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ABSTRACT

Approximately 30% of traffic accidents in the world are attributed to driver drowsiness. Various approaches have

been suggested by different research teams to detect drowsiness, but their methods have drawbacks. Some involve

invasive techniques that cause driver discomfort, some involve too many false positives that cause distractions while

driving while others rely on complex models that are too resource-intensive. In this paper, we present SleepyWheels, a

novel drowsiness detection system. Our key insight is the combined use of two lightweight neural networks: a binary

classifier and a facial landmark detector. This innovative approach minimizes false positives and proves resilient across

diverse testing scenarios, such as different camera positions, variations in skin tone and when there is obscurement of

facial features by objects like eyewear. Research outcomes include a working prototype of the system, a custom dataset

for training the classifier and a trained model, which attains an impressive 97% accuracy rate. Deployment and testing

were performed on Windows 10 but the system can be deployed on edge devices like Raspberry Pi. The lightweight

nature of the models unlocks possibilities of deployment on mobile and embedded devices for use in vehicles.

Keywords: accident prevention; convolutional neural networks; deep learning; facial recognition

1. Introduction

According to WHO, sleepiness while driving accounts for up to

30% of the world’s traffic accidents[1]. Up to 20% of traffic accidents

in the USA[2], more than 20% in India[3] and 20% to 30% in Australia[4]

are a result of drivers experiencing fatigue while operating their

vehicle. The gravity of the situation becomes apparent when

considering the annual estimates of fatalities. Approximately 150,000

individuals in India lose their lives each year in road-related incidents,

with a significant portion of 60,000 fatalities attributed to driver

drowsiness. The U.S. National Highway Traffic Safety Administration

(NHTSA) further underscores the severity of this problem, reporting

an excess of 100,000 traffic accidents annually, leading to a distressing

toll of 1500 fatalities and over 71,000 individuals sustaining injuries[2].

These stark figures unequivocally emphasize the crucial necessity for

vigilant oversight and timely intervention on the roads.

The gruesome effect of drowsy driving on society is amplified

further when statistics of Vulnerable Road Users (VRUs) are taken
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into account. VRUs are the people other than the drivers who are involved in a crash, like pedestrians, cyclists, 

motorcyclists, etc. They do not have the protection offered by air bags and the vehicle’s enclosure, unlike 

drowsy drivers, which makes them more susceptible to fatality during accidents. According to a report by 

PIARC Road Safety Knowledge 2023, in 2016, there were 1.35 million road traffic deaths worldwide, of which 

54% were VRUs[5]. In the USA, there were 10,386 VRU fatalities in 2012, which increased to 12,530 in 2019[6]. 

While there is a lack of statistics about the percentage of VRUs directly affected by drowsy driving, the 

following facts help assess the situation. According to Sun Coast Traffic School, about two-thirds of pedestrian 

deaths in the USA occur at night or under low-light conditions[7]. According to the CDC, about 1 in 5 of the 

people who died in crashes involving a distracted driver in 2019 were not in vehicles[8]. 

Brake fails, worn-out tires, slippery roads, confusing traffic signs, absence of streetlights and inclined roads 

on hills are some of the leading causes of road accidents that are independent of the driver’s alertness[9,10]. In 

contrast to these, forfeiting the use of protective gear, road rage, ignoring the speed limit, distractions, drunk 

driving, ignoring traffic lights, and driving while sleepy are the leading causes of road accidents that are directly 

linked to the driver’s decision-making[11,12]. While road and vehicle maintenance can deal with driver-

independent factors and law enforcement can deal with driver-related factors like drunkenness, red light jumping 

and the lack of safety gear, there exists a huge void in the area of keeping a check on how sleepy the driver is. 

This article focuses on monitoring a very important but overlooked factor that compromises the alertness of a 

driver: sleepiness. Our article outlines the creation and testing of the SleepyWheels app for drowsiness detection 

in drivers undertaking long travels. 

The article is divided into the following sections. The second section describes the problem statement, 

motivation and the uniqueness of our solution. The third section presents a brief comparison between solutions 

suggested in state-of-the-art literature and how our system outperforms existing systems. The fourth section 

describes our proposed solution. The fifth section describes the components of our system. The sixth section is 

about system architecture and the steps involved in its workflow. The seventh section describes the dataset 

creation process. The eighth and ninth sections explain the process of training the convolutional neural network. 

The tenth section describes how the system was deployed and tested. The eleventh section presents the results 

obtained. The twelfth section concludes the article by summarizing its main points and suggesting areas for 

future research. 

Motivation 

Statistics confirm that most drowsiness-related accidents happen between 2 and 5 AM[2,13]. People like oil 

tanker drivers and truck drivers often have no choice but to work at these odd times. Behavioral monitoring[14], 

ECG[15] and other similar forms of supervision require special equipment attached to the driver, which might 

make driving for long periods of time uncomfortable. Vehicle or steering monitoring[16] also needs special 

equipment attached to working vehicle parts while being unable to solve the problem of numerous false positive 

detections. However, a solution based on computer vision does not impose such requirements. The main 

motivation behind choosing computer vision to tackle this problem is its practical advantages such as not 

requiring invasive gear that physically interferes with driving and not needing any more sophisticated equipment 

than a camera and a speaker. 

