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ABSTRACT 

Diseases of crop plants pose a serious danger to agricultural output and progress. Predicting the onset of a disease 

outbreak in advance can help public health officials better manage the pandemic. Precision agriculture (PA) applications 

rely heavily on current information and communication technologies (ICTs) for their contribution to long-term 

sustainability. Preventative measures against plant diseases require accurate early disease prediction in order to be 

effective. The current computer vision-based illness detection technology can only detect the disease after it has already 

manifested. This research intends to provide a deep learning (DL) method for early disease attack prediction using Internet 

of Things (IoT) directly sensed environmental factors from crop fields. There is a robust relationship between 

environmental factors and the life cycles of plant diseases. Disease incidence in plants can be forecast based on 

environmental variables in the crop field. In order to solve these issues, the research presented here suggests using a gated 

recurrent multi-attention neural network (GRMA-Net). The study uses multilevel modules to zero down on informative 

areas in order to extract additional discriminative features, as informative characteristics tend to appear at various levels 

in a network. In order to capture long-range dependence and contextual interaction, these characteristics are first organised 

as spatial sequences and then input into a deep-gated recurrent unit (GRU). Finally, an enhanced version of the Tunicate 

swarm optimisation model (ITSO) is used to pick the best values for the model’s hyper-parameters. Four public datasets 

representing a wide range of crop types are used to assess the model’s efficacy. Some of these databases cover numerous 

crop species, like PlantVillage (38 categories), while others focus on a single crop, such as Apple (4), Maize (4), or Rice 

(5). The experimental findings show that the system achieves 99.16% accuracy in identifying agricultural diseases, which 

is higher than the accuracy of other current deep-learning approaches.  

Keywords: information and communication technologies; precision agriculture; Internet of Things; multi-attention neural 

network; deep-gated recurrent unit; improved tunicate swarm optimization 

1. Introduction 

In a lot of places, agriculture is the economy. The rising number of people need more nourishment. The 

only way to meet this urgent demand is to boost agricultural output and implement crop protection measures[1]. 

However, a wide variety of pathogens in crops’ natural habitats makes them vulnerable to a wide range of 

illnesses. Disease-causing microorganisms can take several forms, including viruses, fungi, and bacteria[2]. 

There is a direct correlation between the prevalence of crop diseases and a precipitous drop in agricultural 

output, with losses ranging from 10% to 95%[2]. In order to prevent massive losses and cut down on the overuse 

of potentially dangerous pesticides, early disease detection is essential. Predicting the onset of disease 

outbreaks in order to implement preventative measures, reduce the illness’s impact, and promote long-term 
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growth is crucial[3]. Most of the time, and especially in less developed 

nations and on smaller farms, farmers will use just their eyes to 

diagnose crop illnesses. This is a time-consuming process that calls 

for plant pathology knowledge and extensive treatment time[4]. 

Furthermore, if a rare disease is attacking the field, farmers will seek 

specialist help to get a precise and quick diagnosis, which will 

inevitably lead to higher treatment expenses. Therefore, huge farms 

cannot reasonably use this type of observation, and it may even lead 

to inaccurate forecasts as a result of subjective judgements[5]. To meet 

rising consumer demands and lessen the environmental impact of 

chemical inputs while protecting human health, researchers have 

developed technological proposals for early identification of crop 

diseases in an accurate, fast, and reliable manner[6]. Direct visual 

diagnosis, in which disease signs on leaves are seen visually, and 

chemical approaches, including molecular analyses on leaves, are two 

common ways of identifying and localising plant diseases. Time-

consuming and labour-intensive[7] describes these approaches. 

Using autonomous monitoring and recognition systems, 

promising methods for identifying and localising illnesses have been 

developed in recent years. Recent developments in sensor and data 

processing have provided new opportunities for the early 

identification and accurate diagnosis of agricultural abnormalities[8]. 

Developing and testing machine learning algorithms[9] and collecting 

data from sensors like remote sensing (RS) or ground equipment are 

all viable options for disease monitoring. Profitability, sustainability, 

and conservation of land resources may all be improved by the use of 

smart algorithms in management practices. Together, these factors 

make it possible to administer curative care at optimal times and 

locations[10]. Multiple ambient, plant canopy, and leaf indices derived 

from remote sensing photography, as well as Internet of Things (IoT) 

sensors, may be given to the agriculture field. To better understand 

crop growth circumstances and disease symptom development, a 

range of data extraction methodologies must be combined using data 

fusion techniques[11]. The use of machine learning-based data fusion 

to agricultural data has the potential to significantly improve plant 

protection, especially in the areas of disease and early disease 

detection[12]. For this reason, several fusion approaches based on 

distant sensing and many sensors have been used in agriculture[13]. 

Researchers have proposed a number of methods, many of which 

make use of image processing and machine learning (ML). The 

availability of data, processing power, and sophistication in the 

learnability of ML algorithms have all contributed to the remarkable 

success of recent techniques[14]. In the field of agricultural disease 

diagnosis, many methods have stood out: support vector machines 

(SVM), K-nearest neighbours (KNN), multilayer perceptrons (MLPs), 

fisher linear discriminants (FLDs), and random forest classifiers[15]. 
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In recent years, deep learning (DL) has been a popular solution to many computer vision issues. Similarly, 

deep convolutional neural networks (CNNs) have demonstrated encouraging results in crop disease 

identification[16]. Over the past several years, many new techniques for illness diagnosis using deep learning 

have been developed[17]. These first researches and subsequent efforts sparked a growing interest in using deep 

learning frameworks for the detection and diagnosis of agricultural diseases. The geographical link and 

contextual reliance of these characteristics are underutilised by current approaches[18]. Indeed, these widely 

dispersed regions typically exhibit robust spatial linkage and contextual reliance, both of which are necessary 

for precise categorization. 

