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ABSTRACT 

Background: In this work, some application examples of machine learning and deep learning techniques in the 

monitoring of electricity distribution services and infrastructures are proposed. Three different fields of application are 

considered to highlight the use of techniques based on neural networks: detection and classification of power quality 

disturbances, monitoring of underground cables in medium voltage lines and diagnosis of joints in high voltage overhead 

power lines. Methods: In the field of power grid monitoring, this work proposes a classification method based on a 

complex valued neural network to assess working conditions of junction regions in high-voltage overhead lines and 

insulating materials in medium voltage underground networks. The purpose of this method is to prevent the rupture of 

joint structures and the abnormal degradation of underground cables via frequency response measurements. This approach 

allows the direct processing of complex measurements and to reduce the computational effort compared to other methods 

available in the literature. Results: The results obtained in the monitoring of underground cables and joints of high voltage 

lines guarantee an overall classification rate higher than 90%. In the field of power quality, several deep learning and 

machine learning methods are proposed to detect the most common voltage disturbances. Conclusions: In this paper, an 

innovative use of widespread algorithms such as convolutional neural networks is proposed with excellent results. 

Furthermore, the use of a complex-valued neural network in electrical infrastructure monitoring is presented, introducing 

a minimally invasive classification method that could be instrumental in the transition from corrective to predictive 

maintenance in the near future. 

Keywords: power quality disturbances; machine learning; neural networks; medium voltage cables; fault diagnosis; high 

voltage systems 

1. Introduction 

This paper proposes new approaches to monitor electricity 

distribution services, as this is one of the most important activities to 

ensure the continuity and quality of electricity grids. Electrical 

continuity is compromised by fault situations, while power quality is a 

problem that, in recent years, is becoming increasingly important[1]. 

One of the main causes is the growing use of electronic devices, which 

can be connected to the network both as loads and as energy injectors[2–4]. 

The integration of renewable energy generators significantly increases 

the complexity of electrical transmission and distribution systems, the 

maintenance of which requires the introduction of new techniques from 

other fields to detect and locate malfunctions[5–7]. Most of these new 

techniques use artificial intelligence algorithms to prevent catastrophic 

consequences; for example, in the research of Bindi et al.[8] and in the 

work of Hayder and Saidi[9], possible approaches to avoid failures in 
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photovoltaic applications are presented. On the other hand, the widespread diffusion of electronic devices in 

any sector, from industry to the domestic, from commerce to the public sector, has improved the efficiency and 

accuracy of numerous services and the automation of many different processes. Unfortunately electronic 

devices have a nonlinear behavior that can produce distortions in voltage and current waveforms of the power 

grid with a consequent degradation of its quality. Detection and classification of these disturbances is important 

to avoid degradation of electrical components and power losses that lead to losses in revenue. 

Another fundamental aspect to ensure the continuity of the electricity distribution service is the 

monitoring of underground cables. Medium voltage lines near urban centers generally consist of underground 

cables. Given the great difficulty of accessing these cables, the possibility of checking their state of health 

without removing them plays a fundamental role in organizing maintenance operations[10]. 

In the case of high voltage overhead lines are concerned, the prevention of catastrophic events and the 

rapid localization of the damage are essential to reduce recovery times and organize maintenance interventions. 

This is not easy due to the length of this kind of lines[11]. 

Depending on the problem to be treated, it is necessary to apply the most appropriate computational 

technique. For example, in order to detect and classify disturbances affecting grid power quality, various 

techniques are currently exploited such as Kalman filters[12] and wavelet transforms[13]. 

There are several fault location techniques in underground lines, but many of them cannot be used online 

during normal network operation[14,15]. One of these methods[16] is based on the measurement of dielectric 

losses due to the degradation of the insulating material, but requires measurements to be performed in the 

laboratory. Other methods are based on the reflection of the measurement signals and are able to locate the 

point of the conductor with an impedance value different from the nominal one[17,18]. This group of techniques, 

called Time Domain Reflectometry (TDR), does not require pulling out cables, but it does not prevent 

insulation problems. 

Regarding the transmission lines, there are various methods that can be used to monitor the operational 

state of overhead conductors, such as Load Flow analysis and state estimators[19–21]. Although these methods 

can identify incorrect behavior, they may not be able to determine the type and location of the malfunction. 

