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ABSTRACT 

Collaborative recommender systems are information filtering systems that seek to predict a user’s rating or 

preference for an item. They play a vital role in various business use cases, such as personalized recommendations, item 

ranking and sorting, targeted marketing and promotions, content curation and catalog organization, and feedback analysis 

and quality control. When evaluating these systems, rating prediction metrics are commonly employed. Efficiency, 

including the prediction time, is another crucial aspect to consider. In this study, the performance of different algorithms 

was investigated. The study employed a dataset consisting of e-commerce product ratings and assessed the algorithms 

based on rating prediction metrics and efficiency. The results demonstrated that each algorithm had its own set of strengths 

and weaknesses. For the metric of Root Mean Squared Error (RMSE), the BaselineOnly algorithm achieved the lowest 

mean value. Regarding Mean Absolute Error (MAE), the Singular Value Decomposition with Positive Perturbations 

Singular Value Decomposition with Positive Perturbations (SVDPP) algorithm exhibited the lowest mean value; Mean 

Squared Error (MSE) also achieved the lowest mean value. Moreover, the BaselineOnly algorithm showcased superior 

performance with the lowest mean test times when considering efficiency. Researchers and practitioners can use the 

findings of this study to select the best algorithm for a particular application. Researchers can develop new algorithms 

that combine the strengths of different algorithms. Practitioners can also use the findings of this study to tune the 

parameters of existing algorithms. 
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1. Introduction 

Collaborative recommender systems are tools that provide 

recommendations based on the preferences and behavior of multiple 

users[1]. In recent years, these systems have grown in popularity 

because to their capacity to tailor recommendations for users and 

enhance the overall user experience. Collaborative recommender 

systems use data on the preferences and behavior of multiple users to 

generate recommendations for each individual user[2]. The system 

identifies similarities between users and their preferences, and then 

uses these similarities to make recommendations to each user[3]. This 

differs from content-based recommender systems, which generate 

recommendations based on information about the objects’ qualities. 

A key challenge in collaborative recommender systems is the sparsity 

problem, this differs from content-based recommender systems, 

which generate recommendations based on information about the 

objects’ qualities. To address this problem, several techniques have 

been developed, including neighborhood-based approaches and 
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matrix factorization methods[4]. Neighborhood-based approaches involve identifying a set of users with similar 

preferences and using their ratings to make recommendations. Matrix factorization methods involve 

decomposing the rating matrix into two low-rank matrices, which can be used to predict ratings for new items. 

Several challenges are associated with evaluating collaborative recommender systems, including the need for 

diverse evaluation metrics and the difficulty of evaluating the quality of recommendations in real-world 

settings. Researchers have proposed new evaluation metrics to address these challenges and developed 

simulation techniques to evaluate recommender systems in realistic scenarios [2]. Overall, collaborative 

recommender systems are effective instruments for generating individualised recommendations for consumers 

based on the preferences and actions of several users. While there are several challenges associated with these 

systems, ongoing research is focused on addressing these challenges and improving the quality of 

recommendations for users[4]. The problem that this research paper aims to address is the need to evaluate and 

compare the performance of different collaborative filtering algorithms for a personalized recommendation. 

Several factors influence the effectiveness of collaborative filtering, such as data sparsity, cold-start, 

scalability, and interpretability[5]. Additionally, there is a need to investigate how collaborative filtering can be 

extended to handle evolving data streams, non-stationary recommendation scenarios, and hybrid approaches 

that combine multiple techniques. 

In recommendation systems, collaborative filtering is a popular strategy. There are a number of 

collaborative filtering algorithm types, including user-based, item-based, model-based, content-based, cluster-

based, and hybrid approaches, that combine various similarity measures[6]. Specifically, user-to-user and item-

to-item collaborative filtering are two prevalent recommendation system techniques[7]. In addition, there are 

numerous sorts of improved algorithms for traditional measuring metrics that can produce superior outcomes 

compared to existing algorithms[8]. In addition, a recent study presented a novel collaborative filtering method 

based on a restricted random walk, which accounts for the granularity of users’ preference drifting and item 

popularity bias to increase the precision of suggestions[9]. Another study examined two collaborative filtering 

algorithms, user-based and item-based collaborative filtering algorithms, which use the sparse matrix to 

evaluate cosine similarity between users, items, and users to items[10]. This study aims to examine and evaluate 

algorithm performance in a recommender system by analysing fit time, test time, and performance metrics. 

The study aims to contribute to the understanding of algorithm selection and its implications in 

recommendation systems while also identifying avenues for future research to enhance the field further. 