We create a multilayer attention module to interest across several dimensions to solve the first issue. Local 

characteristics can be directed towards informative signals by using the high-level semantic material derived 

by global features[19]. The significant magnitude disparity among multiscale would decrease the guiding of 

global features if we directly integrate them to build attention map. As a result, in order to fine-tune local 

features during feature aggregation, we offer an adaptive convolution. The study uses a recurrent neural 

network (RNN) to take advantage of the connection between distinct sites, inspired by the success of RNNs in 

simulating long-range dependence[20]. We reformat multi-scale characteristics into spatial sequences and then 

apply a deep RNN to each sequence individually. 

In conclusion, the article’s contribution may be summed up as follows: 

(1) Weak reliance among broadly distributed informative features is addressed by the study’s proposed gated 

recurrent multi-attention neural network (GRMA-Net). 

(2) To assign discriminative leverage, the spatial dependence of features at various modules are presented. 

(3) ITSOA model is used to fine-tune the proposed model’s hyper-parameters by introducing a Cauchy 

mutation operator to address the issue of global convergence. 

Here is how the rest of the paper is structured: In section 2, we provide the literature that has addressed 

this issue, and in section 3, we provide a brief summary of the suggested model. The results of the experiments 

and their discussion may be found in section 4. In section 5, we provide the results of our investigation. 

2. Related works 

For the purpose of identifying agricultural illnesses from pictures of plant leaves, the lightweight 

convolutional neural network ‘VGG-ICNN’ is introduced by Thakur et al.[21]. Compared to other high-

performing deep learning models, VGG-ICNN has a lot less parameters (about 6 million) to work with. Five 

public datasets representing a wide range of crop types are used to assess the model’s efficacy. PlantVillage 

and Embrapa, which cover various crop species, have 38 and 93 categories, respectively, while Apple, Maize, 

and Rice, which focus on a single crop, have 4, 4, and 5 categories, respectively. With an accuracy of 99.16% 

on the PlantVillage dataset, experimental findings show that the system exceeds some of the latest deep-

learning algorithms on crop disease diagnosis. Comparing the model’s results to those of more contemporary 

lightweight CNN models demonstrates that it outperforms them consistently across all five datasets. 

A unique two-stage semantic segmentation technique has been developed by Divyanth et al.[22] to detect 

maize illnesses and quantify their impact. SegNet, UNet, and DeepLabV3+ network architectures were used 

to train the three semantic segmentation models used in each phase. The first stage was the use of semantic 

segmentation to remove leaves from their murky field settings. Second, disease lesions were found, identified, 

and their area coverage was determined using semantic segmentation. Following model training, the UNet 

model showed the best stage 1 performance, with a mean of 0.9422 and a mean boundary F1-score (mBFScore) 

of 0.8063. The DeepLabV3+ model performed the best in stage two, with a mwIoU of 0.7379 and a mBFScore 

of 0.5351 for detecting disease lesions. Finally, the proportion of leaf area that was affected by disease lesions 

was used to evaluate severity. The combined (UNet-DeepLabV3+) model predicted the severity of three 
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illnesses fairly near to the actual data, as indicated by an R2 value of 0.96 in the test set. An innovative two-

stage deep learning-based technique was created in this work to properly identify three specific maize illnesses 

and quantify their severity. This research paves the way for the creation of a disease management system 

suitable for use in the field. 

WheatRust21 is a dataset created by Nigam et al.[23] that contains 6556 photos of both healthy and 

damaged leaves collected in field settings. They also tested many traditional CNN-based models for identifying 

Wheat rust, achieving accuracy between 91.2% and 97.8% using VGG19, ResNet152, DenseNet169, 

InceptionNetV3, and MobileNetV2. They tried out eight different variations of the EfficientNet architecture 

in an effort to boost accuracy and found that our optimised EfficientNet B4 model was able to attain a testing 

accuracy of 99.35%, a value that has not been published in the literature so far. Stakeholders may utilise this 

model for image-based wheat disease diagnosis in field situations by integrating it into mobile applications. 

To improve crop disease identification, Zhao et al.[24] introduced a YOLOv5s-based model. First, during 

the feature fusion step of the original model, we used a lightweight structure in the improved CSP structure to 

reduce the model parameters while extracting the feature information of different layers in the form of multiple 

branches. A new structure called CAM was developed to aid in the extraction of global information from 

networks. CAM is able to better combine semantic and scale-inconsistent information, as well as extract global 

and local properties from separate network layers. The original model, which only used three grids to predict 

the target, was expanded to include a fourth grid, and the formula for the prediction frame centroid offset was 

modified to obtain a better offset when the target centroid was located on the grid’s special point. To fix the 

problem of the prediction frame being scaled incorrectly, we upgraded the YOLOv5s model training process 

by using the DIoU loss function instead of the GIoU loss function. The improved model beat the Faster R-

CNN, SSD, YOLOv3, YOLOv4, YOLOv4-tiny, and YOLOv5s models with mAP values of 95.92%, F1 score 

values of 0.91, and recall values of 87.89% after being trained using transfer learning. When it comes to 

diagnosing diseases that might affect tomato leaf tissue, Sanida et al.[25] provides a powerful hybrid 

convolutional neural network (CNN) tool, with findings that are superior to YOLOv5s’ by 4.58%, 5%, and 

4.78%. A convolutional neural network (CNN) and an inception module have been combined to form this 

hybrid technique. The dataset used in this analysis comes from PlantVillage and includes nine disease 

categories and one healthy category for tomatoes. Results on the test set are encouraging, with an accuracy of 

99.17%, recall of 99.23%, precision of 99.13%, area under the curve of 99.56%, and F1-score of 99.17%. The 

suggested approach provides a high-performance solution for diagnosing tomato crops in a real-world 

agricultural scenario. 

