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ABSTRACT

Kernel principal component analysis (KPCA) has gained wider interest amongst the researchers in nonlinear

dimensionality reduction, data compression, feature extraction, and denoising applications. In KPCA, data from low

dimensional input space implicitly mapped to higher dimensional feature space where linear PCA is enforced. However,

for denoising application data need to invert back to input space, which is impossible and known as pre-imaging problems.

Over recent years, several pre-imaging methods have proposed each with its benefits and disadvantages. In this paper, we

evaluated the performance for selected pre-imaging methods for denoising speech signal, whose intelligibility and quality

degraded by background noises. Further, we extend our work by comparing the performance of these pre-imaging

methods by objective evaluation of denoised speech signal on generated toy examples and NOIZUES database.

Keywords: denoising; projective subspace; delay embedding; kernel principal component analysis (KPCA); pre-imaging

problem

1. Introduction

Principal component analysis (PCA) is a subspace base

unsupervised technique[1,2] which projects data from d-dimensional

input space onto a subspace spanned by predefined principal

components, thus PCA also synonymously refers as projective

subspace technique. However, PCA shows a limitation if the input data

is nonlinear. There exist a solution using kernel-PCA (KPCA)[3,4]

which had gained wide interest over the past decades for nonlinear

feature extraction, higher dimensional reduction, and denoising which

outperform PCA. In KPCA, d-dimensional data from input space 𝒳 is

implicitly maps to 𝑀  (or even infinite) dimension feature space  ℱ

i.e.,  𝜑 ∶  𝒳 ↦ ℱ, where a traditional PCA is performed. However,

these projections are still in ℱ, and needs to reverse map back into 𝒳

in order to get denoised data z in 𝒳. Unfortunately, reversing ℱ to 𝒳

does not exist, if it exists, then there will be no one to one

corresponding mapping. This is called an ill posed problem[5] and

known as pre-image problem.

Over few decades numbers of pre-imaging methods has been

proposed by Mika et al.[4], Kwok and Tsang[5], Rathi et al.[6], Honeine

and Richard[7], Abrahamsen and Hansen[8], etc. to approximate pre-

images z by minimizing the distance between feature space point ϕ(z)

and the projection 𝑃𝑞ϕ(x) . However, experimentation and

performance evaluation of these methods was performed on generated

ARTICLE INFO

Received: 1 August 2023

Accepted: 4 September 2023

Available online: 22 November 2023

COPYRIGHT

Copyright © 2023 by author(s).

Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/



2 

toy example and by image denoising. In this paper, we evaluated the performance for selected[3–8] pre-imaging 

methods used for denoising speech signal, whose intelligibility and quality degraded by background noises. 

This paper is organized as follows: section II covers brief overview of KPCA[3] and its formulation. Section 

III discusses various existing KPCA de-noising methods. In section IV, first we discussed the experimental 

results performed on the toy example and second by denoising speech signal from NOIZEUS database followed 

by objective tests. Section V draws conclusions on KPCA de-noising methods. 

2. Review of KPCA 

In KPCA polynomial, RBF Gaussian, etc., kernels used to map non-linear data from d-dimensional input 

space 𝒳 to M-dimensional such that d ≪ M to feature space ℱ as Φ ∶ 𝒳 ↦ ℱ, where linear PCA is enforced. 

Let X = (x1, x2,…, xd)
′
 be multivariate data in 𝒳  having d-dimension and 𝑁  number of data samples and 

φ(x)=[φ
1
(x), φ

2
(x),…,φ

M
(x)]

𝑇
be its corresponding feature vectors in ℱ. Before formulating linear PCA in ℱ, 

we must first find centered feature vector as φ̃(x) = φ(x) − φ̃ where φ̃ = 𝑁−1 ∑ 𝜑(x𝑖)
𝑁
𝑖=1 . Centering of feature 

vectors φ(x) leads to 𝑁 × 𝑀 centered feature vectors ϕ̃ = [φ̃(x1)φ̃(x2),⋯ , φ̃(xN)]′ and the corresponding 

𝑀 × 𝑀. 