Given that joints are one of the most critical components, it is essential to have knowledge of their level of 

deterioration. In order to achieve this, TDR techniques can be employed to remotely detect the impedance of 

the joint by analyzing signals that are reflected from the areas of the conductor where there are 

discontinuities[22,23]. However, the accuracy of this technique can be affected by measurement errors, 

environmental noise, line length, and any changes to the environmental conditions along the line. 

One effective approach to addressing the issues mentioned earlier is to utilize machine learning methods. 

In addition to automating grid monitoring, these techniques can help resolve problems associated with 

conventional procedures, such as those for underground cables and overhead transmission lines. They employ 

an adaptive pattern classification mechanism, which enables them to perform a robust classification even in 

the presence of unclear system models and noisy environments. Following an initial training phase, a neural 

network can extrapolate the acquired information to make generalizations. 

The main innovative contributions of this paper can be summarized as follows: 

 propose the use of Long Short-Term Memory (LSTM) algorithms, Convolutional Neural Networks (CNN) and 

the mixed architectures LSTM-CNN to detect the most common electrical disturbances in low voltage 

electrical grids; 

 present a possible configuration of a complex neural network to obtain the detection and localization of 

insulation problems in medium voltage underground cables; 

 improve a minimally invasive monitoring method for assessing the health of joints in high voltage overhead 
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lines. 

The paper is organized in the following way. The problem of power quality disturbance detection and 

classification is faced in Section 2. The monitoring of underground cables in medium voltage lines is 

considered in Section 3, and the diagnosis of joints in high voltage electrical lines in Section 4. Finally, Section 

5 contains the conclusions and some ideas for future work. 

2. Power quality analysis 

Power quality is a critical aspect of modern electrical systems, with implications for the safe and reliable 

operation of all types of electrical equipment. The IEEE defines Power Quality (PQ) as: “The concept of 

powering and grounding sensitive equipment in a matter that is suitable to the operation of that equipment" In 

other words, power quality refers to the consistency and reliability of the voltage, frequency, and waveform of 

the electrical power delivered to a facility or device. Any variations or disturbances in power quality can result 

in equipment damage, data loss, or even system failure, leading to significant economic costs and potential 

safety risks. As our reliance on electronic devices and sensitive equipment continues to grow, the need to 

maintain high power quality has become increasingly important[24,25]. Optimal power quality implies standard 

voltage and current values and a non-deviation from frequency of voltage and current signals in the grid. Power 

quality disturbances can affect the normal functioning of electrical components such as transformers, capacitor 

banks, power lines, electric motors, household electronics, etc. This in turn affects everyday life as well as 

industrial processes. These disturbances include frequency component injection, amplitude deviation, 

waveform and symmetry distortion of the three-phase voltages and currents. Their identification and 

classification are important in order to counteract and find the origin of the distortion. This can be achieved by 

using specialized instrumentation for data acquisition of voltage and current signals on the power grid. In the 

context of power quality, machine learning algorithms can be used to identify patterns and anomalies in 

electrical power systems. They have proved to be accurate and precise when dealing with detection and 

classification of disturbances. Several of these algorithms, using different architectures and feature extraction 

in the time domain and/or the frequency domain, are currently exploited to carry out this task[26,27].  

The most frequent power quality disturbances in low voltage electrical networks can be divided into three 

main groups: amplitude fluctuations, sudden transients and steady state harmonic pollution. A more detailed 

classification of disturbances includes voltage sag, voltage swell, harmonic disturbances, interruption, notch 

and transient. For each kind of these disturbances a specific machine learning algorithm can be more efficiently 

used, so a comparison among different kinds of techniques is very useful. For example, in the study of Iturrino 

et al.[28] the effectiveness of three deep learning architectures for power quality disturbance detection and 

classification is investigated. They are the Long Short-Term Memory (LSTM), the Convolutional Neural 

Networks (CNN) and the mixed architecture LSTM-CNN. To compare the different techniques, the work  

proposed by Iturrino et al.[28] focuses on the different feature extraction techniques of the different architectures 

and their effectiveness on classifying power quality disturbances. 