An integrated deep learning technique (RFE-CNN) has been proposed by Xu et al.[26]; At first, we 

extracted the most fundamental properties of both healthy and damaged wheat leaves using two simultaneous 

convolutional neural networks. Second, we employed attention blocks in the residual channel to fine-tune the 

foundational characteristics. Third, we trained the earlier features with feedback blocks. To complete the 

processing and classification, we next fed these characteristics into a convolutional neural network and elliptic 

metric learning. The experimental findings show that the suggested model outperforms the industry standard 

VGG-19, ZFNet, GoogLeNet, Inception-V4, and Efficient-B7 in several respects, including reduced training 

time, improved accuracy during recognition, and enhanced flexibility. The maximum testing accuracy was 

99.95%, while the total classification accuracy was 98.83 per cent. On the publicly available CGIAR, Plant 

Diseases, LWDCD 2020, and Plant Pathology datasets, we were able to achieve an average precision of 99.50 

percent. 

Using transfer learning, Zhang et al.[27] pre-trained the model using the PDDA and PlantVillage datasets, 

resulting in an enhanced PlantDoc++ dataset. Pre-training on the PDDA dataset led to IBSA_Net’s 0.946 test 

accuracy on a dataset from the wild, with averages of 0.942 for precision, 0.944 for recall, and 0.943 for F1-

score. The efficiency of IBSA_Net has also been demonstrated in other crop systems. This research establishes 
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a reliable and practical approach for diagnosing leaf diseases in commercially grown tomatoes; the findings 

may be applied to other crops as well. 

The model presented by Joshi and Bhavsar[28] is intended to improve upon previous methods for 

identifying leaf diseases in plants. The Night shed plant’s leaf was used to train the state-of-the-art AlexNet, 

VGG, and GoogleNet models, as well as the suggested model. There are 9 different groups of illnesses and 

normal leaf conditions. The success or failure of the models was judged using many criteria, such as the number 

of training samples, the number of training failures, the learning rate, and the activation function. Disease 

categorization accuracy of between 93% and 95% was attained by using the suggested approach. The results 

of the precision tests indicate that the proposed model has promise and has the potential to significantly impact 

the efficiency and precision with which diseased leaves are detected. 

To perform crop disease identification against a complicated backdrop, Ma et al.[29] offer a neural 

network-based technique that incorporates an enhanced rouse pyramid pooling algorithm. To facilitate the 

extraction of multi-dimensional illness info from the channel and space perspectives, a dual-attention module 

was initially added to the cross-stage partial network backbone during the process of building neural networks. 

To further enhance the network’s capacity to extract useful information about crop diseases from field photos, 

a dilated pyramid pooling module was subsequently incorporated into the network. The neural network was 

evaluated using a dataset made up of photos captured at 40 frames per second, taking up only 17.12 MB of 

space. When compared to results acquired using equivalent traditional approaches, the average accuracy rate 

revealed by field data analysis utilising the miniaturised model was nearer to 90.15 per cent. When taken as a 

whole, these findings suggest that the model simplifies disease-recognition tasks while suppressing noise 

broadcast to attain a higher accuracy rate than similar methods, suggesting that the projected method should 

be suitable for use in applied applications of crop disease acknowledgement. 

To improve the disease diagnosis method for tomatoes, Sanida et al.[30] employ transfer learning to shorten 

model training time while simultaneously increasing identification accuracy. VGGNet, which has been pre-

trained with data from ImageNet, and two inception blocks form the basis of the model. Model training also 

used two-stage transfer learning and an enhanced. The results of the studies demonstrate that our model 

achieves higher for the test set of tomato illnesses than other state-of-the-art methodologies. The results show 

that the proposed method yields significant values with an accuracy of 99.23%. Farmers may use the proposed 

model to their advantage in the fight against disease in tomatoes since it has a very high success rate. 

Based on the meta-learning paradigm, Si et al.[31] present a Model-Agnostic Meta-Learning (MAML) 

attention model. The proposed model incorporates both meta-learning and conventional training, using an 

Efficient Channel Attention (ECA) component for the latter. To improve the weight parameters corresponding 

to specific illness features, the module employs a local cross-channel interaction technique of nondimensional 

reduction. By including the ECA module in the original model, the proposed meta-learning-based approach is 

able to accomplish more efficient detection in new tasks and benefit from its great generalisation capabilities. 

Experiments validate the proposed model, revealing that it outperforms the original MAML model by a margin 

of 1.8–9.31 percentage points across a variety of classification tasks, with an increase in maximum accuracy 

of 1.15–8.2 percentage points. The experimental outcomes validate the suggested MAMLAttention model’s 

high generalisation ability and superior resilience. The suggested MAML-Attention approach outperforms the 

existing few-shot methods. 

A technique for rice disease diagnosis using an enhanced DenseNet network (DenseNet) was proposed 

by Jiang et al.[32]. This technique takes DenseNet as its baseline model and employs the channel attention 

mechanism of squeeze-and-excitation to amplify the positive features while dampening the negative ones. The 

typical convolutions in the dense network are then replaced with depth-wise separable convolutions to boost 

parameter utilisation and training speed. The AdaBound algorithm, in conjunction with the adaptive 
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optimisation technique, expedites the tuning process. This paper’s approach improves upon the previous model 

by 13.8% in terms of classification accuracy when tested on five different types of rice disease datasets. 

Simultaneously, it is evaluated next to established recognition strategies like ResNet, VGG, and Vision 

Transformer. This approach improves recognition accuracy, allows for efficient picture classification of rice 

diseases, and presents a novel strategy for advancing crop disease identification technology and smart 

agriculture. 

Problem statement 

Researchers and experts analyse plant leaf diseases to identify the most pressing problems and obstacles. 

Here are a few examples: 

⚫ One, the picture of the leaf has to be of very good quality. 

⚫ Availability of the dataset to the public is a must. 

⚫ The leaf samples had 3 noise in the data. Diseases may be recognised via segmentation, but only after 

samples have been trained and tested. 

⚫ In the process of identifying leaf diseases, the fifth hurdle is categorization. The environment can cause 

variation in leaf colour by six shades. 

It might be challenging to identify all of the many plant diseases that exist. 