2. Literature review 

The field of recommender systems has witnessed significant advancements in recent years, particularly 

in the domain of collaborative filtering. Collaborative filtering is a popular approach to generating personalized 

recommendations by analyzing user behavior, item characteristics, and user-item interactions. In this section, 

we provide a comprehensive analysis of existing research on collaborative filtering recommender system 

algorithms, highlighting their strengths, limitations, and advancements. The review aims to contribute to a 

deeper understanding of the various techniques employed in collaborative filtering and identify potential areas 

for future research. Several studies have focused on different collaborative filtering techniques, including 

memory-based, model-based, and hybrid models[11]. Memory-based approaches utilize user-item rating data to 

identify similarities between users or items and generate recommendations based on nearest neighbors. Model-

based methods, on the other hand, employ machine learning algorithms to build predictive models based on 

user-item interactions and other auxiliary data. Hybrid models combine the strengths of both memory-based 

and model-based techniques to overcome their individual limitations. The cold start problem, which refers to 

the difficulty of providing appropriate recommendations for new users or objects with low or no interaction 

data, is one of the greatest obstacles in collaborative filtering. Various strategies have been proposed to address 

this challenge, such as content-based filtering, which incorporates item features or attributes to make initial 
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recommendations[12]. Another significant challenge is the sparsity of data, where the available user-item 

interactions are insufficient to make reliable predictions. To mitigate this issue, researchers have explored 

techniques like matrix factorization and neighbourhood-based methods to handle sparse data scenarios[13] 

effectively. The selection of similarity measurements significantly impacts the efficiency of collaborative 

filtering algorithms. Numerous metrics, including cosine similarity, Pearson correlation, and Jaccard similarity, 

have been used to quantify the similarities between users or objects. Literature indicates that selecting a suitable 

similarity measure is contingent on the parameters of the recommendation task and the available data[14]. To 

ensure the reliability and validity of our literature review, we adopted a systematic approach, considering 

relevant studies and research papers from interdisciplinary fields such as computer science, information 

retrieval, and machine learning[15]. The selected references provide a comprehensive understanding of the 

collaborative filtering techniques, challenges, and advancements in the field of recommender systems. 

Additionally, they serve as valuable resources for researchers, practitioners, and decision-makers interested in 

this study area. The findings from this literature review lay the foundation for our comparative analysis of 

collaborative filtering recommender system algorithms. By examining the strengths and limitations of different 

approaches, we aim to provide insights into their effectiveness, scalability, and computational complexity. The 

comparative analysis will assist in identifying the most suitable algorithm for specific recommendation 

scenarios and potentially highlight areas for further research. Collaborative recommender systems are gaining 

increasing importance in various fields as they help personalise user recommendations based on their 

preferences and behaviour. Several studies have focused on the techniques and algorithms used in collaborative 

filtering-based recommender systems[16]. Collaborative filtering methods utilize the similarities and differences 

in user preferences to recommend items to users. Recent studies have investigated the use of review texts to 

enhance the precision of collaborative filtering-based recommender systems. Other research has investigated 

the use of hybrid models that integrate collaborative filtering with other recommendation methods, such as 

content-based filtering and matrix factorization[17]. Hybrid models can improve the performance of 

collaborative recommender systems by utilizing the strengths of multiple techniques. Researchers have also 

proposed novel approaches to collaborative filtering, such as social-based filtering and group-based filtering. 

Social-based filtering considers the influence of social connections among users, while group-based filtering 

utilizes the characteristics of user groups to improve recommendation accuracy[18]. Collaborative recommender 

systems are a form of a recommender system that recommends things to users based on user ratings or 

behaviour. There are a number of different algorithms that can be used to build collaborative recommender 

systems, each with its own advantages and disadvantages are shown below[19–22] (Table 1). 

Table 1. Advantages & disadvantages of different algorithms for the collaborative recommender system. 

Algorithm Description Pros Cons 

BaselineOnly Collaborative filtering algorithm 

that predicts ratings based on 
baseline estimates. 

-Simplicity and efficiency. 

-Handles both explicit and implicit 
ratings. 
-Robust to sparsity and cold start 
scenarios. 

-May not capture complex user-

item interactions. 
-Limited in handling contextual 
information. 

Singular Value 

Decomposition 

(SVD) 

Matrix factorization-based 
algorithm using singular value 
decomposition. 

-Captures latent factors and complex 
relationships. 
-Performs well with sparse data. 
-Effective in handling large datasets. 