Covariance matrix given as 

𝐶Φ =
1

𝑁
ϕ̃ϕ̃

𝑇
=

1

𝑁
∑ φ̃(xn)

𝑇φ̃(xn)

𝑁

𝑛=1

 (1) 

Next step is to find nonzero eigenvalues 𝜆𝑖 ≥ 0 and its corresponding eigenvectors 𝑣𝑖 ∈ ℱ\{0}, which 

satisfy eigenvalues equation 

𝐶Φv𝑖 = 𝜆𝑖v𝑖 (2) 

where 𝑖 = 1, 2, … ,𝑀, and substituting Equation (1) in Equation (2), we get 

v𝑖 =
1

𝑁𝜆𝑖
∑ φ̃(xn)

𝑇(φ̃(x). v𝑖)

𝑁

𝑛=1

 (3) 

Equation (3) shows that solution of eigenvector must lie in the span of centered feature vectors of input 

training data i.e., ∈ span{φ̃(x1), φ̃(x2),⋯ , φ̃(x𝑁)}, such that 𝑣𝑖 expressed as 

v𝑖 = ∑ 𝛼𝑖𝑛

𝑁

𝑛=1

(φ̃(xn)) (4) 

where  {𝛼𝑖𝑛}𝑛=1
𝑁  are the coefficients of the expansion. By substituting Equation (4) in Equation (3) and 

multiplying both side with φ̃(xn)
𝑇 we get 

�̃�𝛼𝑖 = 𝑣𝑖𝛼𝑖 (5) 

where �̃� = �̃�(x, x) = ϕ̃
𝑇

ϕ̃  is 𝑁 × 𝑁  a positive semi-defined centered kernel matrix.  𝑣𝑖 = 𝑁𝜆𝑖  are ordered 

eigenvalues and 𝛼𝑖  are corresponding eigenvector of �̃�. Further eigenvector 𝛼𝑖  can be normalized by 𝛼𝑖 ←

𝛼𝑖 √𝑣𝑖⁄ . This is ensured by requiring that the eigenvectors v𝑖 of the covariance matrix are normalized in ℱ. The 

projection φ̃(x) onto i-th component given by 

𝛽𝑖 = φ̃(xn)
′v𝑖 = ∑ 𝛼𝑖𝑛

𝑁

𝑛=1

φ̃(xn)
′φ̃(xn) = ∑ 𝛼𝑖𝑛

𝑁

𝑛=1

�̃�(x, x𝑛) (6) 

Finally, projecting φ̃(x) onto subspace spanned by the first 𝑞 eigenvectors is given by 

𝑃𝑞ϕ(x) = ∑𝛽𝑖v𝑖 + φ̃ = ∑𝛽𝑖 ∑ 𝛼𝑖𝑛φ̃(xn)
𝑁

𝑛=1
+ φ̃

𝑞

𝑖=1

𝑞

𝑖=1

= ∑ �̃�𝑛

𝑁

𝑛=1
φ̃(xn) + φ̃ (7) 
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where �̃�𝑛 = ∑ 𝛽𝑖𝛼𝑖𝑛
𝑞
𝑖=1 . 

3. Overview of KPCA denoising methods 

In KPCA, denoising in input space 𝒳 requires three steps as shown in Figure 1. In first step, test point 𝐱 

is explicitly mapped into feature space ℱ using polynomial or Gaussian kernel function to get corresponding 

image ϕ(x) . Second step consist of projecting ϕ(x)  onto principal subspace spanned by first 𝑞 principal 

eigenvectors with the largest eigenvalues, yielding projection point 𝑃ϕ(x). Here, the hope is that first 𝜆1,

𝜆2, ⋯ , 𝜆𝑞 eigenvalues corresponding to the signal of interest and discarding 𝜆𝑞+1, 𝜆𝑞+2, ⋯ , 𝜆𝑀  eigenvalues 

corresponding to noisy components[3,4]. In third and last step mapping 𝑃ϕ(x) back into 𝒳 gives denoised data 𝐳. 