Also, deep learning architectures trained with simulated data have proven to be successful in detecting 

and classifying different types of disturbances in an experimental setup. For this reason, a Matlab®/Simulink 

model has been built to simulate the voltage and current time signals on a micro grid including several different 

industrial loads (a three-phase dynamic load, connected to an electrical engine with variable load, a linear load, 

a nonlinear load injecting disturbances). Through the simulation, a current and voltage dataset was created for 

training and validating the classification algorithms. These disturbances include: under voltage (sag), over 

voltage (swell), harmonics distortions, transient, notching and interruption. To create a balance dataset and 

optimize the performance of deep learning algorithms it is necessary to reproduce different disturbances by 

varying amplitude, duration, and intensity of the signal window. To improve the performance of classification 
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and converge to a generalized result, the data in the simulated dataset was augmented. After training with the 

augmented dataset, the algorithms have been tested using experimental voltage measurements containing the 

disturbances previously mentioned. For testing to be successful, an experimental testbench has been created in 

order to reproduce and measure several real-time disturbances. In Figures 1–4, the results of the classification 

using experimental data of the different classifiers previously mentioned are shown. 

 
Figure 1. Classification results. LSTM real time classification. 

 
Figure 2. Classification results. CNN real time classification. 
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Figure 3. Classification results. LSTM-CNN real time classification. 

 
Figure 4. Classification results. LSTM-CNN with optimized hyperparameters real time classification. 

This experiment was executed using a sliding window method and classifying sections of the measured 

signal in an orderly fashion. In Figures 5 and 6, a bar chart containing the recall and precision of the different 

deep learning architectures classifying different power quality disturbances is shown. In this test, the different 

classifiers are compared using the measured recall and precision. 

In the research of Iturrino et al.[29] a new type of algorithm was developed called the Single Shot Power 

Quality Disturbance Detection (SSPQDD) algorithm. This algorithm is based on an object detection algorithm 

for image detection and classification. Voltage signals can contain a sequence of disturbances in a single 

window frame of a certain duration. The SSPQDD is a pretrained VGG-16 architecture modified with two 

outputs in order to accurately detect and classify multiple disturbances in a single window frame. In Figure 7, 

a comparison of the SSPQDD with different classical deep learning architectures is shown. It shows the 

SSPQDD was able to correctly detect and classify the sequence of disturbances in a single window frame 

where the other architectures misclassified. 
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Figure 5. Comparison. Precision chart of the classifiers. 

 
Figure 6. Comparison. Recall chart of the classifiers. 

 
Figure 7. Test results. Classification results of the SSPQDD of a signal with three disturbances. 
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3. Localization of malfunctions in underground cables 

Monitoring medium voltage lines can prevent power outages for thousands of users. Given the 

underground position of the cables, it is necessary to adopt specific techniques, usually based on artificial 

intelligence techniques, to prevent catastrophic failures. This can be achieved by monitoring the working 

temperature of successive cable sections, as temperature increases can indicate insulation problems[30]. 

Malfunctions can be localized by identifying the section with a higher temperature. If current overload and/or 

an unusual increase in ambient temperature occur, their duration must be monitored to prevent degradation of 

the cable insulation[31]. A complex neural network can be used to identify the working temperature of several 

cable sections by measuring the frequency response of the line[32]. In this paper a possible application of the 

complex classifier is proposed, processing measurements of the line voltage gain for different frequencies. To 

achieve the purpose of monitoring and locating the part of the line in the worst conditions, the network branch 

is divided into successive sections. Each of these sections is represented by a π-model shown in Figure 8. 

 
Figure 8. Equivalent circuit. Lumped circuit of a single cable section. 

Since the resistance of the conductor increases with temperature and the change in resistance introduces 

a corresponding change in the frequency response, its measurements contain all the information about the 

working temperature. Thus, the neural classifier processes the magnitude and phase of the transfer function 

measurements. 

The dataset matrix required for the classifier training phase contains numerous samples of each fault class 

obtained by randomly varying the temperature of the cable sections. These changes are converted to resistance 

values using Equation (1) and Equation (2). Subsequently, the values of the resistors are used in the model of 

the line. 

𝜌𝑇 = 𝜌20[1 + 𝛼(𝑇 − 20)] (1) 

where the resistivity 𝜌20 refers to the conductor material at 20°C, 𝑇 is the working temperature and 𝜌𝑇 is 

the corresponding resistivity. Finally, α is the thermal coefficient of the conductor material. 