-Computationally expensive for 
large matrices. 
-Requires parameter tuning. 
-Cold start problem for new 
users/items. 

SVDpp Enhanced version of SVD 
algorithm that considers implicit 
feedback and incorporates 

additional factors. 

-Accounts for implicit feedback. 
-Better captures user preferences. 
-Can improve recommendations for 

new users/items. 

-Increased computational 
complexity. 
-Requires more data for accurate 

predictions. 
-Vulnerable to overfitting. 
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Table 1. (Continued). 

Algorithm Description Pros Cons 

KNNBaseline Collaborative filtering algorithm 
that incorporates baseline 
estimates and utilizes a 
similarity-based approach. 

-Accounts for baseline estimates. 
-Handles both explicit and implicit 
ratings. 
-Performs well in situations with 
sparse data. 

-Computationally expensive for 
large datasets. 
-Sensitive to the choice of 
similarity metrics. 
-Cold start problem for new 
users/items. 

KNNWithMeans Collaborative filtering algorithm 
that utilizes a similarity-based 

approach and incorporates mean 
ratings. 

-Simple and easy to implement. 
-Handles both explicit and implicit 

ratings. 
-Robust to sparsity and cold start 
scenarios. 

-Computationally expensive for 
large datasets. 

-Sensitive to the choice of 
similarity metrics. 
-Cold start problem for new 
users/items. 

KNNWithZScore Collaborative filtering algorithm 
that utilizes a similarity-based 
approach and incorporates mean 
and standard deviation ratings. 

-Handles both explicit and implicit 
ratings. 
-Accounts for mean and standard 
deviation. 
-Robust to sparsity and cold start 
scenarios. 

-Computationally expensive for 
large datasets. 
-Sensitive to the choice of 
similarity metrics. 
-Cold start problem for new 
users/items. 

CoClustering Matrix factorization-based 
algorithm that simultaneously 
clusters users and items based on 

their ratings. 

-Captures both user and item clusters 
-Can handle large datasets. 
-Effective in handling sparse and 

high-dimensional data. 

-Computational complexity 
increases with the number of 
clusters. 

-May struggle with highly 
imbalanced data. 

SlopeOne Collaborative filtering algorithm 
that calculates deviations 
between item ratings. 

-Simple and efficient. 
-Handles both explicit and implicit 
ratings. 
-Robust to sparsity and cold start 
scenarios. 

-Limited in capturing complex 
user-item interactions. 
-Cold start problem for new 
users/items. 

KNNBasic Collaborative filtering algorithm 
that utilizes a simple similarity-
based approach. 

-Simple and easy to implement. 
-Handles both explicit and implicit 
ratings. 
-Robust to sparsity and cold start 
scenarios. 

-Computationally expensive for 
large datasets. 
-Sensitive to the choice of 
similarity metrics. 
-Cold start problem for new 

users/items. 

Non-negative 

matrix 

factorization 
(NMF) 

Matrix factorization-based 

algorithm using non-negative 
matrix factorization. 

-Interpretable latent factors. 

-Handles sparse data. 
-Can capture non-linear relationships. 

-Requires careful initialization 

and tuning. 
-May not perform well with 
highly sparse or noisy data. 

NormalPredictor Algorithm that predicts ratings 
based on the distribution of the 
training set ratings. 

-Simple and easy to implement. 
-Provides a baseline performance for 
comparison. 

-Ignores user-item interactions 
and preferences. 
-Limited accuracy compared to 
more advanced algorithms. 

3. Methodology 

In this study, we experimentally evaluated various collaborative filtering algorithms to build a 

recommendation system. The following parameter values of each algorithm were used to ensure consistency 

and fairness in the comparison. 

3.1. Experimental setup 

In this study, we evaluated various collaborative filtering algorithms to build a recommendation system 

with the help of a surprise library[23]. The following parameter values of each algorithm were used to ensure 

consistency and fairness in the comparison. 

1) Experimental design: The dataset was split into training and test sets using a train-test split of 80:20. This 

allowed us to simulate real-world scenarios by training the algorithms on some of the data and evaluating 

their performance on unseen ratings. 



5 

2) Algorithms: We selected several algorithms, including SVD, SVDpp, SlopeOne, NMF, NormalPredictor, 

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering. 

3) Training: Each algorithm was instantiated and trained on the training set using the default parameter 

values. The training process involved capturing the underlying patterns in the user-item ratings to build 

prediction models. 

4) Evaluation: The algorithms were evaluated on the test set to measure their performance after training. 

