
Journal of Autonomous Intelligence (2024) Volume 7 Issue 3 

doi: 10.32629/jai.v7i3.1097 

1 

Original Research Article 

An empirical analysis of feature selection techniques for Software 

Defect Prediction 
Tarunim Sharma1,*, Aman Jatain1, Shalini Bhaskar1, Kavita Pabreja2 

1 Amity School of Engineering and Technology, Gurgaon, Haryana 122413, India 

2 Maharaja Surajmal Institute, Janakpuri, New Delhi 110058, India 

* Corresponding author: Tarunim Sharma, tarunimsharma@msijanakpuri.com 

ABSTRACT 

Detecting software defects before they occur is crucial in software engineering as it impacts software system 

quality and reliability. Previous studies on predicting software defects have typically employed software features, such 

as code size, complexity, coupling, cohesion, inheritance, and other software metrics., to forecast whether a code file or 

commit is prone to defects in the future. However, it is advantageous to restrict the number of features employed in a 

defect prediction model to avoid the challenges associated with multicollinearity and the “curse of dimensionality” and 

to simplify the data analysis process. By using a reduced number of features, the defect prediction model can 

concentrate on the most significant variables and improve its accuracy. This research paper investigates the impact of 

eight feature selection methods on the accuracy and stability of six supervised learning models. This study is novel as it 

is based on exhaustive experimentation of each of the eight feature selection techniques with each of the six supervised 

learning models. Two notable findings have been obtained. First, we discovered that the association and coherence-

based techniques have demonstrated the highest level of accuracy when it comes to defect prediction.  The models that 

utilized these selected features outperformed those using the original features. Second, the feature selection techniques, 

namely Correlation feature selection, Recursive feature elimination, and Ridge feature selection when combined with 

the Support vector machine and Decision tree classifier, consistently selected low-variance features across multiple 

supervised defect prediction models. When combined with different classifiers, these techniques achieved exceptional 

performance on the publicly available NASA datasets CM1 and PC2. The findings revealed a remarkable accuracy rate 

of over 85% for CM1 and 95% for PC2, accompanied by precision, recall, and f-measure values exceeding 95%. These 

exceptional results indicate the achievement of the highest level of performance in the evaluation. 

Keywords: software defect prediction; machine learning; feature selection; supervised models 

1. Introduction 

A recent report by The Standish Group revealed that only 

16.2% of IT projects delivered all promised functionalities, and 

31.1% of IT expenditures were classified as failures[1]. As stated in a 

study published in the Proceedings of the “International Conference 

on Machine Learning and Cybernetics”, the effectiveness of 

software defect prediction models varied between 70% and 95% in 

terms of success rates. Given the time constraints faced by software 

developers, they must make the most of their testing time. Hence, 

developers face the need to prioritize their testing efforts effectively. 

Defect prediction models offer a valuable solution by guiding 

developers to allocate their limited testing resources toward the 

components that are more likely to contain defects. This strategic 

allocation optimizes their testing endeavours, leading to improved 
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efficiency in software development. Feature engineering serves as a critical aspect of machine learning, 

encompassing the extraction of pertinent attributes and the reduction of feature dimensions to mitigate 

overfitting. By meticulously selecting and refining relevant data patterns, this process aims to accentuate the 

significance of the underlying information, leading to more robust and accurate models[2]. It is used to 

identify the most important subset of characteristics from the initial feature set, offering benefits such as 

reducing the number of model parameters, shortening training time, improving generalization, and avoiding 

dimensionality issues. 

This research aims to investigate the efficacy of diverse learning models by implementing a range of 

feature selection techniques. By analyzing their impact on defect prediction accuracy within a dataset, this 

study endeavours to shed light on the most effective approaches for enhancing the precision of defect 

prediction. With the judicious selection of feature selection techniques and learning models, the defects can 

be predicted in advance help to minimize the loss for software development organizations. The Cutting-edge 

technologies in computer science, such as Artificial Intelligence and machine learning, offer potential 

solutions for anticipating defect-prone modules before the software development process reaches the testing 

stage. Two main methods of feature selection are Supervised and Unsupervised feature selection as shown in 

Figure 1. In supervised feature selection, the selection of features is based on the output label class, and it 

identifies variables that can enhance the model’s effectiveness by considering the target variables. On the 

other hand, unsupervised feature selection is based on selecting features and is used for unlabelled data. 

  
Figure 1. Feature Selection types. 

The paper is structured into several sections. In the second section, a concise overview of the related 

background is presented. The third section delves into the methodology utilized to predict defects in software. 

Finally, the fourth section of the article includes a comparison and discussion of the outcomes obtained using 

various feature selection techniques and classifiers. 

2. Related work 

Software defect prediction is a critical task in software engineering aimed at identifying potential 

defects in software systems early in the development process. Various machine learning-based techniques 

have been proposed for software defect prediction, but the performance of these techniques largely depends 

on the selection of relevant features. The role of feature selection techniques is paramount in elevating the 

accuracy and efficiency of defect prediction models, marking a crucial factor in their continual improvement 

and effectiveness. 

This literature review examines different feature selection methods employed in software defect 

prediction and evaluates their efficacy in enhancing the performance of the predictive models. This review 

aims to provide an overview of the latest research findings in this field. 

