
Journal of Autonomous Intelligence (2024) Volume 7 Issue 3 

doi: 10.32629/jai.v7i3.1103 

1 

Original Research Article 

Enhancing differential evolution through a modified mutation 

strategy for unimodal and multimodal problem optimization 
Pooja Tiwari*, Vishnu Narayan Mishra, Raghav Prasad Parouha 

Department of Mathematics, Indira Gandhi National Tribal University, Amarkantak 484887, India 

* Corresponding author: Pooja Tiwari, pooja.tiwari.igntu@gmail.com 

ABSTRACT 

Amid a lot of evolutionary methods (EMs), differential evolution (DE) is broadly used for various optimization 

issues. Though, it has rare shortcomings such as slow convergence, stagnation etc. Likewise, mutation and its control 

factor choice for DE is extremely inspiring for enhanced optimization. To increase the exploration competence of DE, a 

modified-DE (M-DE) is advised in this paper. It implemented a new mutation system, thru the perception of particle 

swarm optimization, to further trade off the population diversity. Meanwhile, centered on time-varying structure, new 

mutant control parameters incorporated with the suggested mutation scheme, to escaping local optima and keep 

evolving. Using the features of memory and robustly altered control parameters, exploitation and exploration ability of 

M-DE is well-adjusted. Also, admitted features of M-DE algorithm follows to speeding up convergence significantly. 

Finally, to verify the effectiveness of M-DE, groups of assessments have been piloted on six unimodal and seven 

multimodal benchmark suites. Performance of M-DE compared with different peer DE algorithms. According the 

investigational results, efficiency of the suggested M-DE technique has been confirmed. 

Keywords: evolutionary algorithm; differential evolution; mutation operation; crossover; unimodal and multimodal 

1. Introduction 

Currently, vast quantities of evolutionary methods (EMs) are 

designed to resolve unimodal and multimodal optimization issues[1]. 

Among several EMs, differential evolution (DE) has appeared as 

one of the greatest widespread optimizers since its initiation in 

1995[2]. It has competence to solve multifaceted optimization issues, 

due to its easy implementation. Equally, it attained evident 

improvement in the past two years, owing to its search capacity and 

proficiency[3]. Besides, the DE effectively applied in several real-life 

problems, for example power system[4], neural system[5], image 

analysis[6], chemical manufacturing[7], etc. Conversely, at the time of 

solving multifaceted optimization problem, the DE faces certain 

disadvantages for instance stagnation i.e. to escape from local 

minima[8]. Correspondingly, DE has no possibility to solve all 

optimization problems efficiently[9]. 

Henceforth, various innovative DE reforms have been 

advocated in the literature to increase the DE presentation[10–16]. But, 

most of the DE variants still face the stagnation problem and provide 

poor results for complex optimization issues[17]. It happens due to 

selection of DE mutation and control factors schemes. Hence, 

various mutation and control factors for DE projected by scholars. 

For example, Coelho et al.[18] applied the belief space concept of the 

ARTICLE INFO 

Received: 7 August 2023 

Accepted: 7 September 2023 

Available online: 8 January 2024 

COPYRIGHT 

Copyright © 2024 by author(s). 

Journal of Autonomous Intelligence is 

published by Frontier Scientific Publishing. 

This work is licensed under the Creative 

Commons Attribution-NonCommercial 4.0 

International License (CC BY-NC 4.0). 

https://creativecommons.org/licenses/by-

nc/4.0/ 



2 

cultural algorithm as a selection criterion to select between the rand/1 operator and the best/1 operator. 

Mallipeddi et al.[19] used a group of different mutation and control parameter values during the DE evolution 

process. Wang et al.[20] used a set of candidates which is generated by diverse mutant vector approaches with 

randomly choosing control factor from a group of acceptable values respectively. Gong et al.[21] realized two 

different DE variants by techniques of probability matching and adaptive pursuit respectively. Gong et al.[22] 

also anticipated a cheap surrogate multi-operative search scheme for DE instead of choosing an operator 

according to probability. Through this framework, different mutation strategies combination can be easily 

achieved. Based on multi-population framework, Wu et al.[23] proposed MPEDE. It has 3 mutation 

approaches, i.e., rand/1, current-to-pbest/1 and current-to-rand/1. Based on probability selection, Zou et al.[24] 

hybridized rand/2 and mutation rand/1 schemes. The rand/2 selection chance was reduced throughout the 

evolution process. It achieved better performance than other DEs in small- and medium-scale test cases. Neto 

et al.[25] suggested self-adaptive DE (SaDE). It used continuous-greedy randomized adaptive search 

procedure (C-GRASP), to enhance search DE performance. Also, rand/1 or rand/2 mutation operator 

selected adaptively in SaDE, to create better solution quality over C-GRASP. Zhang et al.[26] used new 

mutation operators which are selected based on number of improvement failures and quality of each solution. 

Ma et al.[27] summarized multi-population and/or mutation operator’s methods of the DE. 

Furthermore, hybridizing DE with local search (LS)[28] and PSO (particle swarm optimization)[29] 

techniques improves the search performance of the DE. For instance, based on chaotic local (CL) search and 

a ‘shrinking’ tactics, Jia et al.[30] offered an active memetic DE. The CLS helped in the early stage to explore 

a huge search space (it avoids premature convergence) and in the later stage to exploiting a small region (it 

refines the final solutions). Dhaliwal and Dhillon[31] proposed binary DE (BDE) where binary hill-climbing 

used as local search techniques. Zuo et al.[32] offered a case learning-based DE by using a local search to 

solve interplanetary trajectory design optimization problem. Parouha and Verma[33] overviewed DE and PSO 

developments effectively and suggested there advanced variants and hybrid to solve complex optimization 

problems. Up-to-date various DE and its hybrids variants suggested for solving complex optimization issues. 

But they are unable to provide best outcome and falls into local minima; due to unable to used earlier best 

outcomes[34]. 

Encouraged by the above literature survey and PSO method, in this paper a modified-DE (M-DE) is 

presented. It has a new mutation scheme, using the perception of PSO, to trade off the exploration and 

exploitation. Also, new time-varying mutant control parameters incorporated with the suggested mutation 

scheme, to escaping local optima and keep evolving. Using the features of memory and robustly altered 

control parameters, exploitation and exploration ability of M-DE is well-adjusted. Also, admitted features of 

M-DE algorithm follows to speeding up convergence significantly. Finally, to verify the effectiveness of M-

DE, groups of assessments have been piloted on six unimodal and seven multimodal benchmark suites. 

Presentation of M-DE equated with different peer DE methods. The experimental results of M-DE are better 

than other compared methods which confirm its efficiency and ability to solve unimodal and multimodal 

optimization issues. 

The article rest part is organized as Section 2 provides classic DE outline. The facts of the suggested M-

DE are defined in Section 3. Section 4 shows results with discussions. And Section 5 present conclusion of 

the whole paper and future plans. 

2. Basic DE 

Differential Evolution (DE) is a powerful population-based stochastic optimization algorithm that has 

proven to be effective in solving a wide range of optimization problems. Its underlying principles are similar 

to other evolutionary methods (EMs), and it follows a multi-step process that iteratively evolves a population 

of candidate solutions to find the optimal solution. The first step in the classic DE algorithm is the 



3 

initialization phase. Here, an initial population of candidate solutions, often referred to as individuals or 

vectors, is generated randomly within the problem’s search space. Each individual represents a potential 

solution to the optimization problem, and the size of the population is determined by a predefined parameter. 