5) Parameter values: The following parameters are used in the experiment setup: 

i. n_epochs: This parameter represents the number of iterations or epochs used during the training 

process. Each epoch consists of one pass through the entire dataset. It is used in SVD, SVDpp, NMF, 

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering 

algorithms. The value of n_epochs can be adjusted based on the model’s convergence and the 

dataset’s characteristics. 

ii. biased: This parameter indicates whether the model should include biased terms or not. Bias terms 

capture the overall tendencies or biases of users and items in the recommendation system. It is used 

in SVD, SVDpp, and NMF algorithms. 

iii. init_mean: This parameter controls the mean value of the initial random values assigned to the 

model’s parameters during initialization. It is used in SVD, SVDpp, and NMF algorithms. 

iv. init_std: This parameter controls the standard deviation of the initial random values assigned to the 

model’s parameters during initialization. It is used in SVD, SVDpp, and NMF algorithms. 

v. lr_all: This parameter represents the learning rate for the optimization algorithm used to train the 

model. It determines the step size taken during parameter updates. It is used in SVD and SVDpp 

algorithms. 

vi. reg_all: This parameter controls the regularization strength applied to all parameters in the model. 

Regularization helps prevent overfitting by adding a penalty term to the loss function. It is used in 

SVD and SVDpp algorithms. 

vii. k: This parameter determines the number of nearest neighbours to consider in the k-NN algorithms 

(KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore). It specifies the size of the 

neighbourhood used for making predictions. 

viii. min_k: This parameter sets the minimum number of neighbours required for a prediction to be made 

in the k-NN algorithms (KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore). The 

prediction cannot be made if the number of neighbours falls below this threshold. 

3.2. Evaluation metrics 

RMSE (root mean squared error) is an evaluation metric that is commonly used to measure the accuracy 

of a recommender system. RMSE measures the difference between predicted and actual ratings on a scale of 

0–5 (or another rating scale). It is calculated as the square root of the average of the squared differences 

between predicted and actual ratings (Equation (1))[24]: 

RMSE =
√Σ(𝑅̂ − 𝑅̂)²
2

𝑁
 (1) 

where N is the total number of ratings in the dataset, 𝑅̂  is the predicted rating and R represents the actual ratings. 

The lower the RMSE value, the more accurate the recommendations made by the system. RMSE is a 

useful metric because it considers both the magnitude and direction of the prediction errors. A high RMSE 

value indicates that the system is not very accurate in predicting user ratings, while a low RMSE value indicates 

that the system is making accurate predictions. 

RMSE is particularly useful when the ratings are continuous, and the distribution is normal, as it provides 

a way to measure the error in terms of standard deviations. However, it may not be as useful when the ratings 
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are binary or ordinal, as it assumes a continuous scale of ratings. 

When comparing different collaborative filtering algorithms, the algorithm with the lowest RMSE value 

is typically considered the best-performing algorithm. However, it’s important to note that RMSE is just one 

of many evaluation metrics that can be used and that different metrics may be more appropriate depending on 

the specific goals of the recommender system. Additionally, RMSE may not capture other important aspects 

of recommendation quality, such as diversity or novelty. Therefore, it’s important to use multiple evaluation 

metrics to get a more complete picture of the performance of different algorithms. 

The mean absolute error (MAE) is an evaluation metric that measures the average absolute difference 

between predicted and actual values in a dataset[24]. It is commonly employed in regression and forecasting 

tasks. MAE calculates the average magnitude of errors without considering their direction, making it a useful 

metric for assessing the overall model performance. The MAE is computed by taking the absolute difference 

between each predicted value and its corresponding actual value, summing up these differences, and then 

dividing by the total number of observations (Equation (2)). The formula for MAE can be represented as: 

MAE =
∑ |𝑦𝑖 − 𝑥𝑖|
𝑁
𝑖=1

𝑁
 (2) 

where: N is the total number of observations; yi represents the actual values; xi represents the predicted values. 

The MAE metric provides a straightforward interpretation since it represents the average absolute error 

in the same units as the predicted and actual values. A lower MAE indicates better accuracy and closer 

alignment between predictions and actual values. 