The suggested model’s improved precision is based on the aforementioned difficulties and on the fusion 

of IP and ML approaches. In this study, we consider these factors and present a DL-based system for 

autonomous leaf disease detection. 

3. Proposed system 

Here, you’ll find a machine-learning and image-processing architecture for identifying leaf diseases. The 

input for this framework is a picture of a leaf. The first step is a noise reduction procedure applied to the leaf 

pictures. The mean filter[33] is used to get rid of the noise. Histogram equalisation[34] is a technique used to 

improve images. The process of picture segmentation involves cutting a single image into several smaller 

sections. It aids in pinpointing the limits of a picture. K-Means is a method for image segmentation[35]. The 

suggested deep learning model is then used to classify images. 

The adaptive median filter (AMF) algorithms[33] are widely used to clean up pictures that have been 

tainted by background noise. The AMF technique uses this type of spatial processing to determine which pixels 

in an image are impacted by impulse noise. Impulse noise is the result of a large number of misaligned pixels 

in a given area. As a result, the median value of neighbouring, noise-free pixels are used to mask the noise-

containing pixels. 

Histogram equalisation, which is used to boost contrast, coordinates the intensity values of individual 

pixels to produce a uniform intensity profile and smooth histogram in the final picture[34]. When the contrast 

values of the picture’s practical data are extremely high, this method is frequently employed to increase the 

image’s contrast. This method has the potential to create a uniform distribution of brightness[35]. As a result, 

more contrast may be necessary in some parts of the image. Histogram equalisation is a method for more 

uniformly dispersing the most frequently occurring intensity values over the whole histogram. 

3.1. Classification of plant disease 

In this study, we create a multilayer attention component to help the network focus on the most important 

details while ignoring the rest. In addition, the research suggests a recurrent module that uses spatial 

relationships and contextual dependencies among informative portions of a pre-processed picture to improve 

accuracy. Figure 1 depicts the general architecture of the suggested technique. 
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Figure 1. Illustration of the proposed gated recurrent multi-attention network. 

3.1.1. Overall architecture 

Multiscale local characteristics are extracted from input photos by feeding them into a core convolutional 

neural network. 𝐿𝑠 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠  and global feature 𝐺 ∈ 𝑅𝐶𝑔×1×1. Features 𝐿𝑠 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠 (s ∈ {1, 2, 3, ..., 

S}) at single generate 𝐿𝑠  0. The global feature 𝐺 ∈ 𝑅𝐶𝑔×1×1 is fed into a 1 × 1 convolution to generate 𝐺0 ∈

𝑅𝐶𝑠×1×1. And then is stretched to the size of 𝐺1 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠 . After element-𝐿0
𝑠  and 𝐺1, the obtained score map 

𝐹s is multiplication 𝐿𝑒𝑛
𝑠 = 𝛼𝑠 ⊗ 𝐿𝑠, the enhanced multiscale features 𝐿𝑒𝑛 =  {𝐿𝑒𝑛

1 , 𝐿𝑒𝑛
2 , . . . , 𝐿𝑒𝑛

𝑆 } are obtained. 

Multiscale sequences 𝐿𝑒𝑛 = {ℓ1, ℓ2, . . . , ℓ𝑁𝑎𝑙𝑙}. These sequences are then input into deep GRUs, which scour 

the environment for the most relevant contextual dependencies and spatial associations. The image label is 

gotten by 𝑌 = 𝐺𝑅𝑈(𝐿𝑒𝑛). 

3.1.2. Multiscale feature extraction 

Multiple stacked layers make up the multiscale feature extraction component. As the network evolves, its 

focus shifts from local texturing to more global profiles. The study developed a multilevel attention module to 

enhance the multiscale illustration capabilities of backbone networks since these qualities are crucial to plant 

disease picture categorization. Our module’s attention operation is fed into the system by first extracting 

multiscale local characteristics. Here, we have the expression for the scale s: 

𝐿𝑠 = {𝐼1
𝑠 , 𝐼2

𝑠 , 𝐼3
𝑠 , … . , 𝐼𝑁𝑠

𝑠 } (1) 

where 𝐶𝑠 , 𝐻𝑠 , and 𝑊s denote the sum of channels of 𝐿𝑠 , respectively. 𝐼𝑛
𝑠  represents the value of local feature 𝐿𝑠  

at spatial site 𝑛 ∈ {1, 2, 3, . . . , 𝑁𝑠}, at a given layer 𝑠 ∈ {1, 2, 3, . . . , 𝑆} . Then, feature 𝐺 ∈ 𝑅𝐶𝑔×1×1  is also 

produced by the first non-layer before the softmax layer. 𝐶𝑔 represents the channels of G. 

3.1.3. Multilevel attention module 

Let’s pretend that L stands for the coarse local feature and G for the fine global feature. Global features’ 

extracted semantic high ground can help direct local features’ attention to relevant indicators. Directly 

combining multiscale local characteristics with global features to produce an attention map is problematic due 

to the significant magnitude difference between the two sets of features. 

Therefore, we first feed the local features 𝐿𝑠 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠  into Conv_t to their magnitudes at scale s, 

subsequent in 𝐿0
𝑠 . 

𝐿0
𝑠 = Conv_t(𝐿𝑠), 𝐿0

𝑠 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠  (2) 

The global feature G is fed to a 1 × 1 convolution to produce 𝐺0 ∈ 𝑅𝐶𝑠×1×1. Then, G0 is stretched to the 

size of 𝐺0 ∈ 𝑅𝐶𝑠×𝐻𝑠×𝑊𝑠 . After element-wise sum among 𝐿0
𝑠  and 𝐺1 . The score map Fs at scale s can be 

generated by rendering to 

𝐹𝑠 = 𝜎(𝐿0
𝑠 + 𝐺1) (3) 

where 𝜎 is the ReLU function. Once 𝐹 = {𝐹1, 𝐹2, . . . , 𝐹𝑆} is generated, a map 
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𝑎𝑛
𝑠 =

exp(𝑓𝑛
𝑠)

∑ exp(𝑓𝑛
𝑠)𝑁𝑠

𝑛=1

, 𝑛 ∈ {1,2,3, … , 𝑁𝑠} (4) 

where 𝑓𝑛
𝑠  signifies the score map 𝐹𝑛

𝑠 at location n, at a given scale 𝑠 ∈ {1, 2, 3, . . . , 𝑆}. 