Once the initial population is created, the DE algorithm proceeds to the mutation phase. During 

mutation, three distinct individuals, namely the target vector (denoted as “target”), and two randomly 

selected vectors from the current population (denoted as “base” and “auxiliary”) are combined to form a new 

trial vector. The trial vector is created by perturbing the “base” vector using the difference between the 

“auxiliary” vector and the “target” vector, scaled by a mutation parameter called the scaling factor (F). The 

mutation is a crucial step in DE, as it promotes exploration in the search space. 

Following the mutation, the crossover operation is performed. In this phase, each element of the trial 

vector is compared with a corresponding element in the “target” vector. A random crossover parameter (CR) 

is used to determine whether the element in the trial vector is retained as part of the new candidate solution. 

If the randomly generated crossover value is less than CR, the element from the trial vector is selected; 

otherwise, the element from the “target” vector is retained. This ensures that the new candidate solution 

retains some characteristics of the original “target” vector, maintaining some level of exploitation. After the 

mutation and crossover operations are completed, the selection phase follows. In this step, the trial vector is 

compared to the “target” vector to determine which one becomes a member of the next generation’s 

population. If the trial vector outperforms the “target” vector in terms of fitness (i.e., closer to the optimal 

solution), it is selected to replace the “target” vector in the next generation. Otherwise, the “target” vector 

remains unchanged, preserving its position for the next iteration. 

The mutation, crossover, and selection cycles are repeated for a predefined number of generations or 

until a stopping criterion is met. The stopping criterion could be reaching a maximum number of iterations, 

achieving a satisfactory fitness level, or attaining a certain level of convergence. The strength of DE lies in 

its ability to effectively balance exploration and exploitation in the search space. The mutation operation 

promotes exploration by perturbing the candidate solutions, while the crossover and selection operations 

allow for exploitation by retaining good solutions from the previous generation. This combination of 

exploration and exploitation enables DE to efficiently converge towards the optimal solution. While the 

classic DE algorithm has demonstrated its effectiveness in various applications, researchers have proposed 

numerous modifications and enhancements to address its limitations and adapt it to specific problem 

domains. Some variants introduce adaptive strategies for adjusting control parameters, dynamic population 

size, or novel mutation and crossover schemes to improve performance and convergence speed. 

In conclusion, Differential Evolution is a versatile and robust optimization algorithm based on 

evolutionary principles. Its stepwise process of initialization, mutation, crossover, and selection, coupled 

with the exploration-exploitation balance, has made it a popular choice for solving optimization problems in 

diverse fields. As researchers continue to explore and innovate in the realm of evolutionary algorithms, DE is 

likely to remain a significant player in the quest for efficient and effective optimization solutions. 

I. Initialization  

Aimed at 𝐷-dimensional problem optimization, a group of random sampling points (target vectors) 

𝑥𝑖,𝑗
𝑡 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷)  𝑖 = 1, 2, … , 𝑁𝑃  and 𝑗 = 1, 2, … , 𝐷  called the population initialization ( 𝑁𝑃 -

population size and 𝐷-dimension) is generated randomly in specified limits, at ‘t-th’ iteration. 

II. Mutation 

𝑣𝑖,𝑗
𝑡 = (𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝐷) called mutant vector is formed as 

𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1

𝑡 + 𝐹 × (𝑥𝑟2
𝑡 − 𝑥𝑟3

𝑡 ) (1) 

where 𝑥𝑟1
, 𝑥𝑟2

 𝑎𝑛𝑑 𝑥𝑟3
∈ [1, 𝑁𝑃], 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 and 𝐹 ∈  [0, 1] is specified as mutant factor. 



4 

III. Crossover 

𝑢𝑖,𝑗
𝑡 = (𝑢𝑖,1, 𝑢𝑖,2, … , 𝑢𝑖,𝐷) called trial vector is formed as 

𝑢𝑖,𝑗
𝑡 =  {

𝑣𝑖,𝑗
𝑡 ; if 𝑟𝑛𝑑 ≤ 𝐶𝑅

𝑥𝑖,𝑗
𝑡 ; Otherwise  

 
(2) 

where 𝑟𝑛𝑑 = uniformly random number spread among 0 and 1, 𝐶𝑅 ∈ [0, 1] is indicated as crossover constant. 

IV. Selection 

It is formed as 

𝑥𝑖,𝑗
𝑡+1 =  {

𝑢𝑖,𝑗
𝑡 ;  if 𝑓(𝑢𝑖,𝑗

𝑡 ) ≤ 𝑓(𝑥𝑖,𝑗
𝑡 )

𝑥𝑖,𝑗
𝑡 ;  Otherwise                

 (3) 

V. Termination 

Repeats II–V else stopped as per criteria of termination. 

3. Suggested modified-DE (M-DE)  

In this part, listed the observation from the literature survey (research gaps) then to promote the 

exploration and exploitation competency balance of DE, a modified-DE (M-DE) is proposed and described 

with the implementation steps in detailed. 

1) 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1

𝑡 + 𝐹 × (𝑥𝑟2
𝑡 − 𝑥𝑟3

𝑡 ) is extensively used mutation scheme and effectively balanced population 

diversity[2,35]. In contrast, it has slow convergence rate[35]. 

2) 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1

𝑡 + 𝐹 × (𝑥𝑟2
𝑡 − 𝑥𝑟3

𝑡 ) + 𝐹 × (𝑥𝑟4
𝑡 − 𝑥𝑟5

𝑡 )  has enhanced perturbation than 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1

𝑡 +

𝐹 × (𝑥𝑟2
𝑡 − 𝑥𝑟3

𝑡 )[10,11]. But, it may fail to provide exploitation facility during the search evolution[12,13]. 

3) 𝑣𝑖
𝑗
(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡 + 𝐹(𝑥𝑟1

− 𝑥𝑟2
)𝑣𝑖,𝑗

𝑡 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 × (𝑥𝑟1
𝑡 − 𝑥𝑟2

𝑡 ) + 𝐹 × (𝑥𝑟3
𝑡 − 𝑥𝑟4

𝑡 ) , 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 +

𝐹 × (𝑥𝑟1
𝑡 − 𝑥𝑟2

𝑡 ) and 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗
𝑡 ) + 𝐹 × (𝑥𝑟1

𝑡 − 𝑥𝑟2
𝑡 ) has better exploitation ability[14]. 

But, they have low exploration capability when solving multimodal optimization problems[15,16]. 

4) Various mutation schemes presented in the literature[19], to decrease the DE disadvantages. Bur, want 

essential refinement to enhance the DE search capability[36,37]. 

5) DE might be not stanching the previous best memory/vector information in the evolution process. 

Hence, it may loss of the best vectors and leads to premature convergence[38]. 

Encouraged by above stated and literature investigation, a modified-DE (M-DE) presented in this article, 

to overcome the DE disadvantages. The steps of advised M-DE are cited as below. 

I. Initialization  

In M-DE, 𝑁𝑃 size initial population generated randomly by using following equations. 

𝑥𝑖,𝑗
𝑡 = 𝑥𝑖

𝑚𝑖𝑛 + 𝑟𝑛𝑑(0, 1)(𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛) (4) 

where 𝑖 = 1, … , 𝑁𝑃, 𝑗 = 1, … , 𝐷, 𝑡 = iteration number, 𝑥𝑖
𝑚𝑖𝑛 & 𝑥𝑖

𝑚𝑎𝑥 = minimum and maximum value of i-th 

variable.  