According to Kondo et al.[3], for supervised models used in defect prediction, the use of either 
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“Correlation-Based (CFS) or Consistency-Based (ConFS)” approaches for identifying feature subsets is 

recommended. These approaches have been demonstrated to be more effective than both the original models 

and feature reduction techniques. Employing these methodologies in conjunction with a supervised defect 

prediction algorithm can significantly boost the model’s efficiency and streamline the selection process for a 

precise defect prediction model. In their study, Dao et al.[4] tackled the challenges posed by high-dimensional 

features, including issues such as computational inefficiency, noise, and over-fitting. To address these 

problems, the authors utilized a two-stage feature selection approach that enabled the reduction of feature 

dimensionality while ensuring optimal feature selection for maximum accuracy. In a study, Rostami et al.[5] 

thoroughly examined and classified various approaches for feature selection using a comparative approach. 

This article centers around the utilization of Swarm Intelligence techniques for feature selection. Specifically, 

it highlights the effectiveness of wrapper and filter approaches such as “Particle Swarm Optimization, Ant 

Colony Optimization, Artificial Bee Colony, Differential Evolution, Firefly Algorithm, Bat Algorithm, and 

Cat Swarm Optimization”. These methods have demonstrated promising results in the field of feature 

selection. The investigation evaluates the benefits and drawbacks of intelligence-based methods for feature 

selection and scrutinizes the factors that impact their efficacy. In their research, Chen et al.[6] propose a novel 

approach for enhancing feature selection accuracy in defect prediction models. Their methodology leverages 

a customized deep learning algorithm, boosting algorithms, and the superposition criterion, all integrated 

within the Nested-Stacking framework. Through comprehensive testing encompassing feature engineering 

and baseline model selection, the framework successfully undergoes both within-project and cross-project 

validation, validating its effectiveness. The results demonstrate the model’s exceptional capability in 

accurately forecasting software defects, providing robust decision-making support for software testing. 

Furthermore, the incorporation of a heterogeneous approach within the framework enhances its adaptability 

and generalization potential, establishing it as a superior alternative to existing mainstream software defect 

prediction techniques. Qu et. al.[7] found that multiple dimension-reduction techniques can improve 

performance in which Correlation Feature Selection was the most effective individual feature reduction 

method and had the least time complexity and Random Forest was the superior classifier. Umbarkar and 

Shukla[8] proposes a technique to improve intrusion detection system accuracy by reducing its feature set 

using Information Gain, Gain Ratio, and Correlation methods. The best features are selected using a heuristic 

approach. The technique is evaluated using the C 4.5 decision tree algorithm, and according to the findings, 

utilizing only 15 features resulted in a higher accuracy rate of 92.65% as compared to utilizing the entire 

dataset consisting of 41 features. The correlation-based feature reduction approach was found to be the most 

efficient method for achieving this outcome.  

Zebari et.al.[9] concluded quoting high-dimensional data significantly impacts computational time, 

learning algorithms, model accuracy, and computer resources. As per their research, Support Vector Machine 

(SVM) and K Nearest Neighbor (KNN) are widely utilized analyzers, with SVM exhibiting the highest level 

of accuracy. In terms of feature extraction techniques, Convolutional Neural Networks (CNN) and Deep 

Neural Networks (DNN) are noteworthy methods. In a study conducted by Spencer et.al.[10] researchers 

revealed that the most precise model was produced by using the Chi-squared technique for selecting the best 

features in combination with the Bayes Net classification models. Pabreja et al.[11] have used the recursive 

feature elimination technique to extract the significant influential features that activate stress in the lives of 

working professionals. Another study[12] has extracted the five most influential determinants of the perceived 

Personal Wellbeing Index of college students during the COVID-19 time period have been identified by the 

application of feature importance functions of the machine learning algorithm. These findings highlight the 

potential benefits of utilizing advanced techniques in the development of predictive models for heart disease, 

which could ultimately lead to better diagnosis and treatment of this common ailment. 

In their research, Marian et.al.[13] introduced a novel approach for predicting software defects using 
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“fuzzy decision trees”. They assert that this method demonstrates superior performance over the standard 

decision tree, as indicated by higher AUC scores. While the concept of “fuzzy decision trees” is intriguing, 

the study lacks sufficient details regarding the implementation and evaluation processes, such as the criteria 

for selecting input features and the methodology for identifying the best model. Furthermore, the 

experiments were conducted on a limited dataset, encompassing only two software projects, which raises 

concerns about the generalizability of their proposed method. To achieve an efficient representation of the 

dataset and streamline the learning process of predictive models, using various statistical measures for 

selecting attributes is a crucial stage adopted by Elavarasan et.al.[14]. In the study, a hybrid feature extraction 

process is proposed for predicting crop yield using real-time data. The method combines Correlation-based 

Feature Selection and Random Forest -Recursive Feature Elimination to eliminate unnecessary features and 

Acquire a feature collection that exhibits exceptional predictive precision. The hybrid method outperforms 

other inbuilt feature selector methods with improved prediction accuracy and fewer error measures. The 

wrapper method for selecting attributes by eliminating features recursively using Random Forest is 

particularly noteworthy for its competitive results without requiring fine-tuning. 