𝑅𝑙𝑇
′ =

𝜌𝑇

𝑆
 (2) 

where S represents the cross-section of the cable. The dataset used during the training phase contains several 

samples of each possible fault class. Assuming a maximum level of working temperature equal to 105 ℃[33] 

and considering the phase current approximately equal to the rated current of the cable, with the ambient 

temperature equal to 25 ℃, the operating temperature of the cable is approximately 70 °C[34]. Two possible 

working conditions are considered for each cable section: an operating temperature below 70 ℃ represents the 

nominal condition, while a cable temperature above 70 ℃ indicates the presence of a thermal malfunction. 

The minimum cable temperature considered in this paper is 30 ℃ and describes the minimum load condition. 

The overheat situation is 135 ℃ and indicates that there is a problem. 

3.1. Case study 

A 900-meter medium voltage (20 kV) underground line consisting of three RG7H1M1 single core cables 

with a 35mm2 section represents the case study analyzed here. This cable has a rated current of 205 A and the 
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whole line is theoretically divided into three successive sections. Furthermore, the hypothesis of a single fault 

is assumed and this means that overheating can only affect a single section at a time. This means that there are 

four error classes: the first (class 0) describes the nominal operating condition of each part of the cable, the 

other 3 classes describe the thermal malfunction of each section of the line (n = 1, 2, 3). Table 1 summarizes 

the characteristics of a single piece of cable and Figure 9 shows the case study. 

Table 1. Characteristics of a single cable part. 

Cable length [km] Conductor radius [mm] Sheath radius [mm] Outer radius [mm] 

0.3 7 17 23.2 

Line-line spacing [mm] Line formation Insulation relative permittivity Cable section [mm2] 

46.4 Flat 2.4 35 

 
Figure 9. Underground line. Medium voltage underground line divided into three sections. 

As previously mentioned, the main physical phenomenon considered in this application is the relation 

between the working temperature and cable resistance (only the longitudinal resistance is the variable element): 

as the operating temperature increases, the resistance of the conductor also increases. When a large change in 

conductor resistance occurs, there is also a change in frequency response. This means that the transfer function 

contains all the information on the working temperature of the cable. To obtain the frequency response 

measurements it is necessary to inject high-frequency signals into the line using the typical tools of Power Line 

Communication. Magnitude and phase of the voltage transfer function are processed by the neural classifier to 

detect any thermal malfunctions. 

In this application, dataset creation is completely done on Matlab/Simlinks. SapWin software is used to 

verify Testability of the overall circuit[35], and the result obtained indicates the possibility of distinguishing the 

four fault classes through the selected measure. 

3.2. Simulation procedure 

Once all the possible working conditions have been defined, it is necessary to create the dataset matrix. 

As previously mentioned, a Simulink model is used, where the transmission of signals is simulated by 

introducing a PLC system. The turn ratio of the matching transformers is fixed to adapt the transmitter/receiver 

resistance with the characteristic line impedance. The coupling circuit used in this case is capacitive and 

presents a fourth order high pass filter with a minimum bandwidth frequency of 3 kHz. The injection of signals 

in the (3 ÷ 50) kHz band is considered. To simulate all the possible fault classes, the Simulink/Simscape scheme 

is managed by a Matlab script, which varies the resistance values. The corresponding voltage transfer function 

is measured in magnitude and phase for 𝑛𝑓 test frequencies belonging to the band taken into consideration. 

In this procedure, two different approaches are compared: the first involves the selection of 4 test 

frequencies while the second is based on a Principal Component Analysis (PCA). In the first case, 4 frequencies 

obtained by dividing the total bandwidth into three equal parts are used in the Simulink/Simscape diagram to 
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extract the transfer function measurements and create a dataset containing 300 random samples for each fault 

class. Next, 100 frequencies are considered and a PCA is applied to reduce the number of inputs. In this way 

it is not necessary to choose the test frequencies beforehand. Again 1200 examples are generated from the four 

failure classes at the test frequencies. A linear PCA is applied to the dataset matrix containing the measurements 

relating to 100 frequencies, maintaining the 98% of the informative content. This produces the reduction of 

the dimensionality of each input from 100 complex numbers to 4. This means that two dataset are available to 

classify the state of health of the line using four complex numbers for each input. In the first case, these 

numbers correspond to magnitudes and phases of the measured transfer function. In the second case they are 

obtained following the projections of the measurements obtained for 100 frequencies in a space with reduced 

dimensionality. In the new coordinate system, the physical meaning of the measurements is not maintained, 

but a certain percentage of the information content is preserved (98% in this case). 