II. Mutation 

Using the concept of PSO[29], 𝑣𝑖,𝑗
𝑡  i.e. mutation vector created as follows. 

𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1 × (𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹2 × (𝑥𝑏𝑒𝑡𝑡𝑒𝑟𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) +  𝐹3 × (𝑥𝑤𝑜𝑟𝑠𝑡𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (5) 

where- 𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡  = best vectors, 𝑥𝑏𝑒𝑡𝑡𝑒𝑟𝑗

𝑡 = better vectors, and 𝑥𝑤𝑜𝑟𝑠𝑡𝑗
𝑡 = worst vectors. These vectors are 

restructured as follows. 

𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 = {𝑥𝑖,𝑗

𝑡 ; 𝑖𝑓 𝑓(𝑥𝑖,𝑗
𝑡 ) < 𝑓(𝑥𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡−1) 𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡−1; 𝑖𝑓 𝑓(𝑥𝑖,𝑗

𝑡 ) ≥ 𝑓(𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡−1) 



5 

𝑥𝑏𝑒𝑡𝑡𝑒𝑟𝑗
𝑡 = {𝑥𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 } & 𝑥𝑤𝑜𝑟𝑠𝑡𝑗
𝑡 = {𝑥𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 } 

Moreover, 𝐹1, 𝐹2 & 𝐹3 are the novel control parameters defined as follows.  

𝐹1 = (
𝑡 − 1

𝑡𝑚𝑎𝑥 − 1
) × 𝐹1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − (𝐹1,𝑓𝑖𝑛𝑎𝑙 − 𝐹1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

𝐹2 = (
𝑡 − 1

𝑡𝑚𝑎𝑥 − 1
) × 𝐹2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − (𝐹2,𝑓𝑖𝑛𝑎𝑙 − 𝐹2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

𝐹3 = (1 − 𝑒𝑥𝑝(𝐹2 × 𝑡)) × 𝐹1 

where 𝑡𝑚𝑎𝑥 and  𝑡 = maximum and current iteration number. 

Moreover, mutant factors (𝐹1, 𝐹2 & 𝐹3) have the subsequent quality, throughout the search procedure. 

1) 𝐹1 initiate with big value and gradually falls to a small value, while 𝐹2 initiate with small value and 

gradually upturns to a large value. In earlier period, large 𝐹1 and small 𝐹2 values are allowed vectors to 

travel freely over the search space, rather than moving to the population’s best. In contrast, small 𝐹1 and 

large 𝐹2 values are allowed vectors to converge the global best, in latter period. 

2) 𝐹3 quickly upsurge in earlier period then gradually shrinkage in latter period. It supports the vectors to 

find suitable direction and better movement position. 

After an wide investigation, 𝐹1,initial = 𝐹2,final = 2.5, 𝐹1,final = 𝐹2,initial = 0.5 are fixed for M-DE for 

entire experiments. Variation of 𝐹1, 𝐹2, and 𝐹3 according to iteration number are depicted in Figure 1. 

0 100 200 300 400 500 600 700 800 900 1000

0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50

V
a

lu
e

s
 (

F
1
, 

F
2
 &

 F
3
)

Iterations

 F
1

 F
2

 F
3

 
Figure 1. Illustrates how the values of 𝐹1, 𝐹2, and 𝐹3vary with the iteration number during the evolution process. 

III. Crossover 

Recombines mutant (𝑣𝑖,𝑗
𝑡 ) and target (𝑥𝑖,𝑗

𝑡 ) vector to create trail (𝑢𝑖,𝑗
𝑡 ) vector as follows. 

𝑢𝑖,𝑗
𝑡  = {

𝑣𝑖,𝑗
𝑡 ; if 𝑟𝑛𝑑(0,1) ≤ 𝐶𝑅   

𝑥𝑖,𝑗
𝑡  ; if 𝑟𝑛𝑑(0,1) > 𝐶𝑅  

 
(6) 

where 𝑟𝑛𝑑(0, 1) = random number among 0 & 1, 𝐶𝑅 = crossover rate. 

IV. Selection  

A greedy selection scheme used in M-DE i.e. if 𝑢𝑖,𝑗
𝑡  has better or equal function values than it used for 

next iteration otherwise 𝑥𝑖,𝑗
𝑡  will used for the next iteration. It works as follows mathematically. 



6 

𝑥𝑖,𝑗
𝑡+1  = {

𝑢𝑖,𝑗
𝑡  ;  if 𝑓(𝑢𝑖,𝑗

𝑡 ) ≤ 𝑓(𝑥𝑖,𝑗
𝑡 )

𝑥𝑖,𝑗
𝑡  ;   if 𝑓(𝑢𝑖,𝑗

𝑡 ) > 𝑓(𝑥𝑖,𝑗
𝑡 ) 

 
(7) 

V. Stopping  

Repeat step II–V, else stop as per specified stopping criteria such as 𝑡𝑚𝑎𝑥 (maximum iterations). 

4. Result and discussion  

The developed Modified Differential Evolution (M-DE) algorithm’s efficiency was extensively 

evaluated using six unimodal (F1–F7) and seven multimodal (F8–F13) standard benchmark suites. These 

benchmark suites are well-known test functions used in the optimization community to assess the 

performance of various algorithms. Table 1 provides details about each benchmark suite, including the 

specific functions used for evaluation. To ensure a fair comparison, the simulation experiments were 

conducted on a system with an Intel(R) i7-7200U CPU running at 2.50 GHz, 16 GB of RAM, and MATLAB 

R2021a software on the Windows 10 (64-bit) operating system. The chosen hardware and software 

configuration are commonly used for optimization research and provide a reliable testing environment. 

Table 1. Features of 13 classical benchmark functions. 

Functions Type Search range Optimum solution  

𝐹1 = ∑ 𝑥𝑖
2𝐷

𝑖=1   

u
n

im
o
d

al
 

[−100,100] 0 

𝐹2 = ∑ |𝑥| + ∏ |𝑥𝑖|𝐷
𝑖=1

𝐷
𝑖=1   [−10, 10] 0 

𝐹3 = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝐷
𝑖=1   [−100,100] 0 

𝐹4 = 𝑚𝑎𝑥𝑖|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷  [−100,100] 0 

𝐹5 = ∑ (⌊𝑥𝑖 + 0.5⌋)2𝐷
𝑖   [−30, 30] 0 

𝐹6 = (∑ 𝑖 𝑥𝑖
4𝐷

𝑖 ) + 𝑟𝑎𝑛𝑑[0,1)   [−100,100] 0 

𝐹7 = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]𝐷−1

𝑖   

m
u

lt
im

o
d

al
 

[−1.28, 1.28] 0 

𝐹8 = ∑ −𝑥𝑖𝑠𝑖𝑛(√|𝑥𝑖|)𝐷
𝑖   [−500,500] −418.9829 × D 

𝐹9 = ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10] 𝐷

𝑖   [−5.12, 5.12] 0 

𝐹10 = −20𝑒𝑥𝑝 (− √
1

𝐷

0.2
∑ 𝑥𝑖

2𝐷
𝑖 ) −exp(

1

𝐷
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖𝐷

𝑖 ) + 20 + 𝑒  [−32,32] 0 

𝐹11 =
1

4000
∑ 𝑥𝑖

2𝐷
𝑖 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝐷

𝑖 + 1  [−600, 600] 0 

𝐹12  =  
𝜋

𝐷
{10𝑠𝑖𝑛2(𝑥𝑦𝑖) + ∑ (𝑥𝑖 − 1)2𝐷

𝑖 (1 + 𝑠𝑖𝑛2(𝑥𝑦𝑖+1))) +

(𝑦𝐷 − 1)2} + ∑ 𝑈𝐷
𝑖 (𝑥𝑖 , 10,100,4)    

where 𝑦𝑖 = 1 +
1

4
 (𝑥𝑖 + 1) and 

𝑈(𝑥𝑖 , 𝑎, 𝑘, 𝑚) =  {
𝑘 (𝑥𝑖 − 𝑎)𝑚, if 𝑥𝑖 > 𝑎       

𝑘 (−𝑥𝑖 − 𝑎)𝑚, if 𝑥𝑖 < −𝑎
0,                otherwise        

  