Past research works have proposed putting multiple models to use in unison[17] and deploying isolated 

models independently. However, such systems have their shortcomings. Too many parallel machines bring 

confusion, computational load and a lack of decisiveness. In contrast, isolated deployments of such systems 

yield unpromising results. The approach of choosing just two models in unison proves to be a balanced solution 

in this trade-off. It is also worth noting that deep learning technology has long been seen as an improver of 

lifestyle and efficiency of tasks and as the key to reliable automation. Its ability to save lives has been restricted 
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largely to breakthroughs that are put to use within the four walls of a medical facility. Hence, this project stands 

as a testament to prove that technology has the ability to save lives before a victim becomes a patient and reaches 

the hospital. 

Numerous scientific studies in recent years have sought solutions to address the issue of accidents resulting 

from driver drowsiness. Some techniques involve the harnessing of physiological signals, including 

ElectroEncephaloGram (EEG)[18,19], ElectroOculoGram (EOG)[20,21], ElectroCardioGram (ECG)[15], and 

ElectroMyoGram (EMG)[22]. These methods involve the measurement of electrical activity across distinct areas 

of the human body, encompassing the brain, eyes, heart, and skeletal muscles. By analyzing the collected data, 

insights into the driver’s real-time alertness can be derived. However, the implementation of these approaches 

mandates the placement of specialized equipment on the driver’s body, causing discomfort and potential 

distraction during driving. 

Alternatively, techniques reliant on vehicle status have been employed to gauge driver alertness. These 

methods monitor parameters such as the steering wheel’s rotation, pressure on the accelerator pedal, and 

frequency of lane changes. Such strategies assess the driver’s performance by correlating real-time vehicle data 

with measurements of physiological signals. Deng et al.[23] devised a mechanism leveraging facial landmarks to 

track the driver’s facial expressions, identifying signs of drowsiness like yawning, eye closure, and frequent 

blinking. Verma et al.[24] adopted a dual VGG16 model ensemble for emotion detection. Notably, this approach 

employed image-derived regions of interest (ROI) for one CNN and facial landmark points for the other. 

Combining the scores from both models yielded the final decision. While the architecture utilized in this 

approach is outdated, its methodology served as a source of inspiration for the work detailed in this article. 

In a different vein, Xing et al.[25] aimed to detect routine driver actions, including mirror checks, phone 

answering, and setting up in-vehicle video devices. They employed a Kinect camera to record these actions and 

extracted 42 features from the video feeds. Utilizing random forests to predict feature importance, they 

subsequently trained a feed-forward network achieving an 80.7% accuracy rate in predicting alertness. Yawn 

detection unbiased by factors like race, complexion, or facial accessories was the focus of Abtahi et al.[26]. They 

curated a diverse dataset to encompass a broad range of scenarios, which in turn inspired the diversity of the 

SleepyWheels dataset. Notably, their work yielded a reported accuracy of 60% in yawn detection. The unique 

solution proposed in this article is to parallelly combine the two best techniques available: facial landmark 

detection and convolutional neural network classification, in a simple but effective two-threaded ensemble 

model. The facial landmark detector is Google’s BlazeFace, using which aspect ratios of the eyes and the mouth 

are calculated to detect sleepiness. The convolutional neural network architecture chosen is the 

EfficientNetV2B0, which once adapted for this use case via transfer learning, classifies a frame from the 

camera’s feed as sleepy or alert. 

2. Literature survey 

Many solutions have been proposed aimed at tackling the problem of drowsiness detection in drivers. “A 

Review of Recent Developments in Driver Drowsiness Detection Systems” by Albadawi et al.[27] and “Trends 

and Future Prospects of the Drowsiness Detection and Estimation Technology” by Toshiya Arakawa et al.[28] 

are notable works that summarize and classify solutions published in the past decade. 

The first class of techniques is based on a comparatively early approach which is based on analyzing 

driving patterns. This method employs a camera feed to observe the rotations of the steering wheel, subsequently 

comparing these rotations with deviations from the anticipated trajectory based on driving behavior analysis. 

The main challenge faced by these solutions is that they depend on potentially unreliable factors such as road 

conditions, vehicle status and driver expertise. Following is a discussion of solutions that fall in this category. 

Krajewski et al.[29] harnessed this connection between subtle adjustments of the steering wheel aimed at staying 
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on the intended course and the driver’s level of alertness, resulting in an 86% accuracy rate. Ma et al.[30] 

developed a drowsy driver detection model based on lateral distance, using lane curvature, position, and 

curvature derivative data obtained from a front bumper-mounted camera and a transportable instrumentation 

package system. Facial and head movement data collected from real-time video recording were used as ground 

truth. Signals were analyzed, and SVM and neural network algorithms achieved detection accuracies over 90%. 

Arefnezhad et al.[31] developed a non-invasive system using steering wheel data and enhancing classification 

accuracy through feature selection. They employed adaptive neuro-fuzzy inference systems (ANFIS), filter 

algorithms, and an SVM classifier on a dataset of 39 bus drivers, resulting in a 98.12% accuracy rate after 

optimizing ANFIS parameters with particle swarm optimization. Jeon et al.[32] introduced a method for detecting 

drowsy driving based on vehicle sensor data from the steering wheel and pedal pressure. They classified drowsy 

driving into long-time and short-time types and developed an ensemble network model with convolutional 

neural networks specialized for each type. Imbalanced data handling was used for efficient training. Using a 

dataset of 198.3 hours of in-vehicle sensor data, the model achieved up to 94.2% accuracy in detecting 

drowsiness during driving. 