Two studies by Aggrawal and Pal[15] and Gárate-Escamila et al.[16] aimed to enhance the accuracy of 

predicting mortality and heart disease in patients. Aggrawal and Pal used a sequential feature selection 

technique with various learning models, achieving 86.67% accuracy when paired with the random forest 

classifier. Gárate-Escamila proposed a method combining chi-square and principal components analysis to 

reduce dimensions and improve accuracy. Their findings contribute to the advancement of machine learning 

methods for medical applications, offering valuable insights into the identification and prediction of heart 

disease and mortality occurrences and further emphasizing the importance of feature selection and 

dimensionality reduction in accurately predicting heart disease. Author research was conducted to evaluate 

different methods based on their ability to strike a balance between success index and classification accuracy 

by Bolón-Canedo et al.[17]. Their analysis revealed that ReliefF is the most suitable method regardless of the 

dataset, due to its minimal computational cost as a filter. The authors suggest the utilization of filter methods, 

particularly ReliefF, has robust generalization capabilities, and performs faster than embedded and wrapper 

techniques, which is not dependent on the induction algorithm. In their research, Liu et al.[18] introduced a 

novel supervised attribute selection technique known as Discriminative Low-Rank Preserving Projection 

(DLRPP). This approach leverages an adaptive graph to capture both regional and global design patterns in 

the data, thereby enhancing the accuracy of predictive models. By extracting relevant attributes and 

integrating them into machine learning algorithms, DLRPP significantly improves the performance and 

efficacy of various applications such as image recognition, speech processing, and natural language 

processing. Notably, this method incorporates a discriminative constraint term that further enhances its 

classification and recognition capabilities. Through studies conducted on public image databases, DLRPP 

has demonstrated its effectiveness as a feature selection algorithm, consistently outperforming other similar 

approaches. Yuan et.al.[19] investigated the effectiveness of integrated models for selecting stocks and found 

that Random Forest (RF) was the most effective approach for both selecting the subsets and stock price trend 

forecasting. The study also suggested that Random Forest is a powerful tool for making long-term 

investment decisions in the stock market. 

After perusing several papers, it was discovered that numerous studies at a global level have employed 

diverse feature engineering and machine learning algorithms. However, none of these studies concentrated 

on a thorough examination and comparison of numerous prevalent feature selection techniques to determine 

the optimal one for deployment across a range of machine learning classifiers. This paper takes an analytical 

approach and applies eight feature selection techniques on two standardized software defect prediction 

datasets, namely CM1, and PC2. The top-performing technique under various categories are identified and 

subsequently tested with effective and widespread classifiers to arrive at the optimal solution for predicting 
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defects. 

3. Experimental framework 

To enhance the precision of software defect prediction models, a systematic investigation process has 

been executed using the algorithmic approach shown in Figure 2. The framework comprises several key 

components, such as the “dataset used, data pre-processing, feature selection methods, data splitting, model 

training using classifiers, and model evaluation”. In the beginning, the dataset pre-processing step has been 

applied which is a crucial step to ensure an accurate representation of data quality. A comprehensive data 

refinement process was carried out to uphold data integrity, enhance feature quality, and eliminate any 

missing values. This meticulous preparation paved the way for a streamlined and effective data pre-

processing phase, enabling insightful analysis and accurate results. Subsequently, various feature selection 

techniques such as Filter, Wrapper, and Embedded are employed to effectively identify significant features, 

eliminate less relevant features, and enhance the overall learning performance.  The detailed experiment 

approach classification modelling to approximate the relationship between input and output variables is 

based on exhaustive techniques. For the purpose of feature selection techniques, the study utilizes six 

supervised learning algorithms, which include “Decision Trees, Random Forests, Support Vector Machines”, 

etc. The purpose of this model is to effectively analyze the data and recognize trends present in the software 

defect prediction dataset. The following is an outline and explanation of the steps taken in the research 

methodology that was followed. 

1) Prepare the dataset by addressing any missing or incorrect data, then divide it into separate sets for 

training and testing purposes. In the data splitting stage, the dataset for defect prediction is partitioned 

into a training set of 80% and a testing set of 20%. The models were trained using the training set and 

their performance was evaluated using the testing set. 

2) A diverse array of feature selection techniques, such as “Chi-square, ANOVA, Correlation Feature 

Selection, Forward/Backward Feature Selection, Recursive Feature Elimination, Lasso, and Ridge 

regression” were employed to pinpoint the most relevant subset of features with the utmost significance. 

3) Utilize an array of classifiers, including but not limited to “Random Forest, Decision Tree, Logistic 

Regression, SVM”, and their counterparts, to train on the selected features within the training set. 

4) Assess the proficiency of each model on the test set by examining crucial evaluation metrics like 

Precision, Recall, and F1 score.  

5) Conduct a comprehensive analysis of the various models and their performance, ultimately identifying 

the optimal model with the most effective set of features. 

3.1. Dataset description 

The dataset used for analysis comprises two subsets: one with 498 records and 21 attributes obtained 

from the CM1 NASA machine repository, and another with 745 records and 36 attributes from the PC2 

repository. These datasets contain instances that indicate both the absence and presence of software defects. 