[−50,50] 0 

𝐹13 =  0.1{𝑠𝑖𝑛2(3𝜋𝑥𝑖)} + ∑ (𝑥𝑖 − 1)2𝐷
𝑖=1 [1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] +

(𝑥𝐷 − 1)2 + ∑ 𝑈(𝑥𝑖 , 5, 100,4)𝐷
𝑖   

where 𝑈(𝑥𝑖 , 𝑎, 𝑘, 𝑚) =  {
𝑘 (𝑥𝑖 − 𝑎)𝑚, if 𝑥𝑖 > 𝑎       

𝑘 (−𝑥𝑖 − 𝑎)𝑚, if 𝑥𝑖 < −𝑎
0,                otherwise        

 

[−50,50] 0 

For the evaluation, several parameter settings were standardized across all experiments. A 

dimensionality of 30 was selected, which means each candidate solution in the population had 30 dimensions. 

The population size was set to 30 individuals, ensuring a diverse set of potential solutions to explore. The 

maximum number of iterations was set to 2000, allowing sufficient time for the algorithms to converge or 



7 

terminate. Furthermore, to obtain robust results, each experiment was repeated 30 times (trail runs). The 

parameter settings specific to the developed M-DE algorithm were mentioned in a previous section, while 

the other comparative methods’ parameter configurations can be found in their respective research papers. 

This ensures that the comparison is based on consistent settings for each algorithm. 

In the presentation of the experimental results, boldface is used to highlight the best outcomes achieved 

by each algorithm. The results demonstrate the performance of the M-DE algorithm against the other 

methods, showcasing its effectiveness in solving both unimodal and multimodal optimization problems. To 

provide a comprehensive evaluation, the experimental results for the developed M-DE algorithm are 

presented alongside those of the other comparative methods. These results include the objective function 

values obtained for each algorithm on the benchmark functions. By comparing the performance of M-DE 

with the other methods, researchers can gauge the algorithm’s efficiency and suitability for different problem 

types. 

In conclusion, the experiments conducted on the standard benchmark suites demonstrate the efficiency 

and competitiveness of the developed M-DE algorithm. Its performance is thoroughly compared with other 

state-of-the-art methods, allowing researchers to gain insights into its strengths and weaknesses. The 

consistent parameter settings and rigorous evaluation process ensure a fair and meaningful comparison, 

providing valuable guidance for selecting the most appropriate optimization algorithm for specific problem 

domains. 

4.1. Numerical analysis 

The experimental results of developed M-DE on 6 unimodal and 7 multimodal standard benchmark 

functions equated with DE/rand/1[2], DE/best/1[39], DE/target-to-best/1[40], GDE[41] and PSODE[42]. Mean (mn) 

and standard deviation (std) over 30 trail runs of these methods reported in Table 2. The symbol “+” “≈” 

and “−” included in these tables respectively denote presentation of M-DE is better significantly, no 

substantial difference and inferior than equated methods. From this table, it can be noticed that - for whole 

unimodal and mulitimodal functions M-DE obtain the best optimal solutions; only for function 𝐹6, 𝐹12 and 

𝐹13 M-DE attain similar results with other algorithms. In between +/≈/−, M-DE secure maximum number of 

“+” i.e. 10, which shows M-DE can beat most of methods on all benchmark functions. Also, the less SD 

of M-DE on all benchmark functions shows its solution stability compared to others. Moreover, the statistical 

t-test[43] results on 6 unimodal and 7 multimodal benchmark suites presented in Table 3. It should be noticed 

that from this table, most of the 𝑝-values are below 0.05, which illustrate that convergence of M-DE is 

enhanced successfully. Additionally, the Friedman’s ranking test[43] testified on all associated algorithms on 

6 unimodal and 7 multimodal benchmark suites and results described in Table 4. It specifies that, projected 

M-DE reaches the best ranking in all functions. 

Finally, to measure the significance of experimental results of M-DE with others nFEs (number of 

function evaluations) SR% (success rate %) considered on 6 unimodal and 7 multimodal benchmark 

functions and reported in Table 5. Where, success Rate =  
number of successful run

total runs
 (if 𝑓(𝑥) − 𝑓(𝑥∗) ≤

0.0001 than a run is stated as a successful run, where 𝑓(𝑥∗) and 𝑓(𝑥) is the known and obtained optima 

respectively). This table shows that proposed M-DE has less number of average function evaluations and 

similar or highest percentage of the success rate on each benchmark function compared to others. It 

illustrates that M-DE has best convergence ability and higher reliability with others. 

 

 

 



8 

Table 2. Comparisons results on 6 unimodal and 7 multimodal benchmark functions. 

Func Measure DE/rand/1[2] DE/best/1[39] DE/target-to-best/1[40] GDE[41] PSODE[42] M-DE  

