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ABSTRACT 

Epileptic seizure is a neurological disorder characterized by recurrent, abrupt behavioral changes attributed to 

transient shifts in excessive electrical discharges within specific brain cell groups. Electroencephalogram (EEG) signals 

are the primary modality for capturing seizure activity, offering real-time, computer-assisted detection through long-term 

monitoring. Over the last decade, extensive experiments through deep learning techniques on EEG signal analysis, and 

automatic seizure detection. Nevertheless, realizing the full potential of deep neural networks in seizure detection remains 

a challenge, primarily due to limitations in model architecture design and their capacity to handle time series brain data. 

The fundamental drawback of current deep learning methods is their struggle to effectively represent physiological EEG 

recordings; as it is irregular and unstructured in nature, which is difficult to fit into matrix format in traditional methods. 

Because of this constraint, a significant research gap remains in this research field.  In this context, we propose a novel 

approach to bridge this gap, leveraging the inherent relationships within EEG data. Graph neural networks (GNNs) offer 

a potential solution, capitalizing on their ability to naturally encapsulate relational data between variables. By representing 

interacting nodes as entities connected by edges with weights determined by either temporal associations or anatomical 

connections, GNNs have garnered substantial attention for their potential in configuring brain anatomical systems. In this 

paper, we introduce a hybrid framework for epileptic seizure detection, combining the Graph Attention Network (GAT) 

with the Radial Basis Function Neural Network (RBFN) to address the limitations of existing approaches. Unlike 

traditional graph-based networks, GAT automatically assigns weights to neighbouring nodes, capturing the significance 

of connections between nodes within the graph. The RBFN supports this by employing linear optimization techniques to 

provide a globally optimal solution for adjustable weights, optimizing the model in terms of the minimum mean square 

error (MSE). Power spectral density is used in the proposed method to analyze and extract features from 

electroencephalogram (EEG) signals because it is naturally simple to analyze, synthesize, and fit into the graph attention 

network (GAT), which aids in RBFN optimization. The proposed hybrid framework outperforms the state-of-the-art in 

seizure detection tasks, obtaining an accuracy of 98.74%, F1-score of 96.2%, and Area Under Curve (AUC) of 97.3% in 

a comprehensive experiment on the publicly available CHB-MIT EEG dataset. 
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1. Introduction 

Extensive research has been conducted for centuries on the 

intricate workings of the human brain, which stands as the central 

pillar of the neurological system and arguably represents the most 

vital organ in the human body. A considerable portion of this research 

has been dedicated to the study of brain disorders. According to a 

recent comprehensive study, the prevalence of neurologic diseases, 

including Alzheimer’s, meningitis, stroke, dementia, and Parkinson’s 

disease, has shown a significant increase over the past 25 years[1]. 

Neuroimaging methods are essential for comprehending and 

identifying neurological conditions. A common tool for examining 

the anatomical structure of the brain and identifying anomalies is 

magnetic resonance imaging, or MRI. Prior studies conducted by 

Jibon et al[2,3]. have significantly advanced the field of MRI-based 

brain analysis, especially when it comes to the identification of brain 

tumors. This research focuses on the complementary use of 

Electroencephalography (EEG) signals for the detection and analysis 

of epileptic seizures, while acknowledging the significance of MRI. 

Among these neurological disorders is epilepsy, which comprises a 

group of complex conditions characterized by seizures. The World 

Health Organization (WHO) estimates that approximately 65 million 

people worldwide are affected by epileptic seizures[4]. The 

neurological disorder known as epilepsy, characterized by abnormal 

neuronal activity in the human brain, poses a significant threat to the 

safety and well-being of millions of patients worldwide, impacting 

their ability to lead normal lives. Individuals with epilepsy often 

experience distressing symptoms, including uncontrollable jerking 

movements, loss of consciousness, and other discomforts. Without 

timely intervention, this condition can potentially lead to fatal 

outcomes. The analysis of epilepsy is of paramount importance, as it 

plays a critical role in preventing permanent brain damage resulting 

from epileptic seizures and the occurrence of recurrent unprovoked 

episodes[5]. 

The voltage fluctuations resulting from ion currents within 

neurons in the brain are measured as an electroencephalogram (EEG). 

This EEG recording portrays the bioelectrical activity of the brain and 

encapsulates significant physiological and disease-related 

information. The EEG signal has emerged as the foremost diagnostic 

tool for epilepsy due to its capacity to capture changes in the 

frequency and rhythm of brain activity during seizures[6]. The EEG 

signals must be captured to localize epileptic seizures and can be 

utilized to gather important information about neurological diseases. 

Frequency is one of the key scales used in clinical EEGs to assess 
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abnormalities and cognition. The frequency of an EEG that has been recorded falls between 0.01 and 100 Hz. 

The frequency content can be separated into five main bands: delta, theta, alpha, beta, and gamma. Table 1, 

contains information on these bands’ corresponding frequencies. Patients with epilepsy display aberrant 

behaviours both during ictal and interictal periods. In contrast to interictal activity, which can be thought of as 

seizure-free activity, ictal refers to the activity that takes place during an epileptic episode. Ictal signals 

typically have sharp, spikey, continuous, or unbroken structural waveforms, whereas interictal signals typically 

have sharp, spikey, transient waveforms. As a result, the dynamic mechanisms causing the seizures can be 

described, located, and localized using some distinguishing changes in the EEG data that occur after a seizure. 

Some patients additionally have an intracranial recording to identify the part of the brain that caused the seizure 

and to assess if implanted devices for treating epilepsy should be placed there[7]. 

Table 1. Band Frequency of EEG signals[5]. 