The second class of techniques analyzes neuromuscular data generated using Electrocardiography (ECG), 

Electrooculography (EOG), Electroencephalography (EEG), etc. to judge alertness. These techniques can yield 

accuracies of over 90%. However, the main challenges faced are that they are expensive and mandate the 

attachment of numerous sensors on the body which make these solutions impractical for regular use. Here is a 

discourse on some solutions from this category. Li et al.[33] introduced a driver drowsiness detection system 

using EEG signals and an SVM-based posterior probabilistic model. The driver wore a smartwatch and a 

Bluetooth EEG. Unlike traditional systems with discrete labels, this model provides a continuous measure for 

drowsiness between 0 and 1, allowing more granularity. The system achieved accuracy rates of 91.92% for 

drowsy, 91.25% for alert, and 83.78% for early warning states. Taran and Bajaj[34] introduced a drowsy driver 

detection method based on adaptive Hermite decomposition of EEG signals. They used evolutionary 

optimization algorithms to adaptively select Hermite functions for each signal from the MIT/BIH database. 

Extracted features from Hermite coefficients were tested with various classifiers, with Extreme Learning 

Machine (ELM) achieving the highest accuracy of 92.28%. Guede-Fernández et al. introduced a novel algorithm 

based on respiratory signal variations. They used three sensors for respiratory signal tracking, conducting tests 

with 20 volunteers in a simulator cabin. Their algorithm analyzed respiratory rate variability (RRV) to detect 

driver alertness changes, achieving a 90.3% sensitivity and 96.6% specificity by combining two methods for 

error reduction. Koh et al.[35] developed a method utilizing PPG signals from sensors on fingers and earlobes. 

With 20 subjects in a driving simulator, they analyzed LF, HF, and LF/HF values, using Telescan and KITECH 

programs. Drowsiness was detected through decreases in LF and LF/HF values and an increase in HF value, 

showing significant differences in PPG signals for alert and drowsy states. 

The third category of methods utilizes computer vision techniques. This involves the analysis of 

intermittently captured images or video frames from a camera to identify behavioral indicators such as yawning, 

recurrently lowering one’s head, frequent blinking, extended periods of closed eyes, etc. These methods are less 

intrusive and comparatively cheap. The main challenges faced when implementing these methods are the 

requirement of a well-lit environment, numerous false positive alarms and the use of large performance-

intensive models that cannot run on edge devices. Here is a discussion of notable works in this domain. 

Danisman et al.[36] devised an approach that establishes a correlation between the degree of eyelid closure and 

the level of drowsiness. Their methodology is grounded in the assumption that the frequency of blinks per 

minute rises proportionally with sleepiness. Consequently, this parameter was employed to classify drivers into 

the three distinct levels of drowsiness delineated within their research study. You et al.[37] introduced a real-time 

driver fatigue detection algorithm based on facial motion information entropy. It consists of four modules: face 
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positioning, feature vector extraction, face feature vectors, and fatigue judgment. Using an open-source dataset, 

they achieved 94.32% accuracy, employing SVM for judgment based on motion information entropy. Knapik 

and Cyganek[38] introduced a driver fatigue detection system using long-range infrared thermal imaging, 

focusing on yawning detection. They created a specialized dataset and employed cascaded modules for face, 

eye corners, and yawn detection. By using thermal voxel sum methods, they achieved 71% accuracy for cold 

voxels and 87% for hot voxels, triggering an alarm upon detecting fatigue. Dua et al.[39] modified the Viola-

Jones object detection algorithm to measure drowsiness by studying the nature, duration and frequency of yawns. 

In modern times, techniques that use Convolutional Neural Networks (CNNs) have been very effective for use 

cases like image classification/ segmentation, object detection/tracking and recognition of emotion. Dwivedi et 

al.[40] employed shallow CNNs to achieve 78% accuracy in detecting drowsiness in drivers. Park et al.[41] 

developed a triple-layered architecture employing an AlexNet[42], a VGG-FaceNet[43] and a FlowImageNet[44] for 

extracting low-level to complex behavioral features in a step-by-step manner, garnering an accuracy of 73%. 

Deep learning networks like CNNs detect sleepiness very accurately but typically have high memory and 

processing requirements which makes their installation on edge devices unideal. However, in recent times, 

EfficientNets are closing the gap between performance and lightweight models. 

The fourth category consists of hybrid solutions that use a combination of the solutions that fall under 

previously discussed categories. Here is a discussion of some notable works in this category. Saito et al.[45] 

introduced a driver assistance system identifying drowsiness through eyelid, steering wheel, and lane departure 

cues. It takes control if the driver doesn’t respond, achieving 100% accuracy in specific conditions with 20 

participants. Mehreen et al.[46] developed a non-invasive system using a wearable headband with accelerometer, 

gyroscope, and EEG electrodes. They achieved 92% accuracy with linear SVM after feature selection, 

combining multiple signals and analyzing driver behavior. Gwak et al. explored early drowsiness detection 

using vehicle-based, physiological, and behavioral metrics with 16 participants. They extracted 80 features from 

data and videos, then used random forest and majority voting classifiers. Random forest achieved 82.4% 

accuracy for alert vs. slightly drowsy, and majority voting reached 95.4% for alert vs. moderately drowsy states. 