𝐹1 mn  1.39×10−36 1.61×10−39 2.95×10−41 4.82×10−46 1.44×10−150 0  

std 1.19×10−36 1.38×10−39 2.69×10−41 1.13×10−45 5.72×10−150 0 

𝐹2 mn  7.48×10−19 4.28×10−20 9.35×10−21 2.87×10−21 5.14×10−84 0 

std 3.59×10−19 3.64×10−20 3.64×10−21 4.99×10−21 1.43×10−83 0 

𝐹3 mn  1.17×10−20 1.09×10−22 4.68×10−24 1.33×10−24 2.56×10−41 0  

std 9.57×10−21 1.34×10−22 3.77×10−24 2.77×10−24 1.02×10−41 0 

𝐹4 mn  3.04×10−13 2.69×10−14 3.94×10−15 1.04×10−14 2.05×10−12 0  

std 2.35×10−13 2.81×10−14 1.69×10−15 2.91×10−14 1.25×10−14 0 

𝐹5 mn  2.32×10−12 2.28×10−21 5.98×10−22 1.32×10−15 2.83×10−54 0  

std 3.35×10−12 3.29×10−21 1.26×10−22 3.37×10−15 3.26×10−60 0 

𝐹6 mn  0 0 0 0 0 0  

std 0 0 0 0 0 0 

𝐹7 mn  1.78×10−03 2.01×10−03 1.69×10−03 1.32×10−03 2.63×10−04 2.84×10−12 

std 6.76×10−04 8.38×10−04 7.76×10−04 6.04×10−04 1.98×10−04 4.57×10−16 

𝐹8 mn  −2.41×10+02 −6.61×10+02 −5.01×10+02 −2.78×10+02 −5.85×10+04 −12.5×10+04 

std 3.61×10+02 3.74×10+02 1.34×10+02 1.87×10+02 1.22×10+01 1.02×10−02 

𝐹9 mn  1.89×10+01 6.44×10+00 2.19×10+01 5.59×10+00 5.79×10−15 0  

std 3.22×10+00 1.64×10+00 3.39×10+00 1.57×10+00 1.21×10−14 0 

𝐹10 mn  4.44×10−15 5.14×10−15 4.44×10−15 7.99×10−15 1.19×10−14 1.01×10−15 

std 0 1.48×10−15 0 2.90×10−15 2.05×10−15 2.51×10−16 

𝐹11 mn  1.81×10−02 1.21×10−02 3.12×10−02 8.88×10−02 1.58×10−02 0  

std 9.15×10−02 1.02×10−01 8.61×10−02 4.69×10−02 2.38×10−02 0 

𝐹12 mn  4.71×10−32 4.71×10−32 4.71×10−32 4.71×10−32 4.71×10−32 4.71×10−32 

std 1.14×10−47 1.15×10−47 1.15×10−47 1.15×10−47 2.58×10−41 1.25×10−48 

𝐹13 mn  1.34×10−32 1.34×10−32 1.34×10−32 1.34×10−32 1.34×10−32 1.34×10−32 

std 2.89×10−48 2.89×10−48 2.88×10−48 2.88×10−48 5.68×10−41 1.28×10−48 

No. of +/≈/− 0/3/10 0/3/10 0/3/10 0/3/10 0/3/10  

Table 3. The statistical 𝑡-test (𝑝-values) for M-DE vs other algorithms. 

Fun  DE/rand/1 vs M-DE DE/best/1 vs M-DE DE/target-to-best/1 vs M-DE GDE vs M-DE PSODE vs M-DE 

𝐹1 4.012×10−16 2.101×10−08 2.102×10−18 2.010×10−08 1.104×10−10 

𝐹2 2.120×10−15 1.011×10−10 1.010×10−08 2.002×10−10 2.001×10−12 

𝐹3 1.011×10−10 1.005×10−08 2.001×10−10 1.110×10−10 1.004×10−08 

𝐹4 2.110×10−18 2.014×10−04 4.001×10−18 1.100×10−12 2.121×10−12 

𝐹5 5.014e×10−12 1.507×10−40 2.801×10−21 4.180×10−20 1.004×10−18 

𝐹6 2.101×10−14 1.112×10−18 1.021×10−20 2.102×10−16 1.000×10−16 

𝐹7 1.010×10−10 1.102×10−08 1.001×10−10 2.110×10−10 1.001×10−08 

𝐹8 1.010×10−12 4.001×10−18 2.111×10−40 2.021×10−40 1.017×10−20 

𝐹9 2.104×10−19 1.107×10−08 2.001×10−10 4.012×10−10 2.218×10−08 

𝐹10 5.001×10−14 4.044×10−10 2.021×10−12 1.010×10−10 1.075×10−16 

𝐹11 4.101×10−18 5.120×10−08 5.015×10−08 1.201×10−08 1.001×10−08 

𝐹12 2.100×10−14 1.102×10−10 2.001×10−11 1.005×10−10 4.021×10−12 

𝐹13 1.005×10−18 2.011×10−10 5.008×10−10 2.001×10−10 4.240×10−08 



9 

Table 4. Friedman’s average ranking test of different algorithms. 

Algorithms  Ranking 

DE/rand/1 5.61 

DE/best/1 5.03 

DE/target-to-best/1 4.13 

GDE 3.09 

PSODE 2.15 

M-DE 1.80 

Table 5. Function evaluations and success rate % of different algorithms. 

Func Measure DE/rand/1[2] DE/best/1[39] DE/target-to-best/1[40] GDE[41] PSODE[42] M-DE 

𝐹1 nFEs 118,197 112,408 91,496 72,081 18,204 8519 

SR 100% 100% 100% 100% 100% 100% 

𝐹2 nFEs 115,441 109,849 91,354 66,525 15,067 7867 

SR 100% 100% 100% 100% 100% 100% 

𝐹3 nFEs 110,254 125,474 87,014 75,408 18,564 8655 

SR 100% 100% 100% 100% 100% 100% 

𝐹4 nFEs 145,874 128,555 105,547 95,874 20,500 12,000 

SR 100% 100% 100% 100% 100% 100% 

𝐹5 nFEs 125,000 118,000 85,000 75,550 20,850 18,500 

SR 95.6% 96.02% 100% 100% 100% 100% 

𝐹6 nFEs 130,500 125,800 95,600 65,000 35,000 25,000 

SR 100% 100% 100% 100% 100% 100% 

𝐹7 nFEs 102,259 103,643 87,518 74,815 16,115 10,182  

SR 100% 100% 100% 100% 100% 100% 

𝐹8 nFEs 125,500 118,500 116,700 95,000 65,000 45,500 

SR 85.02% 96.05% 98.11% 100% 100% 100% 

𝐹9 nFEs 99,074 98,742 127,423 53,416 7701 5627  

SR 96.70%  100% 100% 100% 100% 100% 

𝐹10 nFEs 125,543 118,926 100,000 76,646 29,757 17,551  

SR 100% 100% 100% 100% 100% 100% 

𝐹11 nFEs 125,777 117,946 97,213 81,422 18,394 9014 

SR 60.00% 46.70% 56.70% 100% 100% 100% 

𝐹12 nFEs 125,500 125,550 100,500 82,500 38,500 25,000 

SR 100% 100% 100% 100% 100% 100% 

𝐹13 nFEs 120,500 120,200 110,500 85,000 44,500 28,500 

SR 100% 100% 100% 100% 100% 100% 

4.2. Graphical analysis  

In this section, the convergence results of the developed Modified Differential Evolution (M-DE) 

algorithm are analyzed using convergence curves. Convergence curves are graphical representations that 

illustrate the algorithm’s speed and accuracy in approaching the optimal solution compared to other methods. 

The convergence curves of M-DE are plotted alongside those of other state-of-the-art optimization 

algorithms on eight standard benchmark suites (𝐹1 , 𝐹5 , 𝐹6 , 𝐹7 , 𝐹8 , 𝐹9 , 𝐹10 , and 𝐹11), providing valuable 

insights into the algorithm’s performance. 



10 

Figures 2a–h displays the convergence curves for each benchmark suite, where the number of iterations 

is shown on the x-axis and the objective function values obtained from each algorithm on the same 

population or seed are depicted on the y-axis. The objective function values represent the quality of the 

candidate solutions generated by the algorithms, and lower values indicate better performance in terms of 

convergence accuracy. Upon analyzing the convergence curves, several key observations can be made: 

Quicker Convergence: The convergence curves for M-DE generally exhibit faster convergence 

compared to other methods. The algorithm efficiently refines its solutions over iterations, approaching the 

optimal solution rapidly. This is evident from the steeper slope of the convergence curves for M-DE, 

indicating a faster reduction in objective function values with increasing iterations. 

Better Accuracy: In most cases, the convergence curves for M-DE show better accuracy in reaching 

the optimal solution compared to other methods. The objective function values achieved by M-DE are 

consistently lower, indicating superior solutions in terms of optimization performance. 

Effective Escape from Local Optima: The observed faster convergence and better accuracy of M-DE 

suggest its capability to effectively escape local optima. Local optima are suboptimal solutions that are 

prevalent in complex optimization landscapes. The ability to jump out of local optima is a crucial aspect of 

any optimization algorithm, as it allows the algorithm to explore diverse regions of the search space and find 

global optima. 