Finally, we do a multiplication of local features by their associated normalised attention weight value, s 

n. 𝐼𝑛
𝑠 . That is, 𝐿𝑒𝑛

𝑠 = {ℓ1, ℓ2, . . . , ℓ𝑁𝑠
} is produced as the final form for the image at each scale 𝑠. 

3.1.4. Feature aggregation using GRU 

We have successfully retrieved enough multiscale information from pictures over large geographic ranges 

to use in the multilevel attention module. It is a challenge to figure out how to more effectively merge these 

disparate characteristics. Informational dependencies are easy for RNN to capture. GRU is a subset of RNNs 

that, thanks to its memory for distant data, can outperform more conventional RNN architectures. We employ 

GRU in our network to progressively analyse these multiscale properties and automatically determine the ideal 

iteration, allowing us to fully capitalise on the long-range interdependence among pieces of material. 

Features extracted by the multi-attention module may be seen as spatial series, analogous to how GRU is 

used in natural language processing to organise features in temporal series. Researchers started by using an 

11-convolution procedure to compress multiscale feature channels. 𝐿𝑒𝑛 = {𝐿𝑒𝑛
1 , 𝐿𝑒𝑛

2 , . . . , 𝐿𝑒𝑛
𝑠 } ∈ 𝑅𝐶𝑒𝑛×𝐻𝑒𝑛×𝑊𝑒𝑛  

into a single channel and generated 𝐿𝑒𝑛 ∈ 𝑅1×𝐻𝑒𝑛×𝑊𝑒𝑛 . Then, the single 𝐿𝑒𝑛 =

{ℓ1, ℓ2, . . . , ℓ𝑁1
, ℓ1, ℓ2, . . . , ℓ𝑁𝑠

, ℓ1, ℓ2, . . . , ℓ𝑁𝑎𝑙𝑙
} ∈ 𝑅1×(𝐻𝑒𝑛𝑊𝑒𝑛). For feature ℓn at recurrence can be formulated 

as 

ℎ̃〈𝑛,𝑙〉
𝑚 = tanℎ(𝑊𝑐[Γ𝑟 × ℎ〈𝑛−1,𝑙〉

𝑚 , ℓ〈𝑛,𝑙〉
𝑚 ] + 𝑏𝑐) (5) 

Γ𝑢 = 𝜎(𝑊𝑢[ℎ〈𝑛−1,𝑙〉
𝑚 , ℓ〈𝑛,𝑙〉

𝑚 ] + 𝑏𝑢) (6) 

Γ𝑟 = 𝜎(𝑊𝑢[ℎ〈𝑛−1,𝑙〉
𝑚 , ℓ〈𝑛,𝑙〉

𝑚 ] + 𝑏𝑟) (7) 

ℎ〈𝑛−1,𝑙〉
𝑚 = Γ𝑢 × ℎ̃〈𝑛,𝑙〉

𝑚 + (1 − Γ𝑢) × ℎ〈𝑛−1,𝑙〉
𝑚  (8) 

𝑂〈𝑛,𝑙〉
𝑚 = sigmoid(𝑊𝑜 × ℎ〈𝑛,𝑙〉

𝑚 + 𝑏𝑐) (9) 

Note that ℎ〈𝑛,𝑙〉
𝑚 , ℓ〈𝑛,𝑙〉

𝑚 , 𝑂〈𝑛,and 𝑙〉
𝑚  represent the m-th recurrence, the n-th layer, and the n-th spatial locations 

respectively. The update gate is denoted by _u and the reset gate by _r. These settings decide whether the 

hidden state h_n, lm should be remembered or forgotten at each spatial step. 

Then, the hidden state ℎ〈𝑛,𝑙〉
𝑚  to produce the hidden state hm of the final layer and the output om of the m-

th repetition iteration. 

ℎ𝑚 = {ℎ[𝑁𝑎𝑙𝑙,1]
𝑚 , ℎ[𝑁𝑎𝑙𝑙,2]

𝑚 , … , ℎ[𝑁𝑎𝑙𝑙,𝐿]
𝑚 } (10) 

𝑜𝑚 = {𝑜[1,𝐿]
𝑚 , 𝑜[2,𝐿]

𝑚 , … , 𝑜[𝑁𝑎𝑙𝑙,𝐿]
𝑚 } (11) 

Hence, at the (m + 1)-th recurrence, the hidden state hm of the previous layer is considered the initial 

hidden state. The output 𝑜𝑀 after M iterations looks like this 

𝑜𝑀 = {𝑜〈1,𝐿〉
𝑀 , 𝑜〈2,𝐿〉

𝑀 , … . , 𝑜〈𝑁𝑎𝑙𝑙,𝐿〉
𝑀 } (12) 

Finally, 𝑜𝑀 the output is the result of summing the over M iterations and running the result via a fully 

linked layer. 

𝑌 = 𝐹𝐶 ( ∑ 𝑜𝑀

𝑀

𝑚=1

) (13) 

The parameters of the proposed model are optimally selected by the improved tunicate swarm 

optimization, which is explained as follows: 
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3.1.5. Tunicate swarm algorithm 

To model the marine existence of the tunicate and its foraging behaviour, the tunicate swarm algorithm 

(TSA) was developed[36]. In the ocean, tunicates may look for food even if they have no prior knowledge of 

where to get it. The TSA algorithm employs two jet propulsion and swarm intelligence behaviours seen in 

tunicates to perform optimisation tasks. Tunicate must follow three major requirements in order to 

mathematically algorithm jet pulsing behaviour: travelling towards the position of the best search agent, among 

search agents, and residual near to the best search agent. During congestion behaviour, the optimal placement 

of additional search agents is determined. The underlying mathematical method behind these behaviours is 

detailed below. Vector A is employed in Equation (14) to determine the new location of the search agent so 

that it does not collide with other search agents (other tunicates). 