Since, test point 𝐱 explicitly mapped to ℱ, reverse mapping is impossible and exact pre-image of 𝑃ϕ(x) never 

exist, if exist there will no one to one mapping. This is ill-posed problem and known as pre-image problem, 

which consist of finding point 𝐳 ∊ 𝒳  such that minimizing the distance between ϕ(z)  and  𝑃ϕ(x)  or to 

approximate ϕ(z) ≃ 𝑃ϕ(x). 

 

Figure 1. Denoising of data x consists of three steps. 

3.1. Mika’s et al.[4] fixed point iteration method 

Mika et al.[4] pioneered fixed-point iterative method, similar to gradient descent method to minimize the 

Euclidian distance between ϕ(z) and 𝑃ϕ(x) i.e., 

𝐳 = arg min
z

‖ϕ(z) − 𝑃ϕ(x)‖2 (8) 

‖ϕ(z) − 𝑃ϕ(x)‖2 = ‖ϕ(z)‖2 − 2ϕ(z)𝑇𝑃ϕ(x) + ‖𝑃ϕ(z)‖2 solving above and neglecting terms independent 

of z gives 

𝐽(z) = 𝑘(z, z) − 2∑ 𝛾𝑛𝑘(z, xi)
𝑁

𝑛=1
 (9) 

where 𝐽(z)  is called objective function and 𝛾𝑛 = �̃�𝑛 + 𝑁−1(1 − ∑ �̃�𝑛
𝑁
𝑗 ). Denoised point 𝐳  obtained by 

differentiating objective function 𝐽(z) w.r.t to z and setting it to zero, for RBF Gaussian kernel iteratively 

updating of z given by 

zt+1 =
∑ 𝛾𝑛 exp(−‖zt − xn‖

2 2𝜎2⁄ ) xn
𝑁

𝑛=1

∑ 𝛾𝑛 exp(−‖zt − xn‖2 2𝜎2⁄ )𝑁
𝑛=1

 (10) 

However, the performance of this method solely relies on initial guesses of 𝐳. As initialization is undefined, 

this method suffers from numerical instability and often converges to local minima[5]. Moreover, this method is 

limited to the use of Radial Basis Function (RBF) kernel only. Whereas in polynomial kernel this iterative 

method fails to converge even after repeated restart[5] and restarting with different initial guesses of 𝐳. 

3.2. Kwok and Tsang’s[5] distance constraint 

Let 𝑑𝑖 = ‖z − x𝑖‖
2  and 𝛿𝑖 = ‖𝑃ϕ(z) − ϕ(x𝑖)‖

2
 be Euclidean distance measure in the input space and 

feature space as shown in Figure 2. For every 𝑖 = 1, 2, … , 𝑘, the input space distance 𝒅 = {𝑑𝑖 , … , 𝑑𝑘} and the 
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feature space distance 𝜹 = {𝛿𝑖 ,… , 𝛿𝑘} are preserved, using multi-dimensional scaling (MDS) technique such 

that 𝒅 = 𝜹.  

 
Figure 2. Pre-imaging method proposed by Kwok and Tsang’s[5]. 

This method assumes that pre-images will lie in the span of 𝑘 nearest neighbors as compare to all training 

point in input space in Mika et al.[4]. After selecting 𝑘 nearest neighbors and then they are centering to get �̃� =

[x̃1, … , x̃𝑘]. Decomposition of �̃� using SVD yields. 

�̃� = LDU𝑇 = LS (11) 

where, L = [𝑙1,… , 𝑙k] is orthonormal basis matrix of the subspace and S = [s1, … , s𝑘] is projection matrix of �̃� 

onto L. 