3.3. Neural network setup and results 

In this case, the output configuration of the complex neural network is based on the single failure 

hypothesis. Therefore, three binary neurons are used in the output layer, one for each cable section taken into 

consideration. Figure 10 illustrates the structure of the output layer of the neural network. 

 
Figure 10. Neural network structure. Configuration of the output layer of the complex neural network: use of a binary neuron for 
each section of cable. 

These neurons are used to distinguish the nominal condition of the corresponding cable section from the 

over temperature situation. In particular, the value 0 corresponding to the beginning of the upper half plane is 

used to indicate the nominal working temperature, while the lower border of the second sector indicates the 

overheating. As previously mentioned, two datasets are used in this case to evaluate the performance of the 

classifier. In the first case, the transfer function measurements obtained at 4 test frequencies are used. The 

results obtained in terms of the overall classification rate are shown in Figure 11a, while Figure 11b presents 

the performance of the complex neural network for each class separately. Initially, hold out validation is used 

to evaluate the classification results: this means that 80% of the data is used to modify the weights of the neural 

network (learning) while the remaining 20% is used to verify performance (testing). Note that the results 

presented are obtained by setting 20 neurons in the hidden layer. In Figure 11a, the red line is used to describe 

the classification rate obtained during the learning phase, while the blue one refers to the testing phase. Finally, 

the training procedure is repeated by applying a linear PCA to the simulated measurements obtained at 100 

frequencies. By maintaining 98% of the information content, the results shown in Figure 12a,b are obtained. 

The performance obtained by keeping 20 neurons in the hidden layer is slightly better than that obtained in the 

previous case. Therefore, the use of a linear PCA can be considered a valid alternative to the frequency 

selection. Instead of implementing a rather complex mathematical method, it is possible to perform 
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measurements at multiple frequencies and then reduce the dimensionality of the inputs to avoid a heavy 

structure of the neural classifier. To obtain a comparable result using all the measurements obtained at 100 

frequencies, it is necessary to use a number of neurons in the hidden layer 3 times higher. Table 2 summarizes 

these considerations, where No PCA indicates the use of four test frequencies selected through the 

mathematical method, Linear PCA indicates the use of a linear PCA to the dataset containing simulated 

measurements at 100 frequencies and 100 Frequencies indicates direct use of this dataset. 

  
Figure 11. Classification results. Results obtained using 4 specific frequencies: (a) global classification rate; (b) classification rate 
for each output neuron. 

 
Figure 12. Classification results. Results obtained by PCA: (a) global classification rate; (b) classification rate for each output 

neuron. 

Table 2. Classification results obtained by selecting 4 frequencies and using a linear PCA. 

Configuration Classification rate (CR%) N. hidden neurons N. complex inputs 

No PCA 92.92 20 4 

Linear PCA 98.75 20 4 

100 Frequencies 96.70 60 100 

4. Prognosis of joints in high voltage electrical lines 

To identify the operating state of high-voltage overhead transmission lines, it is important to focus on the 
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joints (as shown in Figure 13), which are responsible for maintaining electrical continuity along the phase 

conductor. Joints are among the most vulnerable components of the line, and problems such as voltage drops, 

power losses, and decreased power quality may be caused by their deterioration. The physical characteristics 

of the joints are described through three terms: Δ𝜆 is the length, 𝑑 is the thickness and 𝐻 is the height. Then, 

when a partial break occurs, the term 𝑥 is used to indicate the thickness of the break and the ℎ term for its 

height. 

For high voltage electrical lines, predictive maintenance requires assessing the health of the joints and 

taking preventive measures to avoid any potential failures. A multi-layer feedforward neural network based on 

multi-valued neurons[32] can be employed[36] for this purpose. The voltage transfer function is still used as input 

for the neural network. Once nominal ranges have been established for the electrical parameters of the line 

pattern, any deviation can be used to indicate a possible fault. 