Leng et al.[47] introduced a wearable device that combines motion and biomedical sensors to detect driver 

drowsiness via a mobile app. Their system uses a wristband with galvanic skin response and 

photoplethysmogram sensors, plus a smartwatch with accelerometer and gyroscope sensors to monitor steering 

wheel movement. An SVM algorithm analyzes data, achieving 98.3% accuracy. 

The world’s top automobile manufacturers already offer drowsiness detection as a feature in their products. 

Examples are Volvo’s Driver Alert system, Volkswagen’s Fatigue Detection System, Renault’s Tiredness 

Detection Warning (TDW), Nissan’s Driver Attention Alert (DAA), Jaguar Land Rover’s Driver Fatigue Alert, 

Subaru’s Wobble Alarm system, Honda’s Driver Attention Monitor and BMW’s Active Driving Assistant to 

name a few. But most of these rely solely on driving patterns formulated based on the driver’s interaction with 

the pedals and steering wheel. The intent of the SleepyWheels research is to prove the efficacy of a simple 

computer vision-based ensemble model over the traditional methods used in today’s automobile products. Table 

1 showcases a comparative analysis of a few systems developed using the idea of computer vision. 
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Table 1. Modern drowsiness detection systems. 

Ref. Sensor Features Algorithm Metric Dataset 

Sleepy 

Wheels 

Camera Video feed of upper body Ensemble model: 

landmark detector and 

CNN 

Accuracy: 97% Custom dataset 

[48] Smartphone 

camera 

Frequency and duration of 

yawns and blinks, pulse, 

heart beat 

Multichannel second-

order blind 

identification 

Sensitivity: 94% Custom dataset 

[49] Smartphone Touch 

response, PERCLOS, vocal 

data 

Linear Support Vector 

Machines 

Accuracy: 93% Custom dataset 

called 

“Invedrifac” 

[50] EOG, ECG & 

EEG sensors 

Frequency & duration of 

blinks/closed eyes, heart 

rate, alpha and beta bands 

power 

Fisher’s linear 

discriminant analysis 

method 

Accuracy: 79.2% MIT/BIH 

polysomnographic 

database 

[51] Camera Facial expression, 

movements of eyelids, gaze 

& head 

Kalman filtering 

tracking 

AECS: 95% 

Yawn: 82% 

PERCLOS: 86% 

Custom dataset 

[52] Camera Driver’s performance data, 

movement of the eyes 

Support Vector 

Machines 

Accuracy: 81.1% Custom dataset 

[53] PPG, sensor, 

accelerometer, 

and gyroscope 

Linear acceleration and 

radian speed of steering 

wheel, pulse, heart & 

respiratory rate and 

variability, stress level 

Support Vector 

Machines 

Accuracy: 98.3% Custom dataset 

[45] Computers that 

generate images, 

modified steering 

system, automatic 

gearbox 

Speed, steering angle, 

lateral position, opening 

degree, yaw angle, driver’s 

input torque, eyelid, etc. 

Series of mathematical 

operations 

Up to 100% accuracy in 

assuming vehicle control 

when specified 

conditions were met 

Custom dataset 

[54] Monitoring 

system, simulator 

LF/HF, PERCLOS, SWA, 

etc. 

RF and majority voting 

(KNN, SVM, logistic 

regression) classifiers 

Accuracy, precision, 

sensitivity: 

RF classifier: 

Labels for slightly 

drowsy: 82.4%, 81.6%, 

84.1% 

Majority voting: 

Labels for Moderately 

drowsy: 95.4%, 97.1%, 

92.9% 

Custom dataset 

[37] Camera Face feature vectors SVM Accuracy: 94.32% YawDD dataset 

[55] Three respiratory 

inductive 

plethysmography 

sensors 

RRV and quality of the 

respiratory signals 

Thoracic effort-derived 

drowsiness 

Sensitivity: 90.3% Custom dataset 

[38] Infrared sensor Yawning Cold and hot voxels Accuracy: 

Cold voxels: 71%, 

Hot voxels: 87% 

Custom dataset 

3. Materials and methods 

The proposed solution of the SleepyWheels system parallelly combines outputs of two state-of-the art 

techniques: facial landmark detection and convolutional neural network classification, in a simple but effective 

multithreaded ensemble model. The advantage of this approach is two-fold: firstly, the simplicity in design 

reduces the computation burden on the deployment platform thus opening doors to embedded systems and 

mobile platforms in contrast to using numerous sensors and multiple ML models in parallel; secondly, this 

approach provides better accuracy and reduced false positive alarm-triggers that upset the focus of the driver. 
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The facial landmark detector used is BlazeFace[56] from Google’s Mediapipe[57]. It provides the information 

required to calculate aspect ratios of the eyes and the mouth which are used to detect sleepiness. The 

convolutional neural network model used is an EfficientNetV2B0 adapted for this use case via transfer learning. 

It is trained into a binary classifier that classifies a frame from the camera’s feed as sleepy or alert. 

3.1. Proposed deep learning architectures 

3.1.1. EfficientNetV2B0 as binary classifier 

EfficientNet[58] is a convolutional neural network architecture developed by Google. It is the brainchild of 

a new model scaling methodology whereby a model’s depth, width and resolution are scaled uniformly instead 

of arbitrarily. Version 1 of these networks borrowed MobileNet’s inverted bottleneck residual blocks and 

combined them with the novel squeeze-and-excitation blocks. The EfficientNetV2[59] family of models has some 

improvements like the use of fused-MBConv blocks along with regular MBConv blocks. These models are 

known to achieve higher accuracies with fewer parameters. 