The convergence curves provide compelling evidence of the M-DE algorithm’s superiority over other 

methods in terms of convergence speed and accuracy. Its effectiveness in escaping local optima suggests that 

the novel mutation strategy and time-varying control parameters incorporated into M-DE have successfully 

enhanced its exploration capability. 

The superior performance of M-DE observed in these convergence curves reinforces its potential as a 

robust and efficient optimization algorithm for a wide range of problem domains. It offers researchers and 

practitioners a reliable tool for tackling complex optimization challenges, especially when dealing with 

multimodal or deceptive landscapes where local optima are prevalent. The convergence curves presented in 

Figures 2a–h demonstrate the rapid convergence and high accuracy of the developed M-DE algorithm 

compared to other state-of-the-art optimization methods. Its ability to escape local optima effectively 

highlights the efficacy of the novel mutation strategy and time-varying control parameters. These results 

underscore M-DE’s potential as a powerful optimization tool, providing valuable insights for researchers and 

practitioners seeking efficient and effective solutions to various real-world optimization problems. 

0 100 200 300 400 500 600 700 800 900 1000

0.00
5.00x10

5
1.00x10

6
1.50x10

6
2.00x10

6
2.50x10

6
3.00x10

6
3.50x10

6
4.00x10

6
4.50x10

6
5.00x10

6
5.50x10

6
6.00x10

6
6.50x10

6
7.00x10

6
7.50x10

6
8.00x10

6
8.50x10

6
9.00x10

6
9.50x10

6
1.00x10

7

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

 
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.00
2.00x10

74.00x10
76.00x10
78.00x10
71.00x10
81.20x10
81.40x10
81.60x10
81.80x10
82.00x10
82.20x10
82.40x10
82.60x10
82.80x10
83.00x10
83.20x10
83.40x10
83.60x10
83.80x10
84.00x10
84.20x10
84.40x10
84.60x10
84.80x10
85.00x10
85.20x10
85.40x10
85.60x10
85.80x10
86.00x10
8

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
(a). 𝐹1 (b). 𝐹5 

Figure 2. (Continued). 



11 

0 200 400 600 800 1000 1200 1400 1600 1800

0.00
2.00x10

4
4.00x10

4
6.00x10

4
8.00x10

4
1.00x10

5
1.20x10

5
1.40x10

5
1.60x10

5
1.80x10

5
2.00x10

5
2.20x10

5
2.40x10

5
2.60x10

5
2.80x10

5
3.00x10

5
3.20x10

5
3.40x10

5
3.60x10

5
3.80x10

5
4.00x10

5
4.20x10

5
4.40x10

5
4.60x10

5
4.80x10

5
5.00x10

5
5.20x10

5
5.40x10

5

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
0 200 400 600 800 1000 1200 1400 1600 1800

0.00

5.00x10
7

1.00x10
8

1.50x10
8

2.00x10
8

2.50x10
8

3.00x10
8

3.50x10
8

4.00x10
8

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
(c). 𝐹6 (d). 𝐹7 

0 200 400 600 800 1000 1200 1400 1600 1800

-3.70x10
3

-3.60x10
3

-3.50x10
3

-3.40x10
3

-3.30x10
3

-3.20x10
3

-3.10x10
3

-3.00x10
3

-2.90x10
3

-2.80x10
3

-2.70x10
3

-2.60x10
3

-2.50x10
3

-2.40x10
3

-2.30x10
3

-2.20x10
3

-2.10x10
3

-2.00x10
3

-1.90x10
3

-1.80x10
3

-1.70x10
3

-1.60x10
3

-1.50x10
3

-1.40x10
3

-1.30x10
3

-1.20x10
3

-1.10x10
3

-1.00x10
3

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
0 200 400 600 800 1000 1200 1400 1600 1800

0.00
2.00x10

3
4.00x10

3
6.00x10

3
8.00x10

3
1.00x10

4
1.20x10

4
1.40x10

4
1.60x10

4
1.80x10

4
2.00x10

4
2.20x10

4
2.40x10

4
2.60x10

4
2.80x10

4
3.00x10

4
3.20x10

4
3.40x10

4
3.60x10

4
3.80x10

4
4.00x10

4
4.20x10

4
4.40x10

4
4.60x10

4
4.80x10

4
5.00x10

4

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
(e). 𝐹8 (f). 𝐹9 

0 200 400 600 800 1000 1200 1400 1600 1800

4.00x10
0

6.00x10
0

8.00x10
0

1.00x10
1

1.20x10
1

1.40x10
1

1.60x10
1

1.80x10
1

2.00x10
1

2.20x10
1

2.40x10
1

2.60x10
1

2.80x10
1

3.00x10
1

3.20x10
1

3.40x10
1

3.60x10
1

3.80x10
1

4.00x10
1

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
0 200 400 600 800 1000 1200 1400 1600 1800

0.00
2.00x10

2

4.00x10
2

6.00x10
2

8.00x10
2

1.00x10
3

1.20x10
3

1.40x10
3

1.60x10
3

1.80x10
3

2.00x10
3

2.20x10
3

2.40x10
3

2.60x10
3

2.80x10
3

3.00x10
3

3.20x10
3

3.40x10
3

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

Iterations  
(g). 𝐹10 (h). 𝐹11 

Figure 2. Convergence curves of M-DE with other methods. 



12 

In this section, the performance of the developed Modified Differential Evolution (M-DE) algorithm is 

further analyzed and compared to other state-of-the-art optimization methods using computational time, 

empirical distribution of normalized success performance, and performance chart.  

Figure 3 displays the computational time (in seconds) of M-DE alongside other algorithms on the six 

unimodal and seven multimodal benchmark functions. The graph demonstrates that M-DE consistently 

provides better results with significantly less computation time. This indicates M-DE’s powerful search 

performance, as it achieves superior optimization outcomes within shorter timeframes. The reduced 

computational time is of utmost importance in real-world applications where efficiency is critical for solving 

complex optimization problems. 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

T
im

e
 (

s)

Functions

 DE/rand/1

 DE/best/1

 DE/target-to-best/1

 GDE

 PSODE

 M-DE

 
Figure 3. Shows computational time (in seconds) required by the Modified Differential Evolution (M-DE) algorithm. 

Next, the empirical distribution of normalized success performance, a commonly used metric for 

performance comparison, is used to assess the overall performance of M-DE against the other algorithms. 

Figure 4 illustrates the empirical distribution of normalized success performance[44], showing how frequently 

each method outperforms the others across multiple trials. From the figure, it is evident that M-DE 

consistently outperforms the compared methods, achieving higher success rates and demonstrating its 

robustness and reliability in finding high-quality solutions. 

0.0 2.0x10
2

4.0x10
2

6.0x10
2

8.0x10
2

1.0x10
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
m

p
ir
ic

a
l 
d
is

tr
ib

u
ti
o
n
 o

v
e
r 

a
ll 

b
e
n
c
h
m

a
rk

 f
u
n
c
ti
o
n
s
 

SP/SP
best

 M-DE

 PSODE

 GDE

 DE/target-to-best/1

 DE/best/1

 DE/rand/1

 
Figure 4. Illustrates the empirical distribution of normalized success performance, which compares the effectiveness of the Modified 

Differential Evolution (M-DE) algorithm with other state-of-the-art optimization methods. 