The monitoring action consists in the comparison between the theoretical frequency response and the 

simulated measurements at multiple frequencies. The variation obtained from the comparison describes the 

change in the parameters of the joints and therefore the departure from the nominal condition. 

 
Figure 13. Joint structure. Joint modelling in nominal condition and in the case of a partial breakage. 

The neural network is responsible for performing the task of classifying the severity of joint degradation. 

The procedure for assessing the health of the joints can be summarized as follows. 

First, the model of the elementary section of the line, consisting of the cascade connection of the conductor 

model and the joint model (Figure 14), must be introduced. Indeed, the infrastructure can be seen as a sequence 

of joints and sections of conductor. The conductor equivalent circuit typically used in the literature is the 

canonical π model[21], whose parameters depend on the mechanical characteristics of the conductor and are 

considered constant per unit length[37]. The variation of interest is that of the junction regions. Among the three 

parameters of the joint model (𝑅𝑠𝑗 , 𝐿𝑠𝑗 , and 𝐶𝑠𝑗), the resistance parameter is most affected by the formation 

of oxide, as this modifies the resistivity, while 𝐿𝑠𝑗  and 𝐶𝑠𝑗  account for any breakage in the joint[38]. Once the 

model is established, the neural network can perform the task of evaluating the health of the joints. 

 
Figure 14. Equivalent model. Elementary section of an overhead line. 
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The second step involves determining the potential health conditions of each joint region, which can be 

categorized into three possible classes: nominal, structure oxidation, and partial breakage. The ranges for each 

joint parameter can be calculated based on the information extracted from the research of De Paulis et al.[22], 

as shown in Table 3. 

Table 3. Fault classes. 

Nominal conditions 

𝑅𝑠𝑗  [Ω] 60 ∙ 10−6 ÷ (4.78 ∙ 10−5√𝑓 + 7.77 ⋅ 10−4) 

𝐿𝑠𝑗  [𝐻] (1.3 ÷ 1.7) ∙ 10−6 

𝐶𝑠𝑗 [𝐹] (0.0099 ± 0.011) ∙ 10−12 

Oxidation conditions 

𝑅𝑠𝑗  [Ω] (4.78 ∙ 10−5√𝑓 + 7.77 ⋅ 10−4) ÷ 2 

𝐿𝑠𝑗  [𝐻] (1.3 ÷ 1.7) ∙ 10−6 

𝐶𝑠𝑗 [𝐹] (0.0099 ± 0.011) ∙ 10−12 

Partial breaking conditions 

𝑅𝑠𝑗  [Ω] >2 

𝐿𝑠𝑗  [𝐻] (1 ÷ 1.3) ∙ 10−6 

𝐶𝑠𝑗 [𝐹] (0.011 ± 0.16) ∙ 10−12 

The third step is focused on selecting an appropriate set of frequencies based on the procedure outlined 

in the study of Grasso et al.[39]. The voltage transfer function of the model can be calculated using SAPWIN[40], 

which provides its symbolic formulation and allows the calculation of the response at specific frequencies 

within reasonable time limits. Next, a training set is created. The symbolic network function can be handled in 

MATLAB to generate the training samples. In fact, a specific MATLAB script calculates the analytical 

expressions of magnitude and phase and evaluates their values for each test frequency and for each line health 

state. This is achieved by replacing symbolic parameters with their numeric values. Therefore, all training 

samples are obtained by randomly varying the parameters of each joint in the respective classes. During this 

operation, the parameters of the conductor sections are changed randomly within a range of 10% of their 

nominal value. In this way, the effects of ambient conditions and load current can be taken into account. 

Case study and results 

The complex neural network used to obtain the classification results has two layers and uses a pair of 

binary output neurons for each junction region. The first neuron of each pair detects the oxidation process 

while the second the partial breakdown mechanism. Figure 15 shows the global structure of the neural 

network-based classifier. 
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Figure 15. Complex-valued neural network. Overall structure of the complex neural network. 

Since these neurons have two possible levels of output, the low value is used to describe nominal 

conditions. When the output of the first neuron is high and that of the second is low, the combination represents 

joint oxidation. If, on the other hand, both outputs have a high level, the corresponding junction region has 

partial damage. Since the hypothesis of the consequentiality between the oxidation mechanism and partial 

failure is assumed, the remaining combination is not taken into consideration. In general, there are 𝑁𝑐 = 3𝑁𝑔  

possible output combinations, since each junction region can be oxidized, broken or fully functional (where 

𝑁𝑔 is the total number of joints,). Figure 16 illustrates the case study considered. 