EfficientNets also adapt/specialize well when trained on new datasets through transfer learning. Fine-tuned 

EfficientNets often emerge to be among the state-of-the-art models while using a comparatively lower number 

of parameters when trained on benchmark datasets like CIFAR-100 (91.7%) and Flowers (98.8%). 

In the Sleepywheels app, a custom top is added to a headless EfficientNetV2B0 loaded with weights trained 

on ImageNet. This network is trained using the techniques of transfer-learning and fine-tuning to develop the 

binary classification model that decides if a face/upper body shows signs of drowsiness or not. Some important 

architectural components of this network are explained below. 

• Swish Activation: Swish is a multiplication of a linear and a sigmoid activation. It is proven to yield higher 

accuracies than ReLu in models like InceptionResNet and EfficientNet. The activation function is shown 

in Equation (1). 

𝑠𝑤𝑖𝑠ℎ(𝑥) = 𝑥 𝑠𝑖𝑔𝑚𝑜𝑑(𝑥) (1) 

• Inverted Residual/MBConv Block: Originally introduced in the MobileNetV2[60] architecture, inverted 

residual blocks start with a widening pointwise convolution, then apply a highly efficient depth-wise 

convolution which is followed by a compressing pointwise convolution. This approach largely decreases 

the number of trainable parameters. 

• Squeeze and Excitation Block: The Squeeze and Excitation technique grants the network the special ability 

to treat different channels with different importance. Every channel’s importance takes the form of a weight 

that is treated like a trainable hyperparameter. This new parameter is used to make smarter decisions when 

judging a multi-channel output, thus leading to higher accuracies. 

• Fused-MBConv Block: Performing depth-wise convolutions within MBConv blocks reduces the number 

of parameters significantly but this does not always translate to improved training speeds because modern 

accelerators cannot take advantage of such architectural optimizations. Experiments reported an 

improvement in training speed when MBConv blocks that are part of the first few layers of an EfficientNet 

model were swapped with fused MBConv blocks that use regular convolution. Hence, researchers 

recommend the use of a neural architecture search to strike a balance in this efficiency versus training 

speed trade-off. 

3.1.2. Facial landmark detector 

MediaPipe Face Mesh[61] is a landmark detector that can output a stream of estimated locations of important 

landmarks on the human face like border points of the eyes, nose and mouth in real-time. It can infer the three-

dimensional surface of a person’s face without the need for a depth sensor. 
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It uses a combination of a detector model and a landmark generator model. The detector is tasked with 

providing the landmark generator a crop of the face from the original image. The landmark generator is tasked 

with predicting the facial surface and assigning new positions to the landmarks. 

MediaPipe has optimized this pipeline so that the landmark generator can use previous facial crops to 

continue updating the landmark positions in case the face has not exited the bounds of the crop. This helps 

reduce unnecessary use of the detector thus saving power, memory and CPU utilization. 

The detector uses a model called BlazeFace. It is a lightweight face detector that performs well on mobile 

GPUs. It is ideal for real-time face detection since it can run at speeds of over 200 frames per second (FPS) on 

most mobile devices. It performs feature extraction using a MobileNetV2-based model and anchoring using a 

Single Shot MultiBox Detector (SSD). It is capable of returning 468 3D facial landmarks in microseconds. 

Nodes representing these landmarks are shown in the depiction of the face mesh in Figure 1. 

 
Figure 1. 468 landmarks returned by MediaPipe’s Face Mesh[60]. 

Aspect ratio is typically defined as the proportional relationship between the width of an image and its 

height. It influences the perceived size and shape of an image. In computer vision, this ratio is often inversed 

when height is of more significance. Eye Aspect Ratio (EAR)[62] is a metric used to measure how open an eye 

is and Mouth Aspect Ratio (MAR)[63] is used to measure how open a mouth is EAR and MAR are calculated as 

the ratio of the average height of the eye or the mouth to its width. This means that a higher value represents the 

eye or the mouth image having a greater height, i.e., it being more open. There is a concept called Modified Eye 

Aspect Ratio (mEAR)[64] which is a variation of the EAR metric that may incorporate additional adjustments or 

features to improve the accuracy of the eye state detection, like PERCLOS[65], Temporal Filtering[64], 

Hysteresis[62], etc. but it is not used in this study in order to keep the processing of each video frame lean and 

performant. The face mesh landmarks with node numbers 30, 29, 28, 243, 22, 24, 463, 258, 259, 359, 254 and 

252 are used to calculate EAR and the face mesh landmarks with node numbers 61, 39, 0, 269, 287, 405, 17, 

181 are used to calculate MAR. 

Table 2 gives the node numbers for the left and right eye landmarks from the face mesh and Figure 2 

shows the landmark points for a closed and open eye. Equation (2) calculates the EAR values by dividing the 

average eye height (average of the lengths of the lines p2–p6 and p3–p5) by the eye width (length of the line 

p1–p4). 

𝐸𝐴𝑅 =
||𝑝2 − 𝑝6|| + ||𝑝3 − 𝑝5||

2 × ||𝑝1 − 𝑝4||
 (2) 
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Table 2. Node numbers of eye landmarks. 