13 

Figure 5 presents the performance chart[45] that further validates the superiority of M-DE over the other 

algorithms. The performance chart provides a comprehensive comparison of each algorithm’s performance 

on multiple benchmark functions, enabling a holistic assessment of their capabilities. In this chart, M-DE’s 

performance is shown to be the greatest among all the compared methods, indicating its effectiveness in 

solving a wide range of unconstrained optimization problems. The cumulative evidence from Figure 3, 

Figure 4, and Figure 5 reinforces the conclusion that the projected M-DE algorithm is a powerful optimizer 

for unconstrained optimization problems. Its superior performance in terms of computational efficiency, 

success rate, and overall performance compared to state-of-the-art methods underscores its effectiveness as a 

reliable and efficient optimization tool. 

 
Figure 5. The performance of the Modified Differential Evolution (M-DE) algorithm was compared with that of other optimization 

methods. 

The robustness and versatility of M-DE make it well-suited for various real-world optimization tasks, 

ranging from engineering and logistics to finance and data science. The novel mutation strategy and time-

varying control parameters incorporated into M-DE have proven to be instrumental in enhancing its 

exploration and exploitation capabilities, enabling it to find high-quality solutions more efficiently than its 

counterparts. 

The thorough analysis of M-DE’s performance through computational time, empirical distribution of 

normalized success performance, and performance chart confirms its status as a superior optimization 

algorithm. Its ability to consistently outperform other methods in terms of efficiency and solution quality 

solidifies its position as a powerful optimizer for unconstrained optimization problems. Researchers and 

practitioners can confidently rely on M-DE to tackle challenging optimization tasks and achieve optimal 

solutions in various real-world applications. 

5. Conclusion and future works 

In this research article, we proposed a modified differential evolution (M-DE) algorithm for tackling 

unimodal and multimodal problem optimization. The M-DE algorithm incorporates a novel mutation scheme 

inspired by particle swarm optimization, which effectively balances the diversity of the population. 

Additionally, we introduced time-varying mutant control parameters that aid individuals in escaping local 

optima, thereby enhancing the algorithm’s exploration and exploitation abilities. The integration of these 

features into M-DE has resulted in significant improvements in convergence speed, making it a more 

efficient optimization approach. 

To evaluate the performance of M-DE, extensive experiments were conducted on 6 unimodal and 7 

multimodal benchmark suites. The results of the experiments were compared against several state-of-the-art 

differential evolution variants and particle swarm optimization. The experimental findings clearly 

demonstrate that M-DE outperforms the compared algorithms in terms of both solution quality and 



14 

computational efficiency. M-DE consistently provided better results across all benchmark suites, achieving 

higher success rates and requiring less time to converge. 

6. Future scope 

The proposed M-DE algorithm shows great promise as an effective variant of differential evolution for 

solving unimodal and multimodal optimization problems. As such, there are several avenues for future 

research and potential extensions of this work: 

1) Hybrid Approaches: Investigate the potential benefits of combining M-DE with other optimization 

techniques, such as genetic algorithms or simulated annealing, to create hybrid algorithms that leverage 

the strengths of each approach. 

2) Parameter Tuning: Conduct more in-depth studies on fine-tuning the control parameters of M-DE to 

further enhance its performance on specific problem classes and real-world applications. 

3) Dynamic Environments: Explore the adaptability of M-DE in dynamic optimization scenarios, where 

the underlying optimization landscape changes over time. 

4) Constraint Handling: Extend M-DE to handle constraint optimization problems, allowing it to 

efficiently handle optimization tasks with constraints. 

5) Real-World Applications: Apply M-DE to various real-world optimization problems in fields like 

engineering, finance, logistics, and other domains to assess its practical effectiveness. 

6) Theoretical Analysis: Undertake theoretical analyses to gain a deeper understanding of the dynamics 

and convergence properties of M-DE in different problem scenarios. 

7) Parallelization: Investigate methods to parallelize M-DE for high-performance computing environments, 

enabling faster convergence on large-scale optimization tasks. 

By addressing these future research directions, M-DE can be further refined and adapted for various 

complex optimization challenges, solidifying its position as a valuable tool for solving real-world 

optimization problems efficiently. 

Author contributions 

Conceptualization, PT; methodology, PT, VNM and RPP; software, PT and RPP; validation, PT; formal 

analysis, PT; investigations, PT; resources, VNM; data curation, PT; writing—original draft preparation, PT; 

writing—review and editing, PT; visualization, RPP; supervision, VNM; project administration, VNM, 

funding acquisition, RPP. All authors have read and agreed to the published version of the manuscript. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. Parouha RP, Das KN. Parallel hybridization of differential evolution and particle swarm optimization for 

constrained optimization with its application. International Journal of System Assurance Engineering and 

Management 2016; 7(S1): 143–162. doi: 10.1007/s13198-015-0354-6 

2. Storn R, Price K. Differential evolution—A simple and efficient heuristic for global optimization over continuous 

spaces. Journal of Global Optimization 1997; 11(2): 341–359. doi: 10.1023/A:1008202821328 

3. Dhanalakshmy DM, Jeyakumar G, Velayutham CS. Empirical investigations on evolution strategies to self-adapt 

the mutation and crossover parameters of differential evolution algorithm. International Journal of Intelligent 

Systems Technologies and Applications 2021; 20(2): 103–125. doi: 10.1504/ijista.2021.119028 

4. Wang Y, Li B, Weise T. Estimation of distribution and differential evolution cooperation for large scale economic 

load dispatch optimization of power systems. Information Sciences 2010; 180(12): 2405–2420. doi: 

10.1016/j.ins.2010.02.015 



15 

5. Dragoi EN, Curteanu S, Galaction AI, Cascaval D. Optimization methodology based on neural networks and self-

adaptive differential evolution algorithm applied to an aerobic fermentation process. Applied Soft Computing 

2013; 13(1): 222–238. doi: 10.1016/j.asoc.2012.08.004 

6. Mesejo P, Ugolotti R, Di Cunto F, et al. Automatic hippocampus localization in histological images using 

differential evolution-based deformable models. Pattern Recognition Letters 2013; 34(3): 299–307. doi: 

10.1016/j.patrec.2012.10.012 

7. Li X, Hu C, Yan X. Chaotic differential evolution algorithm based on competitive coevolution and its application 

to dynamic optimization of chemical processes. Intelligent Automation & Soft Computing 2013; 19(1): 85–98. doi: 

10.1080/10798587.2013.771437 

8. Das KN, Parouha RP. Optimization with a novel hybrid algorithm and applications. OPSEARCH 2016; 53(3): 

443–473. doi: 10.1007/s12597-015-0240-7 

9. Parouha RP, Das KN. Economic load dispatch using memory based differential evolution. International Journal of 

Bio-Inspired Computation 2018; 11(3): 159–170. doi: 10.1504/ijbic.2018.091700 

10. Neri F, Tirronen V. Recent advances in differential evolution: A survey and experimental analysis. Artificial 

Intelligence Review 2010; 33(1–2): 61–106. doi: 10.1007/s10462-009-9137-2 

11. Das S, Suganthan PN. Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary 

Computation 2011; 15(1): 4–31. doi: 10.1109/tevc.2010.2059031 

12. Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution—An updated survey. Swarm and 