To conduct experiments, the Jupyter Integrated Development Environment for Python was employed to 

implement various feature reduction algorithms on the CM1 and PC2 datasets. These datasets are widely 

recognized as benchmark datasets, providing a solid foundation for constructing an analytical machine-

learning model. Both the CM1 and PC2 datasets provide researchers with standardized and publicly available 

datasets to develop, evaluate, and compare software defect prediction models. These datasets enable 

researchers to study the impact of different attributes and techniques on predicting the presence of defects in 

software modules, ultimately aiming to improve software quality and reliability. Both datasets contain 

various metrics and attributes associated with the software modules, such as Lines of code, Halstead 

complexity measures, McCabe cyclomatic complexity, and more. It is utilized for benchmarking and 

comparing different defect prediction algorithms and techniques. 
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Figure 2. Algorithmic approach for software defect prediction. 

3.2. Attribute filtering techniques 

Reducing the number of features in a dataset is a crucial step in data engineering and analysis, as it 

helps overcome the problem of high dimensionality and enhances model efficiency. Feature reduction can 

significantly improve the accuracy of machine learning models, particularly in situations where class 

distributions are imbalanced, by selecting the most relevant attributes. The primary aim of feature selection 

techniques is to maximize the predictive power of models while minimizing errors, leading to precise and 

high-performing frameworks. Machine learning employs a variety of feature selection techniques, each 

designed to cater to the specific needs of the problem and dataset. These methods encompass numerous 

cutting-edge approaches that are widely utilized in the field of data analysis and machine learning. The 

efficacy of all three methods in handling a significant number of features is notable. However, their 

performance relies on selecting appropriate fitness functions, updating rules, and other associated parameters. 

Previous research has identified various effective techniques for feature selection, including filter, wrapper, 

and embedded methods, each with its own benefits and drawbacks discussed in Table 1 below. 

Table 1. Benefits and drawbacks associated with the three primary categories of feature selection techniques. 

Feature selection 

technique 

Pros Cons Examples 

Filter • Streamlined 
computationally 

• Fast processing 

• Lower overfitting risk 

• Improved ability to 
generalize new data 

• Simple to scale for use with 
large datasets 

• May have lower precision 
than other methods, resulting in less 

accurate predictions 

• There is a risk that 
important features may be missed or 
not identified by the technique 

• This method lacks the 
capability to handle multicollinearity, 
a situation where strong correlations 
exist between features, posing a risk 
of yielding unreliable model 
outcomes. 

“Pearson Correlation, 
Chi-Square, ANOVA, 
LDA”, etc. 
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Table 1. (Continued). 

Feature selection 

technique 

Pros Cons Examples 

Wrapper • Attaining heightened 
precision yields greater accuracy in 
predictive outcomes. 

• Interacts with the classifier 
algorithm to select features, 
improving the model’s effectiveness 

• Considers feature 
dependencies and how they interact 
with each other 

• Better generalization 
compared to the filter approach, 
leading to more reliable model results 

• Conducts a more 
comprehensive search of the feature 
set space, potentially identifying 
better combinations of features for the 
model. 

• Computationally expensive 
due to the recursive process involved 

• Slow processing time, 
potentially taking longer to run than 
other feature selection techniques 

• There is a risk of 
overfitting, which occurs when the 
model becomes too complex and is 
not able to generalize well to new 
data. 

“Forward Selection, 
Backward 
Elimination, 
Recursion Feature 
elimination” etc. 

Embedded • Incurs minimal additional 
expenses since it is integrated into the 
classification model training 
procedure. 

• Less computationally 
demanding than the wrapper 
technique, potentially requiring less 
processing time 

• Works with a classification 
model to select features, improving 
the effectiveness of the model 

• Lower risk of overfitting 
than the wrapper method. Improved 

generalization error, especially with 
larger datasets potentially 
outperforming the filter approach. 

• Dependent on the learning 
algorithm used in the classification 
model training process 

• Identifying a small set of 
features may be challenging or 
problematic, potentially leading to 
less effective models. 

“Lasso, Ridge, Elastic 
Net”, etc. 

From the above table discussion, it is concluded that the goal of feature selection is to reduce the 

number of features to a subset that is most informative for the problem at hand. This can help to improve 

model accuracy, reduce overfitting, and enhance the model’s interpretability. Different techniques are 

discussed for feature selection, along with their own set of advantages and limitations. Among three 

techniques the first one is Filter techniques[20] which are computationally efficient and fast, making them 

suitable for large datasets as depicted in Figure 3. They work by evaluating each feature’s relevance 

independently of the others, usually based on statistical tests, and selecting the top-ranked features. However, 

they may not capture the most relevant features of the problem, leading to less accurate predictions. 

 
Figure 3. Filter method. 

Another one is the Wrapper technique[21] which evaluates the feature subset’s performance by 

interacting with the learning algorithm used in the model, which can result in better generalization and more 

reliable model results as shown in Figure 4. These methods search the entire feature space and can consider 

feature dependencies, leading to higher precision. However, they are computationally expensive, potentially 

taking longer to run than other feature selection techniques, and may overfit the data. 
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Figure 4. Wrapper method. 

The next one is Embedded methods that combine the benefits of both filter and wrapper techniques. 

Embedded methods integrate feature selection algorithms into machine learning training, reducing 

computational expenses and improving model accuracy[22] as presented in Figure 5. Regularization 

techniques, including L1 and L2 regularization as well as Elastic Nets, belong to the category of embedded 

methods in machine learning. These methods introduce penalty terms to the coefficients during model 

training, aiming to prevent overfitting and potentially eliminate less important features. By adding these 

penalties, the models are encouraged to find a balance between accuracy and complexity, leading to more 

generalized and robust results. Another embedded technique, Random Forest Importance, assesses the 

importance of features based on their usage within a random forest algorithm. By analysing the contribution 

of each feature in the ensemble of decision trees, Random Forest Importance can provide valuable insights 

into the factors that play a significant role in the prediction task. This technique not only aids in reducing 

dimensionality but also improves model accuracy and interpretability, facilitating a better understanding of 

the factors influencing software defects or any other target variable of 

interest.  