Variable Left eye landmark Right eye landmark 

p1 30 463 

p2 29 258 

p3 28 259 

p4 243 359 

p5 22 254 

p6 24 252 

 

 
(a) 

 
(b) 

Figure 2. Measurement of eye aspect ratio (EAR): (a) Measurement made on a closed eye; (b) Measurement made on an open eye. 

Table 3 gives the node numbers of the mouth landmarks from the face mesh and Figure 3 shows the 

landmark points for a closed and open mouth. Equation (3) calculates the MAR values by dividing the average 

mouth height (average of the lengths of the lines p2–p8, p3–p7 and p4–p6) by the mouth width (length of the 

line p1–p5). 

𝑀𝐴𝑅 =
||𝑝2 − 𝑝8|| + ||𝑝3 − 𝑝7|| + ||𝑝4 − 𝑝6||

3 × ||𝑝1 − 𝑝5||
 (3) 

Table 3. Node numbers of mouth landmarks. 

Variable Mouth landmark 

p1 61 

p2 39 

p3 0 

p4 269 

p5 287 

p6 405 

p7 17 

p8 181 

 

 
(a) 

 
(b) 

Figure 3. Measurement of mouth aspect ratio (MAR): (a) Measurement made on a closed mouth; (b) Measurement made on an open 

mouth. 
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3.2. Methodology 

The architectural diagram of the SleepyWheels system is depicted in Figure 4. One video frame of the 

driver is captured by the camera (smartphone/webcam/independent camera) and sent to OpenCV. Two threads 

are created and deployed to run parallelly: one for the neural network and the other for the facial landmark 

detector. In the first thread, a series of functions transform the image into the dimensions expected by the neural 

network, after which it is fed into the neural network which processes it and returns a real number between 0 

and 1. This value represents the probability of the driver being alert. The higher the value, the more probable it 

is for the driver to be alert. In the second thread, the image is processed by Mediapipe’s Face Mesh, which 

returns a set of landmarks that are used to calculate eye and mouth aspect ratios. The aspect ratio of the mouth 

is used to determine if the driver is yawning. If so, the database is triggered to register the yawn. 

 

Figure 4. Architectural diagram of the SleepyWheels system. 

The eye’s bounding points are used to assess how sleepy the driver is, by calculating the eye aspect ratio 

and comparing it with predefined threshold values. The results of the two threads are taken into consideration 

together to decide whether to trigger the alarm or not. If the alarm is triggered, the timestamp is recorded in the 

database. Finally, at a later point of time, the driver can access the web dashboard to understand how sleepy he 

or she was while driving by viewing the number of alarms triggered and the number of yawns recorded. 

3.3. Dataset creation 

The image database used for carrying out transfer learning on the EfficientNetV2 convolutional neural 

network was custom-made by scraping Google Images. Google made changes to its Image Search API to 

prevent mass image scraping, which makes traditional image scraping difficult. An image scraping program by 

Jayden Oh Yikong hosted on Github, called Google-Image-Scraper was used to download images of sleepy and 

alert people. A python script in this scraper takes a list of search keywords such as: drowsy/sleepy 

boy/girl/woman/man/driver/portrait (with glasses/mask); yawning boy/girl/woman/man (with glasses/mask); 

clumsy/tired/slumber/doze off; alert/awake boy/girl/woman/man/driver/portrait (with glasses/mask); portrait of 

a boy/girl/woman/man (with glasses/mask) and the number of images to crawl as input arguments. It uses 

Selenium and Google Chrome browser and driver to navigate to the Google Images webpage, type in the 

keywords turn by turn, downloads pictures in PNG and JPEG formats and scrolls down to load more images. 

The downloads were a mixture of both relevant and irrelevant images, and hence a process of quickly going 

through each batch of downloads and manually deleting irrelevant images had to be done to ensure the purity 

of the data being supplied to the neural network for training. The sample data set is illustrated in Figure 5. The 

details of the number of images used for training and validation are is shown in Table 4. 
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Figure 5. Examples of Sleepy (Left two columns) and Awake (Right two columns) images in the dataset (scraped from Google 

Images). 

Table 4. Dataset summary. 

Type Number 

Train—Sleepy 4534 

Train—Awake 4534 

Validation—sleepy 504 

Validation—awake 504 

Total 10,076 

About 16,000 images were downloaded, out of which 10,076 were chosen after a careful manual filtering 

process. The test-train split was performed manually, and two folders were created named train and validation, 

each housing its own two folders for sleepy and alert images. The train folder contains 9068 images, 4534 

belonging to each class, while the validation folder contains 1008 images, 504 of each class. The Google Drive 

link to the dataset is provided in the SleepyWheels dataset[66]. 

3.4. Transfer learning 

3.4.1. Need for transfer learning 

Initially, a fully unlocked EfficientNetV2 B0 network was used for training from scratch. Even after using 

many regularization and initialization techniques, the model kept running into local minima. Accuracy was 

stagnating between 60% and 75%. Moreover, the dataset is too small to train the model from scratch and achieve 

sufficient generalization. Hence, the transfer learning method was used to take advantage of the pretrained filters 

in the initial layers that were trained on the generic ImageNet dataset. 