Define 𝐝2 = [𝑑𝑖
2 , … , 𝑑𝑘

2]𝑇  input space distances and 𝐝𝑐
2 = [‖s1‖

2, … , ‖s𝑘‖
2]𝑇   distances from x𝑖  to 

centroid x̃ = 𝑘−1 ∑ x𝑖
𝑘
𝑗=1 . Then, from above Kwok and Tsang[5] formulate the approximate pre-image to 

𝐳 = Ls + �̃� (12) 

where s = −0.5. (SS𝑇)−1 . S. (𝐝2 − 𝐝c
2). This method is non-iterative method, which does not suffer from any 

local minima problem and simply require algebraic manipulation (12). However, this method relies on the 

assumption that distances in the input space and feature space are approximately same i.e., 𝐝2 ≃ 𝐝c
2 which is 

not always possible. If 𝐝2 = 𝐝c
2 then s = 0 resulting pre-image 𝐳 equals to nearest neighbor’s centroid �̃�. It is 

observed that less the number of 𝑘, variation between 𝐱 and 𝐳 will be smaller. Similarly large the number of 𝑘, 

pre-image 𝐳 will be closer to overall mean of data X. Thus, performance of this method heavily relies on 

selection of nearest neighbor 𝑘.’s 

3.3. Rathi’s et al.’s[6] direct method 

Rathi’s et al.’s[6] modify Mika et al.[4] iterative method and does not use MDS (Kwok and Tsang’s[5]) but 

use feature space distances to approximate pre-image 𝐳. Using the relationship between squared input space 

distance and squared feature space distance and invertible kernel as RBF kernel the approximate pre-image 

given by Equation (13), 

z ≈
∑ 𝛾𝑛 (1 −

1

2
𝜹2(𝑃𝑞ϕ(x),ϕ(xn))) xn

𝑁
𝑛=1

∑ 𝛾𝑛 (1 −
1

2
𝜹2(𝑃𝑞ϕ(x),ϕ(xn)))

𝑁
𝑛=1

 (13) 

Equation (13) shows it is modification of Equation (10). Contrary to [Kwok] this method does not compute 

SVD thus reduces computational time for higher dimension input data X. 

3.4. Honeine’s and Richard conformal map approach 

Honeine and Richard[7] proposed pre-imaging method based on conformal mapping approach which 

preserve angle between 𝑥𝑖 and 𝑥𝑗  in the input space by preserving inner product distances. 

This method is developed in two stages, in first stage basis in reproducing kernel Hilbert space (RKHS) H 

is obtained having isometry with the input space basis 𝒳. Further this isometry is given with respect to the 

training data sets. In the second method projections into the future space φ̃(. ) is represented in this basis, which 
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gives the same inner product in the 𝒳. Let the 𝑙 number of basis obtained in H be denoted by Ψ𝑥  by so that we 

can write in below equation as 

𝜓𝑘(𝑥) = ∑ 𝛼𝑖𝑛𝑘(𝑥𝑖 , 𝑥)
𝑛

𝑖=1
 

where Ψ𝑥 = [𝜓1(𝑥) 𝜓2(𝑥) 𝜓3(𝑥),⋯ ,𝜓𝑘(𝑥)]𝑇 , now Ψ𝑥  is represented by Ψ𝑥 = 𝐴𝑘𝑥 . where 𝑘𝑥 =

[𝑘𝑥(𝑥1, 𝑥), 𝑘𝑥(𝑥2, 𝑥), … . , 𝑘𝑥(𝑥𝑛, 𝑥)]𝑇 and 𝐴 is matrix of order a 𝑙 x 𝑛 of unknowns whose (k, i)-th entry is 𝛼𝑘𝑛. 

This matrix 𝐴, needs to be optimization and solution was obtained as 

�̂� = argmin
1

2
‖𝑃 − 𝐾𝐴𝑇𝐴𝐾‖2 + 𝜆𝑡𝑟(𝐴𝑇𝐴𝐾) (14) 

Derivation of above equation with respect to 𝐴𝑇𝐴 and letting it to zero we get 

�̂�𝑇�̂� = 𝐾−1(𝑃 − 𝜆𝐾−1)𝐾−1 (15) 

where 𝑃 = 〈𝑥𝑖 , 𝑥𝑗〉 and 𝐾 = 𝑘(𝑥𝑖 , 𝑥𝑗) are Gramm matrices, respectively. This looks like solving inner product 

of 𝐴𝑇𝐴 in RKHS use to obtained preimages z. Thus, in this method optimized preimage is given by 

z = X𝑃−1(𝑃 − 𝜆𝐾−1)𝛾 (16) 

where X = (x1, x2,…, xd)
′
 and 𝛾 from Equation (7). 