Figure 5. Embedded method. 

Hybrid methods combine two or more feature selection techniques, leveraging their strengths to 

improve accuracy and efficiency as illustrated in Figure 6. Popular approaches include combining a filter 

method with a wrapper method or an embedded method with a filter method. Ensemble methods apply 

multiple feature selection methods and combine their outputs to create a final set of selected features. These 

methods identify important features and eliminate redundancies, but may be computationally expensive. 

Examples include” Genetic algorithms, Ant Colony Optimization, and Particle Swarm Optimization”. These 

methods integrate feature selection into the classification model training process, minimizing additional 

expenses and reducing the risk of overfitting. They can identify a small subset of features that can result in 

improved generalization error performance, potentially outperforming the filter approach with larger datasets. 

However, identifying this subset of features can be challenging, and selecting a small set of features may 

result in less effective models. 

 
Figure 6. Hybrid method. 

Choosing the right feature selection method requires careful consideration of various factors such as the 

dataset’s characteristics and the specific problem being tackled. Different methods, including filter, wrapper, 

and hybrid/embedded approaches, have their advantages and limitations. For instance, filter methods are 

computationally efficient and can be applied to large datasets, whereas wrapper methods consider feature 



9 

dependencies and can lead to more reliable model results. Embedded techniques, on the other hand, can 

strike a balance between reducing additional expenses and minimizing overfitting risks. To choose the most 

appropriate feature selection method, it’s crucial to weigh the pros and cons of each technique and how they 

fit the problem at hand. Factors such as the number of features, their relationships, and their relevance to the 

target variable should be considered. By selecting an appropriate technique, one can ensure a reduction in the 

number of features while enhancing both model accuracy and interpretability. Ultimately, choosing the right 

feature selection method can help unlock the full potential of machine learning algorithms and pave the way 

for more effective and efficient data-driven decision-making. 

4. Design of the classifier model 

Defect prediction is crucial to software quality assurance and testing, particularly in software 

development. One effective technique for this is classification-based predictive modeling, which involves 

creating a model using a labeled dataset of past code changes and input features such as code complexity and 

developer experience. This paper explores the utilization of diverse algorithms for this purpose, 

encompassing “Decision Trees, Random Forest, Support Vector Machines (SVM), Gaussian Naive Bayes 

(GNB), Logistic Regression, and K-nearest neighbors (KNN)”. SVM can identify a hyperplane that separates 

defective and non-defective modules in the software and can handle high-dimensional and imbalanced data. 

However, its performance may depend on the chosen hyperparameters, and it can be computationally 

expensive for large datasets. Decision Tree Classifier is easy to interpret and can handle both categorical and 

continuous data. Random Forest creates multiple decision trees and can handle imbalanced data and 

automatically handle missing data and outliers, but it requires more computational resources and may be less 

interpretable than a single decision tree. Gaussian Naïve Bayes is a fast and efficient probabilistic algorithm 

that can handle missing data and outliers and is less prone to overfitting. Logistic Regression can handle 

imbalanced data and provide an interpretation of model coefficients, but it may not perform well for 

nonlinear or complex relationships between input features and output labels. Both Gaussian Naïve Bayes and 

Logistic regressions are effective tools for handling high-dimensional data and numerous features in software 

defect prediction. KNN is a simple and interpretable algorithm that calculates the distance between a new 

instance and all instances in the training set, selects the k-nearest instances, and classifies the new instance 

based on the majority class of those k neighbors. It can be trained on a dataset of software modules with 

known defect status and used to predict the status of new modules based on features such as code complexity, 

code churn, and developer experience. However, it can be computationally expensive for large datasets and 

may require careful tuning of hyperparameters, and the quality of the predictions can be affected by the 

choice of features and the quality of the training data[23]. 

5. Results and discussion 

Various feature selection techniques along with numerous classification models have been 

experimented with the CM1 and PC2 datasets and quite convincing results have been obtained. Table 2 

shows the defect prediction accuracy achieved by 8 different feature selection techniques in combination 

with 6 machine learning classifiers that have been experimented on CM1 and PC2 respectively. We have 

used three filter methods viz “Anova, Chi2, Correlation feature selection, three wrapper-based methods used 

were “Forward Feature Selection, Backward Feature Selection, and Recursive Feature Elimination” 

techniques and two Embedded feature selectors “Lasso and Ridge” with different learning algorithms.  

In the study, the effectiveness of the feature selection techniques was assessed using various evaluation 

metrics, including Precision, F1 score, Accuracy, and Recall. These metrics comprehensively analyzed how 

well the feature selection techniques performed in addressing classification problems. By considering these 

assessment metrics, researchers were able to gauge the efficiency of the feature selection techniques in the 
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study. 