3.4.2. Procedure 

The machine learning frameworks Tensorflow and Keras were used in this project. Before training, the 

bottom layers of the EfficientNetV2 B0 network were locked with the pretrained weights from the ImageNet 

challenge. A max-pooling layer, a flattening layer, a dropout layer, a fully connected layer of 1024 neurons that 

use ReLU activation and an output layer consisting of one neuron with sigmoid activation were added to the 

top. At this point, the number of trainable parameters was 64.2 million. Table 5 shows the optimal values settled 

on for each hyperparameter for the transfer learning and finetuning processes. 
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Table 5. Hyperparameter tuning details. 

State/Hyperparameter Original Before transfer learning Before fine tuning 

Total parameters 7.1 million 70.15 million 70.15 million 

Trainable parameters 7.1 million 64.22 million 70.08 million 

Non-trainable parameters 0 5.91 million 61 thousand 

ReduceLROnPlateau warmed up from 0 

to 0.256 then decayed by 

0.97 every 2.4 epochs 

Factor = 0.01, patience=3, 

min_lr = 1e−4 

Factor = 0.01, patience = 3, 

min_lr = 1e−5 

Initial learning rate 3e−3 3e−4 

Optimizer Adam Adam Nadam 

Momentum 0.9 0.9 

Momentum Decay 0.9999 0.999 

Batch size 4096 64 

Epochs 350 50 

Neurons in penultimate layer - 1024 

Activation at penultimate layer - ReLU 

Dropout at penultimate layer - 0.7 

Image Augmentation RandAugment[1], Mixup[3] Rescale = 1.0/255, 

rotation_range = 180, 

width_shift_range = 0.1, 

height_shift_range = 0.1, 

shear_range = 0.1, 

zoom_range = [0.9,1.5], 

brightness_range = [0.5,1.1], 

horizontal_flip = True, 

vertical_flip = True, 

fill_mode = “nearest” 

The CNN’s bottom layers were left frozen to avoid changing the core convolutional layers that were 

responsible to detect features in the images. Keeping them frozen at earlier stages helped to train the top 

classification layers better. An Nvidia RTX 3060 Ti GPU connected to a computer running the Ubuntu operating 

system was used for remote training via SSH. This model was trained on the custom 10,000 image 

SleepyWheels dataset, for 32 epochs with an image size of 224 × 224, learning rate of 0.00002, RMSProp 

optimizer, using binary_accuracy as metric, binary cross entropy as loss function, batch size 64 and a dropout 

rate of 0.6 on the flattened layer. Tensorboard was used to monitor performance metrics. At this stage, the model 

achieved training loss and accuracy of 0.5795 and 85% respectively and a test loss and accuracy of 0.6383 and 

84% respectively. The accuracy and loss plots are illustrated in Figure 6. 

 

Figure 6. Train vs. Test Accuracy and Loss plot during transfer learning. 
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3.5. Finetuning the model 

The next step was to fine tune the performance of the network by setting all the layers of the 

EfficientNetV2B0 model as trainable. This unlocked about 5 million previously untrainable parameters so as to 

try and achieve a bit more specialization to the current classification problem. 

The model was trained using the checkpoint callback to make sure that the best version of the model during 

training was saved to Google Drive. The model was trained on the same train and validation images, with 

rescaling, rotation, width/height shift, shear, zoom, brightness, horizontal/vertical flip methods used for data 

augmentation, binary cross entropy as loss function, accuracy as metric, learning rate of 0.0001 with Adam 

optimizer and batch size of 64 for 50 epochs. Tensorboard was used to monitor performance metrics. Final 

training and testing accuracies were 97% and 96.92%. The model achieved about 12% more accuracy through 

fine-tuning. Plots of accuracy, loss and learning rate during fine-tuning are illustrated in Figures 7 and 8. The 

confusion matrix obtained is presented in Table 6. 

 
Figure 7. Train vs. Test Accuracy and Loss plot after fine-tuning the model. 

 

Figure 8. Learning rate plot during fine-tuning. 

Table 6. Confusion matrix. 

 Predicted: Awake Predicted: Sleepy 

Actual: Awake 498 15 

Actual: Sleepy 18 481 

4. Deployment and testing 

4.1. Platform 
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For testing, the prototype system was deployed on a Personal Computer that runs the Windows 10 

operating system. It has built-in stereo speakers, a USB 2.0 UVC WebCam, Python 3.9 and Jupyter Notebook 

installed. Once the model file model.h5 is placed in the same directory as detector.ipynb, the main program 

that contains the frame-processing loop is started by executing all cells of the detector.ipynb notebook in order. 

For a production deployment setup, for example, a Raspberry Pi having TensorFlow Lite installed and 

equipped with speakers and a webcam could be used. Model optimizations like quantization (reducing the 

precision of weights and activations), model pruning (removing less important neurons or layers), etc. would 

be required to maximize performance. Such a setup can be installed inside a vehicle in the periphery of the 

driver in a way such that the driver’s torso and head are visible to the camera. 