Band Frequency (Hz) 

Delta 1–4 Hz 

Theta 4–7.5 Hz 

Alpha 7.5–13 Hz 

Lower Beta 13–16 Hz 

Higher Beta 16–30 Hz 

Gamma 30–40 Hz 

Based on frequency, time, wavelet transforms, and Gabor filters, various approaches have been developed 

to detect epileptic seizures in EEG recordings. However, because EEG signals are non-stationary, some 

considerations must be made when using approaches based on extracted frequency or temporal features 

because they are insufficient for the job[8]. The study of non-stationary signals is made possible by time-

frequency (t-f) approaches, which are potent instruments that break down signals like EEGs into both time and 

frequency. EEG signals can be seen as images by applying various time-frequency distributions, and several 

features can be extracted directly from the mapped signals. A Power Spectral Density (PSD) typically describes 

the amplitude of the signal in the frequency domain[9]. There are many ways to compute the PSD, including 

parametric and non-parametric techniques. This function extracts the statistical characteristics like mean, 

variance, standard deviation, and root mean square. For the EEG data, the PSD is calculated, and its mean is 

obtained. The classifiers use statistical features, and the mean of PSD is taken. The classification procedure 

typically includes a training and testing step. In the training phase, the classifier is first fed with the features 

and their labels. Also, fresh inputs will be provided to the trained classifier during testing so that it can 

recognize the appropriate class[10]. 

Several machine learning algorithms have been developed to recognize epileptic seizures using 

statistical, temporal, frequency, time-frequency domain, and nonlinear aspects[11]. In conventional machine 

learning methods, features and classifiers are selected through a process of trial and error. Machine learning 

models are excellent for small amounts of data. Due to the growing accessibility of data, machine learning 

techniques may not be effective in the present era. Modern Deep Learning (DL) techniques have been applied 

to do this. DL models require a lot of training data, in contrast to conventional machine learning techniques[12]. 

This is because these models have a large number of feature spaces and overfit when there isn’t enough data. 

Deep neural networks, as opposed to standard neural networks, or so-called shallow networks, are made up of 

more than two hidden layers. This growth in network size leads to a sharp rise in the number of network 

parameters, necessitating proper learning strategies as well as precautions against overfitting the taught 

network. Instead of multiplying a weight vector (matrix), convolutional networks use filters convolved with 

input patterns, which drastically decreases the number of trainable parameters[13]. 
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Non-Euclidean structured data cannot be processed directly by General Convolutional Neural Network 

(CNN)-based DL methods because discrete convolution does not preserve the translational invariance of non-

Euclidean signals and the fixed convolution kernel cannot capture all of the nodes’ neighbourhood 

information[14]. However, Graph Convolutional Neural Networks (GCNNs) address the relational qualities 

between nodes, they can easily extract features from such non-Euclidean data and analyse graph-structured 

signals. The new features generated by GCNNs aid in the distinction of EEG signals and make them more 

valuable for classification[15]. GCNNs extend the convolution technique to non-Euclidean graph data. The 

graph convolutional operation seeks to build representations for vertices by combining the features of a given 

vertex with the features of its neighbours. The relationship-aware representations generated by GCNNs 

considerably improve the discriminative power of CNN features, and the improved model interpretability can 

assist physicians in determining, for example, the areas of the brain that are primarily active in one specific 

task. Graphs automatically capture relationships between things and are thus potentially highly beneficial for 

these applications to encode relational information between variables. As a result, attention has been put into 

generalizing graph neural networks (GNN) into non-structural and structural contexts[16]. To investigate the 

spatial relationship of multi-channel EEG, we consider different channels of the EEG as a model based on 

Graph Attention Network (GAT). The EEG signals of an item are represented as a graph, with each channel 

acting as a node in the graph. The attention coefficients between nodes are mapped to the graph’s edges. 

Following that, it computes the attention coefficients between nodes. In general, self-attention will direct 

attention to all nodes in the graph, resulting in the loss of structural information. GAT incorporates the graph 

structure by only examining the node’s first-order neighbors[17]. 

Radial Basis Function Neural Networks (RBFNs) have been discovered to be particularly appealing for a 

wide range of applications in deep learning formulation. RBFNs have the essential virtue of forming a unifying 

link between many distinct study domains, including function approximation, regularization, noisy 

interpolation, pattern recognition, and medicine. RBFNs are becoming increasingly popular because of their 

simple topological structure, locally adjusted neurons, and ability to have a quick learning process when 

compared to other multilayer feed-forward neural networks. The conventional estimate hypothesis forms the 

cornerstone of the RBFN organization. It can be widely estimated. Because of its simpler structure and 

significantly quicker training process, the Radial Basis Function or simply RBF organization is a well-known 

alternative to the highly effective multilayer perceptron (MLP). The precise addition of a focused information 

arrangement in a multidimensional space is the root of the RBF arrangement. It can be seen as a particular type 

of functional connectivity network. To compare the improved results of the integrated approach, the 

experiment connected across the dataset using an RBFN classifier with and without clustering findings[18]. In 

the area of epileptic seizure detection, the Radial Basis Function Neural Network (RBFN) offers a promising 

answer to the problems that currently used algorithms are up against. The choice of Gaussian activation 

functions, LS (Least Squares) criteria, and a distinctive three-layer architecture, along with RBFN’s quick 

learning capability, make it a potent tool for improving seizure detection’s accuracy and timeliness. RBFN 

offers the ability to address shortcomings in existing algorithms and dramatically improve the diagnosis and 

management of epileptic seizures by effectively designing complicated EEG data correlations[19]. 

This study used a state-of-the-art method to preprocess EEG data and extract the information necessary 

for seizure detection. The power spectral density (PSD) is applied to increase the signal-to-noise ratio and 

reduce artifact signals. The EEG data is then processed further before being fed into a graph attention network 

(GAT). The synergy between GAT and RBFN enables the proposed model to effectively capture intricate 

patterns within the data, offering a level of accuracy and reliability that distinguishes this research from 

previous efforts. This work’s primary contributions can be summed up as follows: 

1) This research provides a method for automatically detecting seizures that are based on GAT and RBFN. 

The suggested method effectively uses computational powers to identify seizures in raw EEG data. 
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2) We employed power spectral density (PSD) as a preprocessing technique for raw EEG signals. This 

approach effectively eliminates unwanted signals, enhancing the model’s accuracy in detecting seizures. 

3) The proposed approach improves state-of-the-art algorithms in seizure detection tasks using the CHB-

MIT dataset. 

The remaining sections are categorized as follows. Section 2 explains previous research and a 

comparative analysis of the state-of-the-art on seizure detection. Section 3 demonstrates the proposed methods 

where data processing, GAT, RBFN architecture, and the paper’s system model are included. Section 4 

describes the model dataset. Section 5 describes the result and experiment analysis, patient-specific 

experiments, cross-validation ablation studies, and comparison to other state-of-the-art techniques. Section 6 

is the conclusion of the paper. 