In this Accuracy is a metric that measures the overall correctness of the model’s predictions. It 

determines the proportion of correctly classified instances, both defective and non-defective, out of the total 

instances in the dataset. 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

Precision is a metric that measures the proportion of correctly identified defective instances out of all 

instances predicted as defective by the model. It focuses on the accuracy of positive predictions made by the 

model. Precision is given by 

Precision = TP/(TP+FP) 

In software defect prediction, Recall refers to the model’s ability to accurately detect actual defective 

instances. It is a crucial metric to ensure that software defects are identified effectively, reducing the risk of 

releasing faulty software to users and enhancing overall software quality. Achieving a high recall is essential 

for proactive defect resolution, but it should be balanced with other performance metrics depending on 

specific project requirements. 

Recall = TP/(TP+FN) 

The F-score, a comprehensive evaluation metric, combines precision and recall to assess the test’s 

overall accuracy. By utilizing these metrics and their corresponding formulas, researchers can evaluate the 

model’s effectiveness. 

F-measure= (2 × Precision × Recall)/(Precision + Recall) 

Overall, the results of the experiment provide insights into the effectiveness of different feature 

selection methods and their impact on defect prediction accuracy. According to the analysis, the models built 

using the chosen feature subsets outperform the original dataset features and their implementation 

substantially enhanced the precision of the classifiers. 

Table 2. Classification accuracies of reduced feature subsets using Filter-based, Wrapper Based, and Embedded methods with LR, 
RF, DT, SVM, GNB, and KNN (CHI: Chi-square, ANOVA: ANOVA method, CFS: Correlation Feature Selection, FFS: Forward 
Feature Selection, BFS: Backward Feature Selection, RFE: Recursive Feature Elimination, Lasso, Ridge) on CM1 and PC2 dataset. 

6
 C

la
ss

if
ic

at
io

n
 T

ec
h
n
iq

u
es

 

Feature Selection Techniques 

 Filter method Wrapper method Embedded method 

CHI 2 

CM1 PC2 

Anova 

CM1 PC2 

CFS 

CM1 PC2 

FFS 

CM1 PC2 

BFS 

CM1 PC2 

RFE 

CM1 PC2 

Lasso 

CM1 PC2 

Ridge 

CM1 PC2 

LR 88 97 88 97 88 97 88 97 87 96 87 95 88 96 88 97 

RF 88 97 87 97 87 97 87 97 87 97 85 97 87 97 88 97 

DT 80 94 84 96 83 96 87 97 86 97 83 95 81 97 85 95 

SVM 88 97 88 97 88 97 88 97 88 98 87 97 88 97 88 97 

GNB 87 96 87 95 87 95 86 97 86 95 87 94 88 93 86 95 

KNN 88 97 87 97 87 97 88 97 86 97 85 97 88 97 88 97 

From Table 2 it is evident that Wrapper methods when used with the SVM machine learning model 

have resulted in 88% and 97% accuracy for the prediction of software defects on CM1 and PC2 datasets 

respectively. A graphical comparison of the results of each prediction model accuracy on the CM1 and PC2 

datasets is presented in Figure 7a and Figure 7b visualizing the best accuracy performance of each feature 

selection technique. The superiority of specific feature selection techniques became apparent when compared 

to other combinations with machine learning algorithms. Notably, the Correlation feature selection method 

from the Filter category, Recursive Feature elimination from the Wrapper category, and Ridge feature 
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selection techniques categorized under the Embedded method demonstrated exceptional performance. These 

techniques surpassed alternative combinations in terms of their ability to select relevant features for the 

machine learning models. 

  

Figure 7 (a). Comparison of accuracy on CM1 dataset. Figure 7 (b). Comparison of accuracy on PC2 dataset. 

To measure the effectiveness of classification techniques, a variety of other performance metrics such as 

“Precision, Recall, and F1 score” are also utilized. The study focuses on six different classification 

techniques and in addition employed eight distinct feature selection techniques on two datasets shown in 

Tables 3–5. The outcomes of the classification approach are depicted in Figure 8(a–c), showcasing the 

performance metrics—Precision, Recall, and F1-Score—of each prediction model applied to the CM1 

dataset. These models were evaluated using the Filter method, Wrapper method and Embedded method and 

the results of various prediction models is shown in Figure 8 (a–c) respectively. Figure 9 presents an 

analysis of the classification approach, emphasizing the Precision, Recall, and F1-Score metrics for 

individual prediction models applied to the PC2 dataset. This assessment utilized techniques such as the 

Filter Method depicted in Fig 9(a), Wrapper Method illustrated in Fig 9(b), and Embedded Method shown in 

Fig 9(c). 

Table 3. Performance measure of best-reduced feature subsets using the Filter, Wrapper, and Embedded methods using a variety of 

performance metrics such as Precision, Recall, and F1 score on the CM1 dataset. 