3.5. Abrahamsen’s[8] input space distance regularization 

Abrahamsen and Hansen[8] proposed method which overcome the stability issues in  Mika’s et al.[4] by 

penalizing cost function given Equation (8). 

𝐳 = argmin
z

‖ϕ(z) − 𝑃ϕ(x)‖2 + 𝜆‖z − x0‖
2   (17) 

where 𝜆 non negative regularization parameter and x0 is noisy data in space 𝒳, solving Equation (9) gives 

objective function as 

𝐽𝜆(z) = 𝑘(z, z) − 2 ∑ 𝛾𝑛𝑘(z, xi)
𝑁

𝑛=1
− 𝜆‖z − x0‖

2 (18) 

Differentiating 𝐽𝜆(z) w.r.t to z and setting it to zero, for RBF Gaussian kernel iteratively updating of z 

given by 

zt+1 =

1

𝜎2
∑ 𝛾𝑛 exp(−‖zt − xn‖

2 2𝜎2⁄ ) xn + 𝜆x0
𝑁

𝑛=1
1

𝜎2
∑ 𝛾𝑛 exp(−‖zt − xn‖2 2𝜎2⁄ )𝑁

𝑛=1 + 𝜆
 (19) 

It is clear from equation (19) that denominator never reached to zero because  𝜆 is non negative and non-

zero. Hence stability in this method is guaranteed. 

4. Experimentation 

To evaluate the performance of above mentioned KPCA de-noising methods on 1-D time series signal 

(e.g., speech signal), one needs to transform it to multi-dimensional signal using delay embedding technique[9,10]. 

Let 1-D time series sequence 𝑥 = (𝑥[0], 𝑥[1], … . , 𝑥[𝐾 − 1]) is transformed into multi-dimensional lagged 

vector by using time delay embedding technique[11] (Taken’s Theorem). Transformed 1-D sequence to 

multidimensional sequences produces 𝑁 = 𝐾 − 𝑑 + 1 lagged vectors in input space 𝒳 as 

x𝑘 = [𝑥[𝑘 − 1 + 𝑑 − 1], … , 𝑥[𝑘 − 1]]𝑇 , 𝑘 = 1,… ,𝑁 (20) 

The lagged vectors x𝑘 lie in an input space 𝒳 of dimension 𝑑 and constitute the columns of the trajectory 

matrix X = [x1 x2 x3, … , xN], (𝐾 > 𝑑) i.e., 

𝑋 = [
𝑥[𝑑 − 1] ⋯ 𝑥(𝐾 − 1)

⋮ ⋱ ⋮
𝑥[0] ⋯ 𝑥[𝐾 − 𝑑]

] 
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𝑋 =

[
 
 
 
 
 
𝑥[𝑑 − 1] 𝑥[𝑑]

𝑥[𝑑 − 2] 𝑥[𝑑 − 1]

… 𝑥(𝐾 − 1)
… 𝑥[𝐾 − 2]

𝑥[𝑑 − 3] 𝑥[𝑑 − 2]
⋮ ⋮

… 𝑥[𝐾 − 3]
⋱ ⋮

𝑥[1] 𝑥[2] 

𝑥[0] 𝑥[1]

… 𝑥[𝐾 − 𝑑 + 1]

… 𝑥[𝐾 − 𝑑] ]
 
 
 
 
 

 (21) 

4.1. Performance evaluation for the toy example 

As shown in Figure 3, the toy example is generated by clipping a 50ms duration small segment of speech 

signal known as original signal.  Then 10dB of AWGN noise is added with it to produce noisy signal. This noisy 

signal is given to all the above-mentioned pre-imaging methods, which gives denoised signals. Performance 

evaluation is obtained by computing signal to noise ratio (SNR) between original and denoised signals. In this 

experimentation number of principal components 𝑞 = 8 and RBF kernel with 𝜎2 = 0.02 are used respectively. 