2. Related work 

Seizure detection relies on the premise that the seizure and non-seizure states are qualitatively different. 

Most epilepsy research nowadays centers on using EEG data to detect seizures. 

Shoeb and Guttag[20] presented a study in which they used the Support Vector Machines (SVM) classifier 

to detect epileptic seizures on a scalp EEG dataset. This method achieved 96% accuracy on test data. Tzallas 

et al.[21] used the short-time Fourier transform (STFT) to derive the power spectrum density (PSD) of EEG 

data and extract features associated with the fractional energy of TF (Time Frequency) plane windows. These 

features were then loaded into an artificial neural network (ANN) to classify epileptic seizures. Birjandtalab 

et al.[22] extracted data from EEG signals using frequency domain characteristics (normalized in-band power 

spectral density), and then improved seizure detection precision by using a deep learning method based on a 

multilayer perceptron. The results reveal that the nonlinear technique can detect seizure and non-seizure 

episodes easily and automatically, with an F-measure accuracy of roughly 95%. CNN has generated the most 

interest in seizure detection research using deep learning systems. Because seizure detection studies using 

CNN often require image data as input, the EEG signal is preprocessed into a two-dimensional format. Zhou 

et al.[23] employed a convolutional neural network (CNN) to extract features from raw EEG signals. 

Unfortunately, CNN is unable to extract time features in an efficient manner, which results in information loss 

at the time level. As a result, Recurrent Neural Network (RNN) was utilized to analyze EEG signals. The long 

short-term memory (LSTM) neural network was employed in the work to process epileptic EEG information. 

Before classification, the LSTM model made use of a variety of temporal features to boost seizure detection 

ability[24]. However, some research combines the CNN and RNN models. Xu et al.[25] proposed a hybrid model 

of CNN and LSTM for seizure recognition utilizing EEG inputs. Using the public UCI (University of 

California, Irvine) epileptic seizure recognition data set, the proposed technique achieves high recognition 

accuracies of 99.39% and 82.00% on the binary and five-class epileptic seizure recognition tasks, respectively. 

The combination of CNN and LSTM is useful, and the addition of a convolution layer in RNN aids in the 

discovery of connections in the signal channel space. Although LSTM solves the gradient explosion problem 

of RNN, it can only create a one-way time series model. BiLSTM (Bidirectional Long Short-Term) can solve 

this problem. BiLSTM networks[26] can not only overcome the gradient explosion problem of RNNs, but they 

can also transmit information in both directions, making them ideal for evaluating long-term data sequences. 

A seizure detection approach based on the BiLSTM network was created[27]. Information transmitted both 

forward and backward is used. The approach detected seizures with great accuracy. Recently, Geng et al.[28] 

combined S-transform and BiLSTM to detect seizures. The S-transform is applied to raw EEG segments first, 

and the resulting matrix is grouped into time-frequency blocks before being submitted to the BiLSTM for 

feature selection and classification. The moving average filter, threshold assessment, multichannel fusion, and 

collar method are then utilized in postprocessing to improve detection performance. The experiment has a 

sensitivity of 98.09% and a specificity of 98.69%. Osman et al.[29] suggested an automatic epileptic seizure 
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detection method based on self-organization maps (SOM) and radial basis function (RBF) neural networks. 

The SOM technique was used to distinguish between the unknown patterns in the seizure and epilepsy datasets. 

For the tests to detect and categorize the standard dataset for epilepsy disease, different RBF neural network 

techniques with integrated SOM algorithms were used. On the UCI epilepsy dataset, the hybrid technique was 

evaluated. The overall detection accuracy was 97.47% with 10-fold cross-validation. Adeli et al.[30] proposed 

a novel EEG classifier based on integrated Power Spectral Density (PCA) and cosine RBFN. The two-stage 

classifier is used with the mixed-band wavelet-chaos technology to provide a precise prediction of 

electroencephalogram (EEGs) from healthy and epileptic participants into three different categories (healthy, 

ictal, and interictal). For normal healthy EEGs, interacting EEGs, and ictal EEGs, the suggested technique 

achieved 98.4%, 97.0%, and 94.8%, respectively. 

Many great deep neural network categorization models have been proposed by researchers as deep 

learning has progressed[31]. Recent advancements in machine learning techniques have improved seizure onset 

zone localization for epilepsy patients, using functional networks from EEG recordings and graph neural 

networks and attention mechanisms. A Generalized Neural Network (GNN) was utilized by Grattarola et al.[32] 

to identify brain areas connected with individual electrodes in the interictal and ictal phases. Without prior 

seizure onset zone knowledge, the GNN’s attention-based layer identified critical locations. The research was 

expanded to include human patients and brain activity simulators, proving its resilience and potential clinical 

utility. Li et al.[33] propose a new graph-generative neural network (GGN) model for identifying brain 

functional connectivity based on a study of scalp electroencephalogram (EEG) signals. The GGN model 

correctly recognized seven different types of epileptic seizure episodes 91% of the time. To identify seizures 

and categorize different seizure types, Zeng et al.[34] used hierarchical GCN. Chen et al.[35] introduced the E-

GCN model, a graph convolutional network, to mine more extensive data sets and investigate potential 

relationships between signals. A hybrid framework of GAT and Bi-directional LSTM (BiLSTM) for seizure 

detection was used. GAT is employed as the front end for spatial feature extraction, making full use of the 

EEG channel topology[36]. The back end is the BiLSTM network, which mines time relations and makes a final 

choice based on prior and future states. The CHB-MIT dataset is used as the basis for experiments. The seizure 

detection accuracy, sensitivity, and specificity are 98.74%, 94.74%, and 97.89%, respectively. To automate 

the identification of neonatal seizures, Raeisi et al.[37] developed a unique deep-learning model based on graph 

convolutional neural networks. Included are EEG features collected from the EEG signals in the temporal and 

frequency domains, as well as consideration of long-range spatial information and interdependencies between 

EEG signals. The spatial data is portrayed as either functional links between individual EEG channels or as 

distance maps in Euclidean space. Using a public dataset of 39 continuous EEG signals from newborns 

(AUC90), the area under the curve (AUC) and AUC for specificity values of more than 90% were used to 

judge how well the model worked. In our earlier work on epileptic seizure detection from 

electroencephalogram (EEG) signals, we proposed a novel hybrid framework combining a Linear Graph 

Convolutional Network (LGCN) and a DenseNet architecture[38]. This framework exhibited promising results 

in capturing complex spatiotemporal features from EEG data for improved seizure detection accuracy. 