Evolutionary Computation 2016; 27: 1–30. doi: 10.1016/j.swevo.2016.01.004 

13. Eltaei T, Mahmood A. Differential evolution: A survey and analysis. Applied Sciences 2018; 8(10): 1945. doi: 

10.3390/app8101945 

14. Opara KR, Arabas J. Differential evolution: A survey of theoretical analyses. Swarm and Evolutionary 

Computation 2019; 44: 546–558. doi: 10.1016/j.swevo.2018.06.010 

15. Bilal, Pant M, Zaheer H, et al. Differential evolution: A review of more than two decades of research. Engineering 

Applications of Artificial Intelligence 2020; 90: 103479. doi: 10.1016/j.engappai.2020.103479 

16. Ahmad MF, Isa NAM, Lim WH, Ang KM. Differential evolution: A recent review based on state-of-the-art works. 

Alexandria Engineering Journal 2022; 61(5): 3831–3872. doi: 10.1016/j.aej.2021.09.013 

17. Lampinen J, Zelinka I. On stagnation of the differential evolution algorithm. In: Proceedings of MENDEL 2000, 

6th International Mendel Conference on Soft Computing; 7–9 June 2000; Brno, Czech Republic. pp. 76–83. 

18. Coelho L dos S, Souza RCT, Mariani VC. Improved differential evolution approach based on cultural algorithm 

and diversity measure applied to solve economic load dispatch problems. Mathematics and Computers in 

Simulation 2009; 79(10): 3136–3147. doi: 10.1016/j.matcom.2009.03.005 

19. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF. Differential evolution algorithm with ensemble of 

parameters and mutation strategies. Applied Soft Computing 2011; 11(2): 1679–1696. doi: 

10.1016/j.asoc.2010.04.024 

20. Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control 

parameters. IEEE Transactions on Evolutionary Computation 2011; 15(1): 55–66. doi: 10.1109/tevc.2010.2087271 

21. Gong W, Fialho A, Cai Z, Li H. Adaptive strategy selection in differential evolution for numerical optimization: 

An empirical study. Information Sciences 2011; 181(24): 5364–5386. doi: 10.1016/j.ins.2011.07.049 

22. Gong W, Zhou A, Cai Z. A multioperator search strategy based on cheap surrogate models for evolutionary 

optimization. IEEE Transactions on Evolutionary Computation 2015; 19(5): 746–758. doi: 

10.1109/tevc.2015.2449293 

23. Wu G, Mallipeddi R, Suganthan PN, et al. Differential evolution with multipopulation based ensemble of mutation 

strategies. Information Sciences 2016; 329: 329–345. doi: 10.1016/j.ins.2015.09.009 

24. Zou D, Li S, Wang GG, et al. An improved differential evolution algorithm for the economic load dispatch 

problems with or without valve-point effects. Applied Energy 2016; 181: 375–390. doi: 

10.1016/j.apenergy.2016.08.067 

25. Neto JXV, Reynoso-Meza G, Ruppel TH, et al. Solving non-smooth economic dispatch by a new combination of 

continuous GRASP algorithm and differential evolution. International Journal of Electrical Power & Energy 

Systems 2017; 84: 13–24. doi: 10.1016/j.ijepes.2016.04.012 

26. Zhang Q, Zou D, Duan N, Shen X. An adaptive differential evolutionary algorithm incorporating multiple 

mutation strategies for the economic load dispatch problem. Applied Soft Computing 2019; 78: 641–669. doi: 

10.1016/j.asoc.2019.03.019 

27. Ma H, Shen S, Yu M, et al. Multi-population techniques in natureinspired optimization algorithms: A 

comprehensive survey. Swarm and Evolutionary Computation 2019; 44: 365–387. doi: 

10.1016/j.swevo.2018.04.011 

28. Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Transactions on 

Evolutionary Computation 2008; 12(1): 107–125. doi: 10.1109/tevc.2007.895272 

29. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE İnternational Conference on Neural 

Networks 1995; 4: 1942–1948. 

30. Jia D, Zheng G, Khan MK. An effective memetic differential evolution algorithm based on chaotic local search. 

Information Sciences 2011; 181(15): 3175–3187. doi: 10.1016/j.ins.2011.03.018 



16 

31. Dhaliwal JS, Dhillon J. Profit based unit commitment using memetic binary differential evolution algorithm. 

Applied Soft Computing 2019; 81: 105502. doi: 10.1016/j.asoc.2019.105502 

32. Zuo M, Dai G, Peng L, et al. A case learning-based differential evolution algorithm for global optimization of 

interplanetary trajectory design. Applied Soft Computing 20220; 94: 106451. doi: 10.1016/j.asoc.2020.106451 

33. Parouha RP, Verma P. State-of-the-art reviews of meta-heuristic algorithms with their novel proposal for 

unconstrained optimization and applications. Archives of Computational Methods in Engineering 2021; 28(5): 

4049–4115. doi: 10.1007/s11831-021-09532-7 

34. Parouha RP, Das KN. A memory based differential evolution algorithm for unconstrained optimization. Applied 

Soft Computing 2016; 38: 501–517. doi: 10.1016/j.asoc.2015.10.022 

35. Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: A comparative 

study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 2006; 10(6): 646–657. 

doi: 10.1109/tevc.2006.872133 

36. Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical 

optimization. IEEE Transactions on Evolutionary Computation 2009; 13(2): 398–417. doi: 

10.1109/tevc.2008.927706 

37. Das KN, Parouha RP. An ideal tri-population approach for unconstrained optimization and applications. Applied 

Mathematics and Computation 2015; 256: 666–701. doi: 10.1016/j.amc.2015.01.076 

38. Verma P, Parouha RP. An advanced hybrid algorithm for engineering design optimization. Neural Processing 

Letters 2021; 53(5): 3693–3733. doi: 10.1007/s11063-021-10541-7 

39. Das S, Abraham A, Chakraborty UK, Konar A. Differential evolution using a neighborhood-based mutation 

operator. IEEE Transactions on Evolutionary Computation 2009; 13(3): 526–553. doi: 10.1109/tevc.2008.2009457 

40. Cheshmehgaz HR, Desa MI, Wibowo A. Effective local evolutionary searches distributed on an island model 

solving bi-objective optimization problems. Applied Intelligence 2013; 38(3): 331–356. doi: 10.1007/s10489-012-

0375-7 

41. Han MF, Liao SH, Chang JY, Lin CT. Dynamic group-based differ-ential evolution using a self-adaptive strategy 

for global optimization problems. Applied Intelligence 2013; 39(1): 41–56. doi: 10.1007/s10489-012-0393-5 

42. Liu H, Cai Z, Wang Y. Hybridizing particle swarm optimization with differential evolution for constrained 

numerical and engineering optimization. Applied Soft Computing 2010; 10(2): 629–664. doi: 

10.1016/j.asoc.2009.08.031 

43. Derrac J, Garcia S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a 

methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary 

Computation 2011; 1(1): 3–18. doi: 10.1016/j.swevo.2011.02.002 

44. García S, Molina D, Lozano M, Herrera F. A study on the use of non-parametric tests for analyzing the 

evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter 

Optimization. Journal of Heuristics 2009; 15: 617–644. doi: 10.1007/s10732-008-9080-4 

45. Parouha RP, Das KN. DPD: An intelligent parallel hybrid algorithm for economic load dispatch problems with 

various practical constraints. Expert Systems with Applications 2016; 63: 295–309. doi: 

10.1016/j.eswa.2016.07.012 

 