�⃗� =
�⃗�

�⃗⃗⃗�
 (14) 

In Equation (1), the vector �⃗�, which is gravity, is gotten based on Equation (15). 

�⃗� = 𝑐2 + 𝑐3 − �⃗� (15) 

In Equation (15), the vector �⃗� the water depth is gotten based on Equation (16). 

�⃗� = 2𝑐1 (16) 

In Equations 15 and 16, the variables 𝑐1, 𝑐2, and 𝑐3 are random values betwixt 0 and 1. Lastly, the vector 

�⃗⃗⃗� signifies the social force among the search agents, which computes using Equation (17). 

�⃗⃗⃗� = [𝑃min + 𝑐1𝑃max − 𝑃min] (17) 

In Equation (17), 𝑃max  and 𝑃min  characterise the primary and secondary velocities to generate social 

interaction. In the TSA procedure, 𝑃max and 𝑃min values reflect 1 and 4 correspondingly. After the search 

agent’s novel position, compute the search agent’s move to the best neighbour exposed in Equation (18). 

𝑃𝐷⃗⃗⃗⃗ ⃗⃗ = |𝐹𝑆⃗⃗ ⃗⃗⃗ − rand( ). �⃗⃗�𝑝(𝑥)| (18) 

In Equation (18), 𝑃𝐷⃗⃗⃗⃗ ⃗⃗  shows how far away the meal is from the person doing the searching. Pp(x) 

represents the tunicate’s position relative to the ideal location of the food supply, where x is the current repeat 

value. The TSA algorithm then moves on to the next step, in which the search agents converge on the agent so 

that it can retain its position with respect to the best search agent—the food source. The algorithm at this point 

operates in the context of Equation (19). 

�⃗⃗�𝑝(𝑥) = {
𝐹𝑆⃗⃗ ⃗⃗⃗ + �⃗�. 𝑃𝐷⃗⃗ ⃗⃗ ⃗⃗ , if 𝑟and ≥ 0.5

𝐹𝑆⃗⃗ ⃗⃗⃗ − �⃗�. 𝑃𝐷⃗⃗ ⃗⃗ ⃗⃗ , if 𝑟and ≤ 0.5
 (19) 

In Equation (19), �⃗⃗�𝑝(𝑥) is the efficient position 𝐹𝑆⃗⃗ ⃗⃗⃗. Finally, two of the most promising optimum solutions 

are kept in a database throughout the mathematical modelling phase of swarm behaviour, and the locations of 

the other search agents are adjusted accordingly. Algorithmically, this behaviour is represented by Equation 

(20). 

𝑃𝑝(�⃗� + 1) =
�⃗⃗�𝑝(𝑥) + 𝑃𝑝(�⃗� + 1)

2 + 𝑐1
 (20) 

3.1.6. Cauchy mutation‑TSA (QCTSA) 

In this part, the CTSA algorithm undergoes the Cauchy mutation. Equation (21) demonstrates the Cauchy 

mutation. 

𝑦 =
1

2
+

1

π
arctan (

𝛾

𝑔
) (21) 

The consistent density purpose shows using Equation (22). 
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𝑓Cauchy(0,𝑔)(𝛾) =
1

π

𝑔

𝑔2 + 𝑟2
 (22) 

In Equation (22), g is a ratio limit and 𝛾 = tan(π(𝑦 − 1 ∕ 2)) . There is a connection between the 

Gaussian mutation and the Cauchy function. However, the Cauchy mutation is distinct in that it is less extreme 

and takes a vertical form. The Cauchy mutation, on the other hand, has a larger horizontal spread than the 

Gaussian. The Cauchy mutation can be used to increase or decrease the number of neighbours in each 

generation or to alter the search capabilities of search agents. 

On the other hand, this makes search agents more trustworthy in their quest to enhance the answers 

discovered at scale while rapidly evading the best places. The Cauchy mutation serves as a mutation operator 

for this purpose. The Cauchy mutation is shown by Equation (23) here. 

𝑥𝑖
′ = 𝑥𝑖 × (1 + 𝐶(𝛾)) (23) 

In Equation (23), 𝐶(𝛾) is a completely arbitrary sum generated by mutation. The QLGCTSA algorithm, 

which incorporates the Cauchy mutation into the swarm behaviour component of the TSA algorithm, results 

in more misuse and more talented regions. Using the Cauchy mutation throughout the optimisation process 

improves solution quality overall. 

4. Results and discussion 

4.1. Dataset description 

Four distinct public datasets are used to assess the effectiveness of the suggested approach. Having photos 

recorded against a variety of backdrops is why we recommend using various datasets. The backdrop in 

PlantVillage is predetermined and consistent. Datasets of apples, maize, and rice are collected in the wild. 

Figure 2 displays several examples of photographs together with their respective classifications from each of 

the datasets. 

(1) PlantVillage dataset—Penn State University’s open dataset is frequently utilised by the scientific 

community for diagnosing diseases. There are 54,305 colour photos in the collection, split across 38 categories 

and 14 plant leaf types[37]. Table 1 displays the total number of photos across all categories. The photographs 

are taken in a controlled environment with a consistent backdrop. 

Table 1. PlantVillage dataset account. 

Species Image count Image count Category Species Category 

Apple 152 630 Scab Potato Healthy 

Peach 1404 2297 Bacterial spot Tomato Target spot 

Peach 373 360 Healthy Tomato Mosaic virus 

Apple 1000 621 Black rot Potato Early scar 

Apple 1000 275 Cedar apple rust Potato Late blight 

Apple 371 1645 Healthy Raspberry Healthy 

Cherry 5090 854 Well Soybean Healthy 

Cherry 1835 1052 Powdery mildew Squash Powdery mildew 

Corn 456 513 Grey leaf spot Strawberry Healthy 

Corn 1109 1192 Mutual rust Strawberry Leaf scorch 

Corn 2127 1162 Healthy Tomato Bacterial advertisement 

Corn 1000 985 Northern leaf blight Tomato Early disfigurement 

Grape 1591 1180 Black rot Tomato Healthy 

Grape 1909 1383 Black measles Tomato Late disfigurement 
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Table 1. (Continued). 