3. Proposed method 

This paper proposed a hybrid deep learning method for the EEG signal of epileptic seizure patients so as 

to automatically detect seizure with high efficiency. In this section, we demonstrate all components of our 

comprehensive model which will give a clear understanding about proposed method. 

Figure 1 illustrates the major points of the proposed approach. The raw EEG data is segmented into 

samples first. Then, the adjacency matrix created after applying power spectral density and the graph structure 

data encoding the link between signal data information and channels is incorporated into the GAT model. The 
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retrieved features are then supplied into the RBFN portion of the algorithm, and the classification is completed 

by the sigmoid function. 

 
Figure 1. The system model of proposed method. 

3.1. Data preparation 

In this study, continuous data is assumed to include a lengthy era to guarantee a sufficient quantity of 

experimental data. That’s why long-term EEG data will be broken down into a large number of smaller 

fragments. After data segmentation, it breaks down into a number of distinct time periods using a sliding 

window with a period of 1 s and an overlap rate of 0.5. For instance, an EEG signal of 60 s in duration and a 

sampling frequency of 1 Hz would be represented as a vector 60 s in length. There will be 100 epochs. Once 

the data has been partitioned the suggested method examines and categorizes the labels of various periods in 

a linear pattern. Thus, seizures in 60 s EEG recordings are automatically localized based on labels obtained. 

3.1.1. Preprocessing 

Raw EEG data collected from the scalp is extremely dynamic and non-stationary. Seizures cause a loss 

of awareness and limb movements, both of which are very sensitive to external elements such as the acquiring 

environment, eye movement, heart activity, and sweat[39]. So, there is typically some degree of randomness in 

scalp EEG. To remove unwanted frequency and noise, power spectral density (PSD) is applied to identify and 

remove irrelevant frequency components in the EEG signal that relate to artifacts or noise while retaining 

frequency components in the EEG signal that are relevant. 

3.1.2. Power spectral density (PSD) 

Several scholars, notably Norbert Wiener and John Tukey, made substantial contributions to the 

development of PSD in the 1950s[40]. 

They created the concept of spectral analysis, which is the act of employing the PSD to translate a time-

domain signal into the frequency domain. Power Spectral Density (PSD) is a statistical representation of the 

amount of power present in a time-domain signal as a function of frequency. It is used to characterize the 

power distribution in a signal across frequency. In general, a PSD describes the amplitude of a signal in the 

frequency domain[41]. The PSD of EEG data can be used to investigate variations in brain activity linked with 

attention and mental state. 

First, we must filter the EEG signal to eliminate any undesirable high-frequency or low-frequency noise 

and, if necessary, perform an artifact correction procedure. The EEG signal is then divided into smaller 

segments or windows, and a window function (e.g., Hanning, Blackman, etc.) is applied to each window to 

reduce edge effects. The Hanning window is defined as follows: 
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𝑊(𝑛) =
1

2
(1 − (𝑐𝑜𝑠

2𝜋𝑛

𝑁 − 1
)) (1) 

where N denotes the number of data points in the window. Then to acquire the frequency spectrum, we apply 

the Fast Fourier Transform (FFT) to each windowed segment of the EEG data. Afterward, we have to calculate 

the magnitude squared of each FFT coefficient and average the magnitude squared across the windows to 

determine the PSD of the EEG signal. Subsequently, plot the PSD estimate as a function of frequency to 

visualize the EEG signal’s power content across multiple frequency bands. The discrete version of a one-

dimensional, 

Power spectrum (PS) is written as: 

𝑃𝑆(𝑣) =
|𝑈𝑇(𝑣)|

2

𝑁2
 (2) 

where |𝑈𝑇(𝑣)|2 denotes the discrete Fourier transform of the signal 𝑢𝑇(𝑡). As a result, the crucial result is that 

a Fourier transform of the signal is all that is required to compute the power spectrum. After that, the PSD is 

just: 

𝑃𝑆𝐷(𝑣) =
𝑃𝑆(𝑣)

∆𝑣
 (3) 

It has amplitude squared units per frequency unit. N is the total number of sample points in these equations, 

and ∆𝑣 is the data point spacing in frequency space. 

PSD expressions in two dimensions, both continuous and discrete, can be written (with a convenient 

change to spatial coordinates). 

𝑈(𝑉𝑋,𝑉𝑦) = ∫ ∫ 𝑢(𝑥, 𝑦)𝑒𝑖2𝜋(𝑣𝑥𝑥+𝑣𝑦𝑦) 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 (4) 

𝑈(𝑣𝑥 , 𝑣𝑦) = ∑ ∑ 𝑢(𝑥, 𝑦)𝑒
𝑖2𝜋(

𝑣𝑥𝑥
𝑁𝑥

+𝑣𝑦𝑦/𝑁𝑦)
∆𝑣𝑥∆𝑣𝑦

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

 (5) 

𝑃𝑆(𝑣𝑥, 𝑣𝑦) =
|𝑈(𝑣𝑥 , 𝑣𝑦)|

2

𝑁𝑥
2𝑁𝑦

2  (6) 

𝑃𝑆𝐷(𝑣𝑥 , 𝑣𝑦) =
𝑃𝑆(𝑣𝑥, 𝑣𝑦)

∆𝑣𝑥∆𝑣𝑦
 (7) 

In these Equations (4)–(7), ∆𝑣𝑥 𝑎𝑛𝑑 ∆𝑣𝑦 are frequency variables, ∆𝑣𝑥∆𝑣𝑦 are frequency space data point 

spacings, and 𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦 are the total number of sample points in each domain. 