CM1 

Feature 

Selection 

Techniques 

Chi2 ANOVA CFS FFS BFS RFE 

Classifier P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

LR 0.77 0.88 0.82 0.77 0.88 0.82 0.95 0.97 0.96 0.77 0.88 0.82 0.77 0.87 0.82 0.77 0.87 0.82 

RF 0.85 0.88 0.85 0.77 0.87 0.82 0.95 0.97 0.96 0.82 0.87 0.83 0.77 0.87 0.82 0.77 0.85 0.81 

DT 0.83 0.80 0.81 0.81 0.84 0.83 0.95 0.96 0.95 0.77 0.87 0.82 0.81 0.86 0.83 0.81 0.83 0.82 

SVM 0.77 0.88 0.82 0.77 0.88 0.82 0.95 0.97 0.96 0.77 0.87 0.82 0.77 0.88 0.82 0.84 0.87 0.85 

NB 0.84 0.87 0.85 0.84 0.87 0.85 0.96 0.95 0.96 0.77 0.86 0.81 0.77 0.86 0.81 0.84 0.87 0.85 

KNN 0.77 0.88 0.82 0.82 0.87 0.83 0.95 0.97 0.96 0.77 0.88 0.82 0.77 0.86 0.81 0.77 0.85 0.81 

Feature Selection 

Techniques 

LASSO RIDGE 

Classifier P R F1-score P R F1-score 

LR 0.77 0.88 0.82 0.77 0.88 0.82 

RF 0.77 0.87 0.82 0.84 0.88 0.84 

DT 0.79 0.81 0.80 0.83 0.85 0.84 

SVM 0.77 0.88 0.82 0.77 0.88 0.82 

NB 0.85 0.88 0.85 0.83 0.86 0.84 

KNN 0.77 0.88 0.82 0.77 0.88 0.82 
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Table 4. Performance measure of best-reduced feature subsets using the Filter, Wrapper, and Embedded methods using a variety of 
performance metrics such as Precision, Recall, and F1 score on the PC2 dataset. 

PC2  

Feature 

Selection 

Techniques 

Chi2 ANOVA CFS FFS BFS RFE 

Classifier P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

P R F1-

score 

LR 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.96 0.95 0.98 0.98 0.97 

RF 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 

DT 0.95 0.94 0.94 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.95 0.95 

SVM 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.97 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 

NB 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.96 0.94 0.95 

KNN 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 0.95 0.97 0.96 

Table 5. Performance measure of best-reduced feature subsets using the Filter, Wrapper, and Embedded methods using a variety of 
performance metrics such as Precision, Recall, and F1 score on the PC2 dataset. 

Feature Selection Techniques LASSO RIDGE 

Classifier P R F1-score P R F1-score 

LR 0.95 0.96 0.95 0.95 0.97 0.96 

RF 0.95 0.97 0.96 0.95 0.97 0.96 

DT 0.96 0.97 0.96 0.95 0.95 0.95 

SVM 0.95 0.97 0.96 0.95 0.97 0.96 

NB 0.96 0.93 0.94 0.96 0.95 0.95 

KNN 0.95 0.97 0.96 0.95 0.97 0.96 

The findings demonstrate that all models created using diverse feature selection techniques outperform 

the original feature subsets of the dataset. The initial feature set attained a maximum accuracy of 88%, a 

precision of 77%, a recall of 88%, and an F-measure of 82% when utilized with the KNN classifier on the 

CM1 dataset. However, with the application of various feature selection approaches, the accuracy of the 

classifiers noticeably improved. The highest accuracy achieved by each feature selection technique is 

consolidated and presented in Tables 3–5. Upon applying feature selection techniques to the CM1 dataset, a 

distinct set of significant features was selected for analysis. These chosen features offer valuable insights into 

the codebase’s characteristics and complexity. In the CM1 dataset, the selected features include Lines of 

Code, Variables, Branches, Lines of Comment, Unique Operands, Total Operands, Comments, and 

Comments-to-Code ratio. Similarly, in the PC2 dataset, the selected features encompass Lines of Code Total, 

Number of Operands, Number of Lines, Lines Blank, Condition Count, Call Pairs, Lines of Code Executable, 

Maintenance Severity, Node count, and Normalized Cyclomatic Complexity. These meticulously chosen 

features aim to capture crucial aspects of the codebase, such as its size, complexity, documentation, control 

flow, and potential maintenance requirements. Notably, the feature subset obtained through the Correlation 

Feature selection, Recursive feature elimination, Lasso and Ridge Feature selection techniques yielded the 

highest classification accuracy of 88%, a precision of 95%, a sensitivity of 97%, and an f-measure of 96% 

when utilized with SVM classifier on CM1 dataset and with PC2 highest classification accuracy of 97%, a 

precision of 98%, a sensitivity of 98%, and an f-measure of 97% when utilized with the DT classifier. 

According to Tables 3–5, all models created by combining feature selection techniques achieved more than 

85% accuracy. 
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Figure 8(a). Results of each prediction model using 

performance metrics Precision, Recall, and F1-Score on 

the CM1 dataset using Filter Method  

Figure 8(b). Results of each prediction model using 

performance metrics Precision, Recall, and F1-Score on 

the CM1 dataset using Wrapper Method  

 
 

Figure 8(c). Results of each prediction model using performance metrics Precision, Recall, and F1-Score on the CM1 

dataset using Embedded Method. 

Remarkably, the utilization of feature selection techniques based on the concept of iteration, involving 

progressive feature addition, elimination, and recursive refinement, displayed remarkable classification 

performance. These iterative approaches exhibited an accuracy surpassing 85% in the case of CM1 and 95% 

in the case of PC2, as evidenced by the data presented in Figure 8 and Figure 9. 