Species Image count Image count Category Species Category 

Grape 952 1076 Isariopsis leaf spot Tomato Leaf mold 

Grape 1771 423 Healthy Tomato Septoria spot 

Orange 1676 5507 Citrus greening Tomato Two dotted spider mite 

Pepper 5357 997 Bacterial spot Tomato Yellow curl virus 

Pepper 1502 1478 Healthy Blueberry Well 

Total 152 - - - - 

 

 
(a) PlantVillage[37]. 

 
(b) Maize[38]. 

 
(c) Apple[39]. 

 
(d) Rice[38]. 

Figure 2. Sample images from the datasets used in the experiment. 

(2) Maize dataset—In the study of Chen et al.[38], 400 photos across 4 maize disease groups make up the 

Maize dataset. Table 2 provides the total number of images across all categories, including the test set. Photos 

are taken in their natural settings, without any manipulation of the backgrounds. There are 100 training photos 

in each of the categories. Some photographs from each group are pulled out and put through their paces. 
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Table 2. Maize dataset explanation. 

Grouping Image sum 

Eyespot 121 

Goss’s bacterial wilting 120 

Gray leaf advertisement 121 

Phaeosphaeria spot 119 

Total 1,821 

(3) Apple dataset—Using the Kaggle platform, CVPR 2020 issued a plant pathology challenge to detect 

illnesses in apples[39]. There are a total of 3642 photos in the collection, split evenly across four classes; 

however, only 1822 of those images have been annotated. For this study, we chose labelled photos across 

several illness categories, including healthy, rust, scab, and others. Table 3 lists the total number of images, 

broken down by kind. The photographs were taken in the field under uncontrolled lighting circumstances. 

Table 3. Apple dataset report. 

Image count Type 

516 Healthy 

622 Rust 

592 Scab 

91 Multiple disease 

1821 Total 

(4) Rice dataset—The Fujian Institute of Subtropical Botany in Xiamen, China[38] provides this guide, 

which classifies rice illnesses into five broad groups. The dataset contains a total of 500 photos; 100 are 

assigned to each of five different categories. Different sets of test photos with varied numbers of examples are 

provided. Table 4 lists the total number of images for each classification. 

Table 4. Rice dataset report. 

Image count Group 

107 Stackburn 

115 White tip 

108 Bacterial leaf line 

115 Leaf injury 

115 Leaf smut 

560 Total 

4.2. Experimental setup 

The findings in this investigation are broken down into a training and testing phase. Operating workstation 

specs include an Intel Core i7-6800k processor, NVIDIA GTX 1080 graphics processing unit, 32 GB of RAM, 

and a 512 GB Samsung NVMe PCIe M2 solid state driver. Python 3.7 (Delaware, United States) and 

Tensorflow 2.0 (open-source artificial intelligence library) are used to build up the environment[40]. 

After each epoch, the model’s performance is measured against the validation dataset. The model is only 

put into action on the test dataset when it has achieved the appropriate datasets. 

All four databases were collected in various regions and provide information on several crops. Different 

types of datasets exist, including those that are modest and well-balanced, with 400–500 photos, and those that 

are vast and unbalanced, with images. The purpose of using multiple settings is to evaluate the suggested 
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model’s efficacy in a variety of test conditions. 

4.3. Visualization analysis 

Figures 3–5 depict rice, apples, and maize, respectively. There are a total of 38 classifications in the 

PlantVillage dataset. Due to the high volume of categories, we have omitted the presentation of confusion 

matrices for the same. For the two classes in the Rice dataset depicted in Figure 3, the confusion matrix due 

to their similarities, a tiny percentage of samples are incorrectly labelled as either leaf scald or white tip. 

Similarities across illnesses may contribute to their incorrect categorization. As can be seen from the confusion 

matrix in Figure 4, several photos in the Apple dataset have numerous illness characteristics that confuse the 

classifier. Over 95% accuracy is reached across the board for all other categories. 

The model struggled to produce satisfactory results in the tomato species on the PlantVillage dataset, 

particularly with regard to early spot. Likewise, the model tends to incorrectly place instances of northern leaf 

blight and grey spot in the same category for the corn species. Photos of eyespot and grey leaf spot illnesses 

in the Maize dataset are incorrectly categorised, but photos of the other two groups are correctly labelled 

(Figure 5). 

 
Figure 3. Confusion matrix for Rice. 

 
Figure 4. Confusion matrix for Apple. 
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Figure 5. Confusion matrix for Maize. 

4.4. Validation analysis of the proposed model 

Table 5 presents the analysis of a proposed model for all datasets in terms of various metrics. 

Table 5. Performance analysis of proposed model. 

Measures Precision Sensitivity Specificity Accuracy F-score Kappa 

Rice dataset 0.9984 0.9981 0.9984 0.9983 0.9983 0.9966 

Apple dataset 0.9972 0.9969 0.9972 0.9971 0.9971 0.9941 

Maize dataset 0.9963 0.9953 0.9963 0.9958 0.9958 0.9916 

PlantVillage 0.9973 0.9968 0.9973 0.9971 0.9971 0.9941 

The proposed model’s performance analysis is shown in Table 5 above. In this analysis, we used different 

datasets to evaluate the results. The Rice dataset had the precision of 0.9984, sensitivity rate of 0.9981, 

specificity of 0.9984, accuracy of 0.9983, and kappa range of 0.9966, all of which were achieved respectively. 