It is a well-known and widely utilized signal-processing approach. The distribution of signal power across 

frequencies is characterized as power spectral density[42]. Figure 2 shows the signal density of the frequency 

components. It depicts the energy’s intensity as a function of frequency. It is used to extract features from 

signals in a variety of domains, including audio, pictures, and time series. It can give information on the 

frequency content of signals and can be used to train machine learning models to make predictions or 

categorize signals. Using power spectral density (PSD) analysis, important features were extracted from the 

raw EEG data during preprocessing. The power spectrum, which captures the distribution of signal power 

across different frequency bands, is the result of the PSD analysis, which converted the time-domain EEG 

signals into the frequency domain. These PSD representations were then used as inputs for our Graph Attention 

Network (GAT), which used the frequency-domain data to enable the network to recognize complex 

connections and relationships in the EEG data. 
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Figure 2. Power spectral density of a signal with two frequency components. 

3.2. Graph attention network (GAT) 

Consider the various EEG channels as a model based on GAT to thoroughly explore the spatial 

relationship of multi-channel EEG. Each channel of an object’s EEG signals is viewed as a node in a graph 

that represents the EEG signals as an object. The edges of the graph are mapped by the attention coefficients 

between nodes. 

Assume that there are objects P = {p1, p2, …, p0}. Each object is represented by 𝑝𝑖 ∈ 𝑅𝑀×𝐹, where 𝑀 is 

the number of channels for each object and 𝐹 is the feature dimension for each channel. The GAT module 

accepts a node feature vector set 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑀}, 𝑘𝑖𝜖𝑅
𝐹 as input. To improve the representative power 

of the learned features, a linear mapping with a shared weight matrix 𝑊 ∈ 𝑅𝐹×𝐹ʹ is applied to each node. After 

transformation, the features are concatenated. After concatenating, the high-level feature is mapped to a real 

number. The self-attention coefficients 𝑒 with its neighbors are computed for each node 𝑖. The preceding 

procedure can be expressed as follows: 

𝑒𝑖𝑗 = 𝑔(𝑊𝑘𝑖 ,𝑊𝑘𝑗) (8) 

where 𝑔 is the mapping of 𝑅𝐹 × 𝑅𝐹ʹ → 𝑅. 𝑖, 𝑗 represents any two nodes. 

Following that, we compute the attention coefficients between nodes. In general, self-attention will direct 

attention to all nodes in the graph, causing structural information to be lost. We incorporate the graph structure 

by only considering 𝑖 node’s first-order neighbors. The attention coefficients 𝛼 are computed as follows: 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =
𝑒𝑥𝑝 (𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝 (𝑒𝑖𝑟)𝑟∈𝑣𝑖

 (9) 

where i, j, and r are any nodes, Vi is the set of neighbors of i. When fully expanded, the leaky ReLU activation 

function can be used to calculate the attention coefficient as: 

𝛼𝑖𝑗 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑘𝑖 ∥ 𝑊𝑘𝑗]))

∑ 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊𝑘𝑖 ∥ 𝑊𝑘𝑟]))𝑟∈𝑉𝑖

 (10) 

where, || is used to concatenate, leaky ReLU is the non-linear activation function, and (𝑎𝑇 ∈ 𝑅2𝐹) is the 

parameter for feed-forward neural networks. 

In Figure 3, the attention mechanism 𝛼(𝑊ℎ𝑖
⃗⃗⃗  ,𝑊ℎ𝑗

⃗⃗⃗  ) used by our model is parameterized by a weight 

vector a 𝑎 𝜖ℝ2𝐹′

 using a Leaky ReLU activation. And a representation of multihead focus (with 𝐾 =  3 heads) 

by node 1 in its neighborhood[43]. Different arrow designs and hues signify different attention calculations. 

Each head’s aggregated characteristics are concatenated or averaged to produce ℎ1
′⃗⃗  ⃗
. 
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Figure 3. Graph attention network for seizure detection[43]. 

Khan and Ahmad[44] employ a multi-head attention technique to enhance the model’s capacity for fitting. 

To calculate self-attention specifically, Q attention mechanisms are used, and 𝑊 is the weight matrix for the 

head q. The learning properties of each attention mechanism are distinct, and the outcomes of various attention 

mechanisms are averaged to create a more stable GAT[45]. This leads to the following computation of node i 

as the learned feature for node. 

𝑘𝑖
′ = 𝜎(

1

𝑞
∑ ∑ 𝛼𝑖𝑗

𝑞

𝑗𝜖𝑣𝑖

𝑘

𝑞=1

𝑊𝑞𝑘𝑗) (11) 

where 𝑘𝑖
′  represents the new feature of GAT output that integrates neighborhood information for each node i. 

The output of the GAT module is a new node feature vector set: 𝐾′ = {𝑘1
′, 𝑘2

′, … , 𝑘𝑀
′},  𝑘𝑖

′𝜖𝑅𝐹′
, where 𝐹′ 

represents the new node feature vector dimension[46]. 

GAT does not require complicated matrix operations like eigenvalue decomposition, in contrast to 

GNN[17]. It is capable of automatically allocating weights to nearby nodes. As a result, GAT has a stronger 

ability to represent information, which can enhance seizure detection performance. After utilizing the Graph 

Attention Network (GAT) to capture the intricate relationships and dependencies within the feature 

representations, the resulting data is further processed by feeding it into the Radial Basis Function Neural 

Network (RBFN) where it will detect epileptic seizures. 

3.3. Radial basis function network (RBFN) 

Broomhead and Lowe[47] introduced the RBF network framework. It can handle high-dimensional input 

data, making it ideal for issues with several input features. By reducing the number of parameters and lowering 

the possibility of overfitting, it can obtain a sparse representation of the input. The RBF organization is a well-

known alternative to the exceptional multilayer perceptron (MLP) due to the fact that it has a simpler structure 

and a significantly more expedient method of preparation. Although the Triangular Basis Function (TBF) is 

more computationally efficient than other radial basis functions, we choose the Gaussian basis function 

because of its ability to handle complex data more precisely and its intuitive parameterization. This makes it a 

popular choice. If the stabilizer is symmetrical, an RBF organizer is made. 

The forms of the RBF and TBF basis functions are shown in Figure 4 respectively. As detailed in the 

following section, the cosine angular distance and the RBF are chosen because they produce more accurate 

classifications than the Euclidean distance. 