 
Figure 16. Case study. Overhead line with three junction regions. 

The results reported in Table 4 are obtained for a line with three junction regions and show that the 

classification method identifies the operating conditions of each joint with an accuracy level higher than 90%. 

Table 4. Characteristics of a single cable part. 

Fault classes Neuron CR% for each neuron Joint CR% for each joint 

Oxidation 1 95.11 1 94.07 

Partial breakage 2 99.37 

Oxidation 1 92.85 2 91.30 

Partial breakage 2 99.22 

Oxidation 1 97.89 3 96.70 

Partial breakage 2 99.81 
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5. Conclusion 

The use of machine learning algorithms has shown significant potential for detecting power quality 

disturbances in electrical systems. The research presented in this article has explored different machine 

learning techniques for power quality analysis. They can accurately classify different types of power quality 

disturbances, including voltage sags, swells, interruptions, harmonics, and transients. Moreover,  the 

localization and classification of power quality disturbances using the SSPQDD have been also considered.  

The results of our study suggest that machine learning-based approaches can provide an efficient and 

reliable way to monitor power quality and detect disturbances in real-time. By analyzing the electrical signals 

from power systems, these algorithms can identify patterns and anomalies that may indicate power quality 

issues. Moreover, the ability to detect and classify power quality events can provide valuable information for 

power system operators to take preventive measures and improve system performance. 

Despite the promising results, there are still challenges to overcome in implementing machine learning-

based power quality analysis in practice. These challenges include data availability and quality, and 

interpretability. Further research is needed to address these challenges and optimize machine learning models 

for power quality analysis. 

In summary, the use of machine learning for power quality analysis has significant potential to improve 

the safety, reliability, and efficiency of electrical systems. As the demand for high-quality power continues to 

grow, machine learning can provide an effective solution for power quality monitoring and detection, enabling 

early detection and mitigation of disturbances and reducing the risk of equipment damage and system failures. 

Furthermore, the theoretical results presented in this paper offer a possible approach for the detection and 

localization of malfunctions in transmission and distribution lines. The goal of the simulations performed was 

to demonstrate that the MLMVN-based classifier allows the identification of the state of the line using 

measurements of its frequency response. In the case of the prognosis of joints on overhead lines, the hypothesis 

of multiple failure with multiple severities was adopted. In this situation, the method allows the correct 

monitoring (classification rate higher than 90%) of the joints contained in a branch of 800 meters. Exceeding 

this limit, the performance in recognizing the operating conditions of all joints decreases. It is still possible to 

study a single joint with good accuracy, but the overall performance is not sufficient. As regards the monitoring 

of underground lines, the single failure hypothesis was assumed and the prognostic method was focused on 

the detection of overheating. In this case, the classifier allows the correct monitoring (accuracy greater than 

95%) of approximately 1 km of line divided into three successive sections. The increase in the length of the 

line branch considered and therefore in the number of successive sections determines the reduction of the 

classification rate and requires further developments. 

Author contributions 

Conceptualization, MB; methodology, CIG; software, MB and CIG; validation, AL, FG and LP; formal 

analysis, MCP; investigation, LP; data curation, LP and CIG; writing—original draft preparation, MB; 

writing—review and editing, MCP; supervision, AL and FG. All authors have read and agreed to the published 

version of the manuscript 

Acknowledgments 

We would like to express our sincere gratitude to the Smart Energy Lab for providing us with the 

necessary tools and resources for conducting our tests. Their support and collaboration have been invaluable 

in enabling our research on energy efficiency and smart grid technologies (https://www.smartenergylab.eu/). 

https://www.smartenergylab.eu/


 

15 

Conflict of interest 

The authors declare no conflict of interest. 

Abbreviations 

TDR Time Domain Reflectometry 

LSTM Long Short-Term Memory 

CNN Convolutional Neural Networks 

SSPQDD Single Shot Power Quality Disturbance Detection 

PQ Power Quality 

PCA Principal Component Analysis 

MLMVN Multi-Layer neural network with Multi-Valued Neurons 
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