Then, another dataset known as the Apple dataset achieved precision of 0.9972, sensitivity rate of 0.9969, 

specificity of 0.9972, accuracy of 0.9971, F-score of 0.9971, and finally kappa range of 0.9941, all in 

accordance with each other. Another dataset, the Maize dataset, then achieved precision of 0.9963, sensitivity 

rate of 0.9953, specificity of 0.9963, and finally kappa range of 0.9916, all in accordance with each other. 

Another dataset, called PlantVillage, then achieved precision of 0.9973, sensitivity rate of 0.9968, specificity 

of 0.9973, accuracy of 0.9971, and finally kappa range of 0.9941, all in accordance with each other. 

4.5. Comparative analysis of various training and testing data 

Tables 6 and 7 provide the comparative analysis of the proposed model with existing techniques for 60%–

40% and 80%–20%. The existing models, such as VGG-ICNN[21], U-Net[22], EfficientNet[23], GoogleNet[28] 

and DenseNet[32], are considered for validation, and results are averaged in Tables 6 and 7. 

Table 6. Comparative analysis of the proposed model on 60%–40%. 

Models Sensitivity Specificity F-measure Accuracy 

U-Net 75.00 80.00 76.92 77.50 

EfficientNet 85.00 75.00 80.95 80.00 

GoogleNet 80.00 70.00 76.19 75.00 

DenseNet 90.00 80.00 85.71 85.00 

VGG-ICNN 90.00 85.00 87.80 87.50 

Proposed 95.36 90.00 95.24 96.80 
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Table 6 above shows the comparative analysis of the suggested model on a 60%–40% basis. In the 

analysis of the U-Net model, the sensitivity, specificity, F-measure range, and accuracy rate were all reached 

at 75.00, 80.00, and 76.92, respectively. After that, the EfficientNet model achieved the following results: 

sensitivity of 85.00, specificity of 75.00, F-measure range of 80.95, and accuracy rate of 80.00, respectively. 

Then, the GoogleNet model achieved the following values: sensitivity: 80.00; specificity: 70.00; F-measure 

range: 76.19; and accuracy rate: 75.00, respectively. Then, the DenseNet model achieved the following values: 

sensitivity = 90.00; specificity = 80.00; f-measure range = 85.71; and accuracy rate = 85.00. Then, the 

sensitivity, specificity, F-measure range, and accuracy rate of the VGG-ICNN model were all 90.00, 85.00, 

and 87.80, respectively. The proposed model then achieved the following results: sensitivity of 95.36, 

specificity of 90.00, F-measure range of 95.24, and accuracy rate of 96.80, respectively. 

The comparative analysis of the proposed model on 80%–20% is shown in Table 7. In the analysis, we 

used various models, including the U-Net 93.61, the 94.56 specificity, the 93.20 f-measure range, and the 94.08 

accuracy rate. Then, the EfficientNet model achieved the following results: sensitivity of 91.00; specificity of 

93.00; F-measure range of 95.00; and accuracy rate of 92.29, respectively. Then, the GoogleNet model 

achieved sensitivity, specificity, and accuracy rates of 94.00, 96.00, and 96.14, respectively. Then the 

sensitivity, specificity, f-measure range, and accuracy rate of the DenseNet model were each 95.00, 96.00, and 

97.00, respectively. The VGG-ICNN model then achieved the sensitivity, specificity, f-measure range, and 

accuracy rate of 98.00, 98.00, and 98.14, respectively. The proposed model then achieved the following values 

for sensitivity, specificity, F-measure range, and accuracy rate: 99.73, 99.68, 99.71, and 99.71 respectively. 

Figures 6–9 present the visual representation of proposed model with existing techniques for different ratio of 

training and testing data.  

Table 7. Comparative analysis of the proposed model on 80%–20%. 

Models Sensitivity Specificity F-Score Accuracy 

U-Net 93.61 94.56 93.20 94.08 

EfficientNet 91.00 93.00 95.00 92.29 

GoogleNet 94.00 94.00 96.00 96.14 

DenseNet 95.00 96.00 97.00 97.21 

VGG-ICNN 98.00 98.00 98.00 98.14 

Proposed 99.73 99.68 99.71 99.71 

 
Figure 6. Comparative analysis of the proposed model. 
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Figure 7. Graphical representation of various DL models. 

 
Figure 8. F-score analysis. 

 
Figure 9. Accuracy analysis of various training and testing data. 

5. Conclusion and future work 

Diseases that are detected and treated early on have the greatest impact on crop yields and quality. 

Improvements in performance and applicability to the creation of portable IoT devices for smart agriculture 

are possible thanks to the mechanisation of the disease detection work utilising image processing, learning. 

Preliminary results from using deep learning models for agricultural disease diagnosis have been encouraging, 

especially from using CNNs. However, the usefulness is constrained by the high memory and processing needs 

of deep CNN models. Lightweight CNN representations have inconsistent performance across plant disease 

kinds since they are only equipped to deal with a limited number of disease categories. The research presented 

here suggests using a GRMA-Net to categorise diseases. Our GRMA-Net is able to extract discriminative 

features by focusing on revealing regions at many scales thanks to its multiscale attention module. In addition, 

our GRMA-Net employs GRUs to more effectively leverage the interdependence and contextual interaction 

between variables in different geographic areas. The suggested model is evaluated on four datasets, where it 

outperforms the state-of-the-art models by a wide margin (between 95% and 99%). The suggested model 

consistently beats state-of-the-art lightweight approaches and most recently announced deep CNN models 

across all four available datasets. 
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Future works 

Multi-sensor data fusion from UAVs, satellite and UAV image fusion, and multi-resolution data fusion 

are the most common types of fusion utilised in agriculture. In applications like crop monitoring and plant 

categorization, this fusion is used to enhance the detection procedure. As a result, including more data sources 

can improve the efficiency with which we diagnose diseases in their earliest stages. However, there has been 

a lack of research on multimodal fusion, which is especially lacking in the field of illness diagnosis. In this 

publication, we showed encouraging multimodal fusion findings, showing the great promise of data. This 

opens the door to other studies. 
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