The input layer, hidden layer, and output layer are the three layers, as shown in Figure 5, that make up 

the radial basis function[48]. The RBF serves as the hidden layer’s activation function. It is a real-valued 

function whose value changes depending on how far you are from the origin or center. 



11 

 
(a) 

 
(b) 

Figure 4. (a) TBF; (b) RBF[30]. 

 
Figure 5. The architecture of RBFN. 

Radial basis functions are used by the RBFN to transfer the input data to an output that depends on the 

separation between the input data and the centers of the radial basis functions. The norm is the Euclidean 

distance. The following equation can be used to figure out the Euclidean distance between the input vector x 

and the RBF center 𝑐. 

𝑑(𝑥, 𝑐𝑖) = ‖𝑥 − 𝑐𝑖‖ (12) 

where ‖𝑥 − 𝑐𝑖‖ is the Euclidean distance between the input vector 𝑥 and the RBF center 𝑐. Here, we employ 

a Gaussian radial basis function for activation value[49]. The radial basis function is denoted by, 

𝛷𝑖(||𝑋 − 𝐶𝑖 ||) = 𝑒𝑥𝑝 [−
(||𝑋 − 𝐶𝑖 ||)

2

2𝜎𝑖
2 ]] 𝑖 = 1,2, … . , 𝑁 (13) 

where, 𝐶𝑖 is the center of the 𝑖𝑡ℎ RBF and 𝜎𝑖
2 is the scale of the 𝑖𝑡ℎ RBF. 

A weighted sum of the activation values of the radial basis functions is what the RBFN will produce as 

its final product. Linear regression is utilized to estimate the output layer weights by using the minimum mean 

square error (MSE) between the actual and predicted outputs of the RBFN. The linear transformation equation 

is given as: 

𝑌 = ∑𝜔𝑖 ∗ 𝛷𝑖(||𝑋 − 𝐶𝑖||) + 𝑏

𝑁

𝑖=1

 (14) 

where the output of the RBF neural network is denoted by 𝑌. N is the number of RBF units that are contained 

within the hidden layer. 𝜔𝑖 refers to the amount of weight that is linked with the 𝑖𝑡ℎ RBF unit. 𝐶𝑖 is the center 

of the 𝑖𝑡ℎ RBF unit and b is the bias term. The output of an RBF neural network is just the weighted sum of 

the activations of the RBF units since this linear function is typically just the identity function. Using the linear 
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optimization approach, the RBF network obtains a global optimal solution for the adjustable weights in the 

least mean square error (MSE). 

This sequential integration of GAT and RBFN allows for comprehensive feature extraction and modeling, 

enabling our hybrid framework to effectively analyze and detect epileptic seizures in the electroencephalogram 

(EEG) data. 

4. Dataset 

The dataset is taken from Boston Children’s Hospital (CHB) and the Massachusetts Institute of 

Technology (MIT), which is publicly available and contains scalp electroencephalogram (sEEG) data from 23 

pediatric subjects[20]. 

Scalp EEG waves were recorded with 23 electrodes at a sampling rate of 256 Hz. Fixed 23-electrode 

setups are employed in 15 tests, with some electrode configuration variations in the remaining measurements. 

The recordings are organized into 24 cases, with most of the 24 cases segmenting the EEG signals into 1-hour 

epochs, but epochs lasting 2–4 hours can also be found. The overall length of the accessible EEG recordings 

is around 877.39 h. In all, 877.39 h of EEG data were used in this study, with 2.47 h used for training and 

874.92 h used for assessing performance. According to the database’s annotation files, most of the 24 cases 

have frequent changes in the EEG signal recording montage, with channels being added or removed from one 

epoch to the next during the recording process. 18 channels in total are consistent across all 24 cases, including: 

“FP1-F7”, “F7-T7”, “T7-P7”, “P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, “F4-C4”, “C4-P4”, 

“P4-O2”, “FP2-F8”, “F8-T8”, “T8-P8”, “P8-O2”, “FZ-CZ” and “CZ-PZ”. This is applicable in all 

circumstances except Case 24, where the file’s start and end times are not stated. The table shows the specifics 

of this dataset. Table 2 shows the details of the dataset which contains information on all patients. 

Table 2. CHB-MIT dataset. 

Case Gender Age (years) Number of seizures Duration of recordings (hh:mm:ss) 

chb01 Female 11 7 40:33:08 

chb02 Male 11 3 35:15:59 

chb03 Female 14 7 38:00:06 

chb04 Male 22 4 156:03:54 

chb05 Female 7 5 39:00:10 

chb06 Female 1.5 10 66:44:06 

chb07 Female 14.5 3 67:03:08 

chb08 Male 3.5 5 20:00:23 

chb09 Female 10 4 67:52:18 

chb10 Male 3 7 50:01:24 

chb11 Female 12 3 34:47:37 

chb12 Female 2 40 20:41:40 

chb13 Female 3 12 33:00:00 

chb14 Female 9 8 26:00:00 

chb15 Male 16 20 40:00:36 

chb16 Female 7 10 19:00:00 

chb17 Female 12 3 21:00:24 

chb18 Female 18 6 35:38:05 

chb19 Female 19 3 29:55:46 

chb20 Female 6 8 27:36:06 



13 

Table 2. (Continued). 

Case Gender Age (years) Number of seizures Duration of recordings (hh:mm:ss) 

chb21 Female 13 4 32:49:49 

chb22 Female 9 3 31:00:11 

chb23 Female 6 7 26:33:30 

chb24 Not provided Not provided 16 21:17:47 

5. Experiment and result analysis 

In this section we present the details of our experiments and explain the experimental outcomes that 

clearly establish our proposed method. 

5.1. Productive setup 

Here we will discuss the setup of our workstations, the hyperparameters of our model of GAT+RBFN, 

the methods we used to conduct our experiments, and the metrics we used to evaluate our results show that a 

32 GB RAM and an Intel Core i7-12700 CPU were utilized. The suggested model was trained on a computer 

with a GPU (graphics processing unit) from Nvidia’s GeForce RTX 3060 Ti series. The software stack being 

tested consists of Python 3.9, Keras 2.3.1, and Tensorflow 2.6.0. Table 3 shows the hardware setup and all 

specific information about it. 