Though Wrapper-based, and Embedded feature selection techniques are performing well for software 

defect prediction because they use a learning algorithm to iteratively evaluate feature subsets, resulting in 

higher accuracy by identifying the most relevant features. Their exceptional search capabilities capture 

feature interaction and specificity of prediction, allowing them to outperform in identifying the optimal 

feature subset. This flexibility in evaluating learning algorithms used makes them the preferred methods for 

software defect prediction. The selection of an appropriate feature selection method relies heavily on the 

unique characteristics of the dataset under analysis and the specific goals of the researcher. For instance, 

when the objective is to identify the most vital features within a dataset, Filter methods prove advantageous 

as they offer a ranked list of features and require fewer computational resources. Conversely, in scenarios 

where the dataset contains a limited number of features, typically ranging from tens to hundreds, Wrapper 

methods tend to yield the best predictive performance. In such cases, employing model selection algorithms 
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can help identify the optimal wrapper algorithm for the given task. However, when dealing with large-scale 

datasets comprising millions of features, both wrapper and embedded methods may not be practically 

feasible due to computational constraints and challenges in handling class imbalances. Despite their 

capability to model feature dependencies and achieve superior classifier accuracy compared to filter methods, 

their efficiency diminishes in such scenarios. 

Moreover, the author suggests the exploration of a hybrid feature selection method that combines the 

strengths of filter, wrapper, and embedded methods for future research. In recent times also, novel feature 

selection strategies have emerged, including hybrid methods that combine various feature selection 

techniques in a two-step approach, as well as ensemble methods that leverage the outputs of multiple feature 

selection methods. This approach involves a multi-step procedure where filter methods are initially 

employed to eliminate irrelevant or redundant features based on their individual characteristics. Subsequently, 

wrapper methods are utilized to assess various feature subsets using a specific learning algorithm to identify 

the optimal subset. Finally, embedded methods can be employed to further refine the selected features during 

the model training phase. 

  

Figure 9(a). Results of each prediction model using 
performance metrics Precision, Recall, and F1-Score on the 
PC2 dataset using Filter Method.  

Figure 9(b). Results of each prediction model using 
performance metrics Precision, Recall, and F1-Score on the 
PC2 dataset using Wrapper Method. 

 
 

Figure 9(c). Results of each prediction model using performance metrics Precision, Recall, and F1-Score on the PC2 dataset using 
Embedded Method. 
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The hybrid method aims to achieve a balance between computational efficiency, predictive performance, 

and generalizability. By leveraging the advantages of each method while mitigating their respective 

limitations, this approach leads to a more robust and effective feature selection process. Consequently, it 

enhances model performance and interpretability, offering improved outcomes in terms of both accuracy and 

comprehensibility. These approaches harness the strengths of different feature selection methods they 

incorporate, leading to enhanced outcomes and improved results. 

6. Conclusion 

In the realm of software engineering, a multitude of substantial datasets has been generated, many of 

which contain redundant or extraneous features. As such, the process of selecting the best attributes plays a 

significant role in the initial stages of machine learning operations. Its primary objective is to identify and 

eliminate unnecessary attributes, resulting in a reduced feature set and improved classification accuracy. This 

study is based on eight different feature selection techniques to identify effective features from the datasets. 

By extensively experimenting with six different machine learning algorithms, the study achieved notable 

classifier accuracies. Specifically, for datasets CM1 and PC2, the achieved classifier accuracies were 88% 

and 97% respectively. After executing an extensive comparison of feature selection techniques based on 

accuracy and performance metrics, it became apparent that Correlation feature selection, Recursive feature 

elimination, and Ridge each possess their own strengths and weaknesses in terms of performance metrics. 

Correlation feature selection takes feature correlation into account but might miss other predictive factors, 

while Recursive feature elimination excels at capturing feature interactions but may overlook individual 

feature characteristics. On the other hand, Lasso regularization effectively reduces dimensionality but 

struggles with complex relationships, while Ridge feature selection addresses multicollinearity issues and 

provides stable coefficient estimates. After conducting rigorous experimentation, we achieved higher 

classifier accuracies with datasets CM1 and PC2 using three distinct feature selection techniques: Correlation 

feature selection, Recursive feature elimination, and Ridge feature selection. These techniques resulted in a 

reduction of the number of selected features, showcasing their ability to identify the most relevant features 

for classification tasks. 

7. Future scope 

In the concluding statements, it was observed that Correlation feature selection, Recursive feature 

elimination, and Ridge feature selection techniques exhibit distinctive merits and limitations. Each of these 

approaches has its own set of advantages and drawbacks that must be considered when selecting the most 

appropriate method for a given task. To overcome these limitations in the future, it is recommended to adopt 

“Hybrid feature selection techniques” that integrate multiple methods, resulting in a more comprehensive 

and robust process. These blended strategies will not only enhance prediction accuracy and model 

performance but will also provide deeper insights into the causes of software defects. Their flexibility and 

adaptability would allow for customization to specific requirements, making them valuable assets in software 

defect prediction. Additionally, the next identified and important task is to address class imbalance issues 

within the datasets that can introduce biased model training, favoring the majority class and causing 

challenges in accurately identifying and predicting instances of the minority class. As a result, the overall 

performance of the defect prediction is adversely affected, compromising its effectiveness in detecting 

defects across the entire dataset. By leveraging these synthetic methods and effectively handling class 

imbalance, the authors anticipate a significant improvement in the overall performance and accuracy of the 

predictive system. Furthermore, the authors aim to explore alternative software defect prediction datasets and 

integrate discovered models into the system, harnessing the advanced features of these models to make 

notable contributions to the software development industry. 
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