 
Figure 3. Original, noisy, and denoised signal obtained[4–8]. 

SNR obtained for Mika et al.[3] is 22.33db, Kwok is 28.26db, Rathi is 30.25db, Honeine is 32.10db and 

for Abrahemsen is 38.23db. Here Abrahemsen show better performance in terms of SNR and obtained 

denoised signal is closer to original signal. 

4.2. Performance evaluation for speech signals 

In this experiment, we use above mentioned KPCA denoising methods for denoising speech signal, which 

are corrupted by additive noise. Since, speech signals are semi random signal and cannot be analysed as a whole, 

we split the signal into segments of 20ms duration each using windowing and overlapping method. These 

segmented signals are one-dimensional time series signal and projective subspace technique such as PCA, 

KPCA, etc., cannot be implemented. Delay embedding method given by Equations (20) and (21) is the only 

solution to map one-dimensional time series signal to multidimensional signals. 

The denoising methos performance solely relies on selecting number of principal components 𝑞, kernel 

type (e.g., polynomial, RBF, etc.) and its parameter 𝜎2, if RBF kernel is chosen. All the aforementioned methods 

for approximating preimages rely solely on selection of model parameters. Selection of these model parameters 

plays very important role in denoising for best results. To achieve best denoising results, these model parameters 

are heuristically selected for the performance evaluation of above mentioned KPCA denoising methods. 

Objective evaluation of speech quality parameters such as SNR, segmental SNG (segSNR), Itakura Saito ratio 

(IS), weighted spectral slope (WSS), log likely hood ratio (LLR), frequency SNR (fwSNR) and perceptual 

evaluation of speech quality (PESQ) are used for evaluating the performance[1,10]. Speech corpus (speech signal 

data) is used from NOIZEUS: A noisy speech corpus for evaluation of speech enhancement algorithms[10]. Here, 

we used ‘sp12.wav’ i.e., ‘The drip of the rain made a pleasant sound’, which is female voice sampled at 8 KHz 

and added with street noise of 5dB and 0dB noise. Delay embedding method is used to map 1-D signal to multi-
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dimensional signal with the delay factor 𝜏 = 1 and number of delay vectors 𝑑 = 60. Denoising of noisy signal 

is performed using Mika’s at el.[3], where 1000 iterations were used, Kwok and Tasang[5] by choosing nearest 

neighbored 𝑘 = 15, Honeine and Richard[7] by setting regularize parameter 𝜆 = 10−7, and Abrahamsen 𝜆 =

0.02. 

Figures 4 and 5 shows performance of pre-imaging methods when 0dB and 5dB of street back ground 

noise is added. These results show that for 0dB noise Abrahemsen method is better in all evaluation parameters 

except PESQ. For 5dB of noise Abrahemsen method is better in all evaluation parameters except IS, WSS, and 

PESQ, where, Honeine method is better. This above experiment is conducted by heuristically fixing 𝑞 = 32 

and 𝜎2 = 0.01 respectively. 

 
Figure 4. Performance evaluation with 0dB of street noise. 

 
Figure 5. Performance evaluation with 5dB of street noise added. 

5. Conclusion 

We proposed the effectiveness of KPCA for denoising speech signals, which is used extensively for image 

denoising. Here we have shown that how one-dimensional speech signal can be denoised using KPCA and pre-

imaging methods. We compared and evaluated pre-imaging methods to state-of-the-art techniques using 

NOIZUES data base. By using toy example, we observed that Abrhamsen method is better than other method 

in terms of SNR. Also, performance of these methods is evaluated using speech signal, where Abrahamsen and 

Honeine techniques outperform others in terms of SNR and PESQ. Further better denoising can be achieved if 

noise and energy-based method[11] is used to estimate number of 𝑞 and 𝜎2. 
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