As a hyperparameter, the growth rate was set to 32 and the compression factor was set to 0.5, as shown 

in Table 4 Additionally, the optimizer that will be utilized is Adam, and the activation function will be Leaky 

ReLU. The learning rate will be 0.001, and it will be set to that value. 

Table 3. Hardware setup. 

Software or hardware Specification Developer details 

CPU Intel Core i7-12700  

GPU GeForce RTX 3060 Ti  

RAM DDR4 32 GB  

Python 3.9 Microsoft researcher Guido van Rossum, University of Amsterdam, The Netherlands 

Tensorflow 2.6.0 Google researchers, 1600 Amphitheatre Parkway in Mountain View, California, US 

Keras 2.3.1 Google researcher François Chollet, 1600 Amphitheatre Parkway, Mountain View, California, US 

Table 4. Hyperparameter setup. 

Hyperparameters Values 

Growth rate 32 

Compression factor 0.5 

Activation function Leaky ReLU 

Optimizer Adam 

Learning rate 0.001 

5.2. Procedure 

To categorize epileptic EEG data, the processed EEG segments and graph structures are first entered into 

GAT, and then the retrieved features are entered into RBFN[4]. Figure 6 shows the detailed version of the 

process. 
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Figure 6. Detailed about of model development. 

For implementation, 16 electrodes were chosen to use for all patients, including “FP1-F7”, “F7-T7”, “T7-

P7”, “P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, “F4-C4”, “C4-P4”, “P4-O2”, “F8-T8”, “FZ-

CZ”, “CZ-PZ,” FP2-F8”. To begin, we conducted a correlation analysis of the individual EEG channels which 

is shown in Figure 7. To fully exploit the geographical interaction between channels, we model the 16 channels 

as 16 nodes of the graph and build a graph structure that includes neighborhood information between each 

channel. To build a multi-tiered graph, we use the GAT model. There are four “head nodes” in the first layer 

and eight in the next. After being concatenated and weighted averaged, the characteristics represented by the 

input nodes emerge with a potent capacity for expression, thanks to the multi-head attention mechanism of the 

two-layer graph. The raw EEG signal is then processed to extract a novel feature that considers the local context. 

The result of GAT is a collection of node embeddings that reflect the learned characteristics of each graph 

node. These embeddings will be concatenated to create a feature vector for each time point, which will be fed 

to the RBFN. 

 
Figure 7. Correlation matrix of EEG signal with 16 channels. 

To determine whether the signals represent a seizure or not, we employ the RBFN model. In particular, 

the feature vector can be created by concatenating the node embeddings for each time point, producing a vector 

of dimensions (number of time points) × (embedding dimension). 

Figure 8 depicts the RBFN model’s specifics in depth using GAT data where T represents the number of 

time points. We set the RBFN input parameters to a sequence length of 600, feature size of 32, and batch size 

of 16. During training, the RBFN learns mapping between the input feature vector and the matching output 

label. 
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Figure 8. Graph of epoch-loss. 

To decrease the gap between the predicted output label and the actual label, the weights and biases of the 

RBFN are adjusted using an iterative training procedure known as the linear optimization technique. Figure 

6, depicts this loss in terms of the RBFN cell size. This chart illustrates how the convergence rate of RBFN 

decreases with decreasing size of the hidden layers. In addition, the loss tends to rise when the hidden layer of 

RBFN is increased to a depth of more than 128. So, we gave RBFN 128 hidden layers. Additionally, a 20% 

dropout is implemented for the RBFN to avoid over-fitting. 

To conduct our analysis of 16 channels of EEG data, we employ a sliding window of 1 second. Because 

there aren’t a ton of epileptic seizure samples in the CHB-MIT dataset, the data was segmented using the 

overlapping window approach with a rate of 0.5. In addition, we employ Adam as the optimizer, with 

parameters of 0.001 for the learning rate, 1e-5 for the weight decay, and 0.2 for the dropout rate. 

5.3. Ablation tests 

Using the GAT model, the RBFN model, and the suggested GAT+RBFN model, we conduct experimental 

comparisons to validate the combined contribution of GAT and RBFN in our model. The same model 

parameters are used throughout all experiments to guarantee consistency and reliability. 

Table 2 displays the outcomes. Table 5 shows that the suggested GAT+RBFN model outperforms the 

GAT and RBFN models using the same EEG characteristics in three different metrics, demonstrating the 

robustness and effectiveness of EEG signal processing. Incorporating the best features of both algorithms into 

a single model greatly enhances its learning capacity. 

Table 5. The proposed GAT+RBFN model on CHB-MIT dataset. 

Method Accuracy Sensitivity Specificity 

GAT 96.12% 91.89% 92.98% 

RBFN 93.36% 76.21% 87.23% 

GAT+RBFN 98.74% 94.74% 97.89% 

5.4. Evaluation metrics 

The model’s effectiveness is measured in this study using five statistical measures: sensitivity, specificity, 

accuracy, F1-score, and area under the receiver operating characteristic curve (AUC). The formula for 

calculating sensitivity is as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 
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In this context, TP refers to the total number of correctly detected epileptic seizure pieces. FN is an 

abbreviation for “false negatives”, which stands for the total number of misidentified seizure items. In all 

positive cases, sensitivity gives a precise representation of the proportion. The recall number is identical to 

that one. Accurately determining a target’s specificity requires the following: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (16) 

TN stands for “true negatives”, which refers to the total number of correctly detected non-epileptic 

components. The acronym FP, which stands for “false positives”, denotes the number of improperly detected 

seizure fragments. Precision is the frequency with which erroneous positives are ruled out. We use the 

following formula to determine accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑃
 (17) 

This indicates the proportion of valid predictions made throughout the whole set of samples. F1-score and 

precision may be computed as follows: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

The F1-score is a measurement of how accurate a binary classification model is by taking the harmonic 

mean of the precision and recall values. Precision and recall could be measured on their whole via the use of 

this approach since both aspects are also included. Precision may be described as the proportion of the actual 

number of positive samples to the total number of samples that were projected to be positive. The area under 

the ROC (Receiver Operating Characteristic) curve, often known as the AUC, is a model assessment indicator 

that is used for classification tasks. The integral value of the ROC curve is the approach that is used to calculate 

the AUC. 