4.2. Frame-processing loop 

The first step is reading a frame from the camera. Next, this frame is resized and fed to the convolutional 

network on a separate thread. On the main thread, the frame is resized to a smaller width while maintaining the 

aspect ratio and converted to grayscale. This is fed to the facial landmark detector, which returns a list of 

rectangles where faces were found. Each rectangle is processed and landmarks returned are stored in a NumPy 

array. These landmarks are used to calculate aspect ratios of the eyes and mouth. Landmarks are used to plot 

the contours around the eyes and mouth. The mouth’s aspect ratio is used to detect yawns. The average of left 

and right eyes’ aspect ratios is used to decide if the eyes are closed for long enough to decide that the person is 

sleepy. This result is coupled with the probability returned by the neural network, and a decision is made whether 

to increment the frame counter state variable, which counts the number of frames in which the person was 

detected to be sleepy. When this counter exceeds the threshold (set as 60 by default), the alarm function is called 

on a separate thread. 

4.3. Dashboard’s backend 

Keeping an XAMPP server running, a PHP file called “index.php” is written into htdocs folder of xampp. 

This page contains a basic UI which displays the yawn and alarm total counts and two tables for the respective 

entries accumulated. On PHPMyAdmin, a basic MySQL database called “SleepyWheels” is created, and two 

tables, yawns and alarms are created in it, each containing two columns: One column to represent the string 

“yawn” or “alarm” and one timestamp column. Two additional PHP pages are created, to which yawn and alarm 

data are posted by the frame processing loop. The database and the PHP files are hosted on a service called 

InfinityFree. 

4.4. Testing 

The prototype system was tested during two sessions, each in ill-lit conditions for a duration of one hour. 

During both sessions, the driver emulated drowsy behavior 10 times after random intervals. At the half hour 

mark, the camera angle and camera position were changed. The first session was conducted with a female person 

having a dark skin complexion. At the half hour mark, she started wearing a pair of glasses. The second session 

was conducted with a male person having a fair skin complexion. At the half hour mark, he started wearing a 

face mask that covers the nose and the mouth. Figure 9 illustrates the cases when the driver has been sleeping 

causing the alarm to be triggered (left) and when the driver is awake causing no alarm triggers (right). Figure 

10 shows how the SleepyWheels system is able to detect sleepiness even if facial features are not detected due 

to a covered or turned face. 
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Figure 9. Driver is sleepy and alarm is triggered (left) | Driver is alert and alarm is not triggered (right). 

 

Figure 10. Ensemble model detects sleepiness in spite of missing facial features. 

5. Results and discussion 

Tables 7 and 8 represent data collected during the two one-hour tests in the form of confusion matrices. 

The term “Drowsy” represents the situation in which the driver is in a drowsy state and the term “Alert” 

represents the situation in which the driver is in an alert state. We omit the False Negative (Actual: Alert — 

Predicted: Alert) term in the accuracy formula since every instant the alarm is silent represents a detection of 

alertness, hence the correct detection of alertness is not quantifiable in this experiment. Averaging across the 

two tests, the accuracy of the SleepyWheels system is 95.5% and the precision is 95%. Hence it proves to be a 

system worth deploying in real-life scenarios. As anticipated, the landmark detector works with the CNN to 

better predict whether the driver is sleepy or not thus minimizing false alarms which would be counterproductive 

by being a distraction from driving. Also, in cases where the eyes or the mouth cannot be detected by the 

landmark detector, the CNN steps in and prevents generation of wrong results, in contrast to models that use the 

detector alone which cannot function reliably without the availability of facial features in the frame. The 

backend database updates in real-time and the webapp displays the list of alarm and yawn triggers to the driver. 

Figure 11 shows a screenshot of the SleepyWheels web dashboard. 

Table 7. Confusion matrix of Test 1. 

 Predicted: Drowsy Predicted: Alert 

Actual: Drowsy 8 2 

Actual: Alert 0 ∞ 

Table 8. Confusion matrix of Test 2. 

 Predicted: Drowsy Predicted: Alert 

Actual: Drowsy 9 1 

Actual: Alert 1 ∞ 
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Figure 11. SleepyWheels Web Dashboard. 

6. Conclusion 

SleepyWheels is a novel approach toward drowsiness detection using a lightweight convolutional neural 

network in parallel with facial landmark detection, to achieve real-time driver drowsiness detection. The key 

finding of this paper is that this pair of models mitigate each other’s weaknesses to provide high accuracy and 

low false positives using a technique that does not compromise on the driver’s work routine and comfort. 

Another important result of this work is that our binary classifier proves to be yet another example of the sublime 

transferability of EfficientNet models for niche tasks. The binary classifier model achieves a validation accuracy 

of 97% on the custom-made SleepyWheels dataset. As per our test results, the SleepyWheels system has proved 

to be effective in a variety of test cases, such as absence of facial features while covering the eyes or the mouth, 

varying skin complexion of drivers, varied positions of the camera and varying angles of observation. It has the 

potential to be deployed successfully in vehicles. Its minimal computational load on the system unlocks 

possibilities for deployment on mobile and edge platforms after a few modifications. Potential deployment 

platforms include Raspberry Pi, Android Auto, Apple CarPlay and embedded devices that are designed to be 

fitted in the interior of a vehicle. Future directions that can be taken up by researchers include code optimizations 

in the frame processing loop, modifying the prototype and deploying it in an edge device to gather extensive 

test data from real drivers, using this test data to continuously improve the system via reinforcement learning, 

using infrared sensors for drowsiness detection in the absence of light, using more sophisticated modifications 

of EAR (Eye Aspect Ratio) and MAR (Mouth Aspect Ratio) and finally combining the classifier and landmark 

detector models into a single end-to-end model for better performance. 
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