare no conflict of interest.

References

1. Yang Y, Li H, Liu W, et al. Secure dynamic searchable symmetric encryption with constant document update cost.

In: Proceedings of the 2014 IEEE Global Communications Conference; 08–12 December 2014; Austin, TX, USA.

pp. 775–780.

2. Jung T, Mao X, Li XY, et al. Privacy-preserving data aggregation without secure channel: Multivariate polynomial

evaluation. In: Proceedings of the IEEE INFOCOM 2013; 14–19 April 2013; Turin, Italy. pp. 2634–2642.

3. Orencik C, Selcuk A, Savas E, Kantarcioglu M. Multi-Keyword search over encrypted data with scoring and

search pattern obfuscation. International Journal of Information Security 2016; 15(3): 251–269. doi:

10.1007/s10207-015-0294-9

4. Strizhov M, Ray I. Multi-keyword similarity search over encrypted cloud data. In: Cuppens-Boulahia N, Cuppens

F, Jajodia S, et al. (editors). ICT Systems Security and Privacy Protection, Proceedings of the 29th IFIP TC 11
International Conference (SEC 2014); 2–4 June 2014; Marrakech, Morocco. Springer Berlin, Heidelberg; 2014.

Volume 428, pp. 52–65.

5. Cao N, Wang C, Li M, et al. Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE

Transactions on Parallel and Distributed Systems 2014; 25(1): 222–233. doi: 10.1109/TPDS.2013.45

6. Cash D, Jarecki S, Jutla C, et al. Highly-scalable searchable symmetric encryption with support for Boolean

queries. In: Canetti R, Garay JA (editors). Advances in Cryptology—CRYPTO 2013, Proceedings of the 33rd

Annual Cryptology Conference; 18–22 August 2013; Santa Barbara, CA, USA. Springer Berlin, Heidelberg; 2013.

Volume 8042, pp. 353–373.

7. Chen Z, Wu C, Wang D, Li S. Conjunctive keywords searchable encryption with efficient pairing, constant

ciphertext and short trapdoor. In: Chau M, Wang GA, Yue WT, Chen H (editors). Intelligence and Security

Informatics, Proceedings of the 2012 Pacific-Asia Workshop on Intelligence and Security Informatics (PAISI

2012); 29 May 2012; Kuala Lumpur, Malaysia. Springer Berlin, Heidelberg; 2012. Volume 7299, pp. 176–189.
8. Van Liesdonk P, Sedghi S, Doumen J, et al. Computationally efficient searchable symmetric encryption. In:

Jonker W, Petković M (editors). Secure Data Management, Proceedings of the 7th VLDB Workshop (SDM 2010);

17 September 2010; Singapore. Springer Berlin, Heidelberg; 2010. Volume 6358, pp. 87–100.

9. Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric encryption: improved definitions and

efficient constructions. In: Proceedings of the 13th ACM conference on Computer and communications security

(CCS 2006); 30–3 November 2006; Alexandria, Virginia, USA. pp. 79–88.

10. Orencik C, Savaş E. An efficient privacy-preserving multi-keyword search over encrypted cloud data with

ranking. Distributed and Parallel Databases 2014; 32(1): 119–160. doi: 10.1007/s10619-013-7123-9

11. Vasgi BP, Kulkarni UV. Data security issues in outsourced environment: A survey. International Journal for

Research in Engineering Application and Management (IJREAM) 2018; 3(10): 89–96. doi: 10.18231/2454-

9150.2017.0083
12. Vasgi BP, Kulkarni UV. A secure and effective retrieval using hash-based mapping structure over encrypted cloud

data. International Journal of Electrical Electronics and Computer Science Engineering 2017; 4(4): 65–74.

13. Wong WK, Cheung DWL, Kao B, Mamoulis N. Secure kNN computation on encrypted databases. In: Proceedings

of the 2009 ACM SIGMOD International Conference on Management of data (SIGMOD 2009); 29–2 July 2009;

Rhode Island, USA. pp. 139–152.

14. Shi E, Bethencourt J, Chan TH, et al. Multi-dimensional range query over encrypted data. Security and Privacy.

In: Proceedings of the 2007 IEEE Symposium on Security and Privacy (SP 2007); 20–23 May 2007; Oakland,

California, USA. pp. 350–364.

15. Hore B, Mehrotra S, Canim M, Kantarcioglu M. Secure multidimensional range queries over outsourced data. The

VLDB Journal 2012; 21(3): 333–358. doi: 10.1007/s00778-011-0245-7

16. Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval, 5th ed. Addison Wesley; 1999.
17. Boldyreva A, Chenette N, Lee Y, O’neill A. Order-preserving symmetric encryption. In: Joux A (editor).

Advances in Cryptology—EUROCRYPT 2009, Proceedings of the 28th Annual International Conference on the

Theory and Applications of Cryptographic Techniques; 26–30 April 2009; Cologne, Germany. Springer Berlin,

Heidelberg; 2009. Volume 5479, pp. 224–241.

18. Stallings W. Cryptography and Network Security: Principles and Practices, 7th ed. Pearson; 2016.

17

19. Katal A, Wazid M, Goudar RH. Big data: Issues, challenges, tools and good practices. In: Proceedings of the 2013

Sixth International Conference on Contemporary Computing (IC3); 8–10 August 2013; Noida, India. pp. 404–409.

20. Boneh D, Waters B. Conjunctive, subset, and range queries on encrypted data. In: Vadhan SP (editor). Theory of

Cryptography, Proceedings of the 4th Theory of Cryptography Conference (TCC 2007); 21–24 February 2007;

Amsterdam, The Netherlands. Springer Berlin, Heidelberg; 2007. pp. 535–554.

21. Manning CD, Raghavan P. Introduction to Information Retrieval. Cambridge University Press; 2008.

22. Vasgi, Bharati P., Girija G. Chiddarwar, and S. M. Jaybhaye. "Novel Frequency Based Natural Language Query

Search in Cloud Computing." Computer Integrated Manufacturing Systems 29, no. 5 (2023): 1-5.
23. Wang C, Cao N, Ren K, Lou W. Enabling secure and efficient ranked keyword search over outsourced cloud data.

IEEE Transactions on parallel and distributed systems 2012; 23(8): 1467–1479. doi: 10.1109/TPDS.2011.282

24. Wu X, Wei D, Bharati P, et al. Research on Network Security Situational Awareness Based on Crawler Algorithm.

Security and Communication Networks 2022; (2022).