5.5. Individual patient studies 

Through a comparison of the overall accuracy, sensitivity, specificity, and F1-score, the suggested 

GAT+RBFN architecture’s seizure detection ability is assessed. We performed 5-fold cross-validation to 

assure consistency in our experiment outcomes. Results for all patients are summarized in 错误!未找到引用

源。, shows that this approach has an average accuracy of 98.74%, a sensitivity of 94.74%, and a specificity 

of 97.89%. Most patients had sensitivities above 98%, with patients #2, #10-12, #15-16, #18, and #23-24 

having sensitivities above 100%. The specificity for 20 patients is greater than 90%. Out of all patients, only 

four had specificities lower than 90%, and that’s just for patient #2 who has a specificity of 100%. The 

explanation for this is that scalp EEG data are highly influenced by environmental noise, and some individuals 

experience fewer epileptic episodes than others. As shown by the method’s 96.2% F1-score and 97.3% AUC, 

it has satisfactory accuracy and stability and can aid in the diagnosis process. 

Table 6. Performance of CHB-MIT dataset using the proposed GAT+RBFN architecture. 

Patients Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%) 

1 99.73 99.39 99 99.2 99.44 

2 100 100 100 100 100 

3 99.9 99.8 99.6 99.6 99.7 

4 97.37 90.03 95 92.68 96.44 

5 98.73 99.38 93 95.77 96.44 

6 96.8 89.1 92.45 92.45 90.74 

7 98.33 96.6 96 95.05 97.4 
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Table 6. (Continued). 

Patients Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%) 

8 98.67 98.94 93 95.88 96.4 

9 99.67 99 99 99 99.4 

10 99.83 100 99 99.49 99.5 

11 99.2 100 95.2 95.2 97.47 

12 94.67 100 88 94 91 

13 97.47 95.17 88.92 88.92 92.02 

14 94.87 85.71 82.76 82.76 84.21 

15 99.83 100 99 99.5 99.5 

16 99.47 100 96.88 96.88 98.41 

7 99.5 98.99 98 98.49 98.9 

18 99.83 100 99 99.5 99.5 

19 98.44 99.28 91.69 91.69 95.05 

20 97.83 96.77 90 93.26 94.7 

21 98.56 98.68 92.6 92.6 95.54 

22 98.97 99.21 94.57 94.57 96.75 

23 99.59 100 97.53 97.53 98.75 

24 97.5 100 84 91.03 92 

Mean 98.74 94.74 97.89 96.2 97.3 

5.6. Discussion 

We compare sophisticated machine learning and deep learning algorithms in trials. Table 6 displays the 

results. Many of these systems use feature extraction and deep learning to detect seizures, and experimental 

indications have greatly improved when compared to previous methods. Figure 9 shows the ROC curve of our 

model and it suggests that our model has a strong ability to distinguish between the two classes. 

 
Figure 9. Receiver operating characteristic (ROC curve) of the proposed method. 

Unfortunately, few of these techniques consider the interaction between EEG channels. The accuracy and 

sensitivity of GAT+RBFN are greater than many existing approaches, as shown in Table 7. Specifically, our 

approach is 5.90% more sensitive than BiLSTM[27] and 2.04% more sensitive than CNN[23]. The problem with 

these methods is that it does not fully extract non-linear relationships between features of EEG signals. This 

model performs slightly better than GAT+BiLSTM[36] which has similar work to this study (98.74% vs. 
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98.52%). The reason this model uses radial basis function neural network instead of any variants of RNN is 

because of its computational efficiency and ability to capture non-linear relationships between features which 

can be important to complex signals like the EEG data. Improved signal-to-noise ratio in the EEG data is 

possible through PSD analysis by decreasing background noise and increasing the signal components of 

interest. Because of computational efficiency, it will be a lot easier to implement this proposed method into 

real-time applications. 

The proposed method is much effective and stable than several other state-of-the-art approaches. Results 

like these prove that integrating GAT and RBFN for seizure detection works well. 

Table 7. Comparison of the proposed method with other state of art. 

Author Method Accuracy (%) Sensitivity (%) Specificity (%) 

Zhou et al.[23] CNN 96.7 95.4 92.3 

Hu et al.[27] BiLSTM 93.61 91.85 92.66 

Janjarasjitt[50] Wavelet+SVM 96.87 72.99 98.13 

Hussain et al.[51] 1D-convolutional LSTM 95.75 95.77 95.93 

He et al.[36] GAT+BiLSTM 98.52 97.75 94.34 

Proposed method GAT+RBFN 98.74 94.74 97.89 

6. Conclusion 

In this research, we present a hybrid model of a GAT+RBFN architecture for detecting epileptic seizures. 

The proposed model integrates three highly effective methods for deciphering EEG readings: power spectral 

density, a graph attention network, and a radial basis function neural network. PSD enhances the signal-to-

noise ratio and minimizes artifact signals in EEG data. GAT captures both spatial and temporal patterns in 

EEG data, which is essential for effective seizure detection. RBFN excels in pattern recognition and 

classification, a critical feature for EEG-based seizure detection. When deciding, this model considers both 

historical data and information gathered after the present analysis time. In this approach, the benefits of both 

models are merged. Our result indicates a considerable improvement in the technique used for epileptic seizure 

identification when compared to earlier research in the field. In order to advance the corpus of knowledge, we 

meticulously created a cutting-edge method that improves the pre-processing and interpretation of EEG data. 

It can also streamline and deployable solution with reduced complexity, enhancing its practicality and usability 

in real-world applications. This technique has an accuracy of 98.74%, sensitivity of 94.74%, specificity of 

97.89%, a positive F1-score of 96.2%, and an area under the curve (AUC) of 97.3%. For transfer learning, in 

which a network is trained on a new task using input and output data that are distinct from the original, this 

pipeline can be employed in the future. The amount of time and computing power needed to train the models 

from scratch can be drastically reduced in this way. In real-world applications, where EEG signals are 

frequently contaminated with noise, the suggested model must be robust to noise and artifacts in the EEG 

signals. This research offers a significantly simplified approach in terms of computational complexity, paving 

the way for more efficient and practical epileptic seizure detection. 
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