The mean squared error (MSE) is a widely used evaluation metric in collaborative recommender systems 

for comparing and assessing the performance of different algorithms[25,26]. It quantifies the average squared 

difference between the predicted ratings and the true ratings of items in the system, providing a measure of the 

accuracy and precision of the recommendations (Equation (3)). The MSE can be calculated using the following 

equation: 

MSE =
∑(𝑅̂ − 𝑅̂)

2

𝑁
 (3) 

where R̂ represents the predicted ratings, R represents the true ratings, and N is the total number of ratings. A 

lower MSE value indicates better accuracy and effectiveness of the algorithms in generating accurate 

recommendations[27]. MSE enables benchmarking and comparison of different algorithms, making it a valuable 

metric in the field of recommender systems[25]. However, it is important to consider other evaluation metrics 

alongside MSE to obtain a comprehensive assessment of algorithm performance. Mean absolute error (MAE) 

and root mean squared error (RMSE) are commonly used metrics in conjunction with MSE[25]. MAE represents 

the average absolute difference between the predicted and true ratings, while RMSE captures the square root 

of the average squared difference. These metrics provide additional insights into the performance of 

recommender systems. 

4. Results and discussion 

In this section, we discussed the result generated after executing the experiment. Which is divided into 

two parts: (i) mean and standard deviation of RMSE, MAE, and MSE for different algorithms, (ii) mean and 

standard deviation of fit time and test time for different algorithms. The provided Table 2 presents information 

about different algorithms in terms of their RMSE (root mean squared error), MAE (mean absolute error), and 

MSE (mean squared error). The algorithms listed in the table are SVD, SVDPP, SLOPEONE, NMF, 

NormalPredictor, KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and 

CoClustering. The table includes mean and standard deviation values for each metric. Figure 1 represents the 

metric comparison of mean deviation for different algorithms. 
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The Table 2 provides insights into the performance of the algorithms based on their RMSE, MAE, and 

MSE values. These metrics are commonly used in regression tasks to evaluate the models’ accuracy and assess 

the prediction quality. 

i. RMSE: The root mean square error (RMSE) measures the average magnitude of errors between predicted 

and actual values. A smaller RMSE indicates a more accurate model, as it indicates that the predicted 

values are closer to the actual values. In the provided table, the RMSE values range from 0.9330 to 1.2814, 

indicating algorithms with varying degrees of accuracy. RMSE can be used in scenarios where accurate 

estimation of prediction errors is essential, such as personalized recommendations, item ranking, and 

sorting, where accurate predictions are crucial for user satisfaction. 

Table 2. Mean and standard deviation of RMSE, MAE, and MSE for different algorithms. 

ALGORITHMS RMSE MAE MSE 

Mean Std Mean Std Mean Std 

SVD 0.9356 0.0049 0.6916 0.0048 0.8794 0.0267 

SVDPP 0.9379 0.0095 0.6836 0.0033 0.8726 0.0208 

SLOPEONE 1.06 0.0025 0.76 0.0036 1.1182 0.0138  

NMF 1.1269 0.0091 0.8571 0.0012 1.264 0.0109 

NormalPredictor 1.2814 0.0104 0.9503 0.0026 1.6363 0.0079 

KNNBaseline 1.0135  0.0057 0.7080 0.0012 1.0357 0.0178 

KNNBasic 1.0736 0.0132 0.7480  0.0084 1.1494 0.0104 

KNNWithMeans 1.0153 0.0047 0.7231  0.0054 1.0466 0.0069 

KNNWithZScore 1.0248 0.0062 0.7144  0.0001 1.0650 0.0263 

BaselineOnly 0.9330 0.0078 1.0650 0.0263 1.0650 0.0263 

Clustering 1.0381 0.0099 0.7221  0.0019 1.0807 0.30607 

 
Figure 1. Metrics comparison for different algorithms. 

ii. MAE: MAE is the average absolute difference between predicted and observed values. It provides a 

measure of the average error in prediction. Similar to RMSE, a smaller MAE indicates greater precision. 

In the table, the MAE values range from 0.6836 to 1.2814, indicating differences in the prediction 

accuracy of the algorithms. MAE is commonly used in applications where the absolute magnitude of 

errors is important, such as content curation, catalogue organization, and feedback analysis. It can provide 

a balanced evaluation of prediction accuracy. 

iii. MSE: MSE is the average of the squared deviations between predicted and actual values. It magnifies 

larger errors than the MAE, making it more sensitive to extreme values. The range of MSE values in the 



8 

table, from 0.7080 to 1.6363, reflects the variable ability of the algorithms to minimize squared errors. 

MSE can benefit applications where reducing large prediction errors is critical, such as targeted marketing 

and promotions. It places more weight on larger errors and can be used to optimize marketing efforts. 

Overall, the provided table allows for comparing algorithm performance based on RMSE, MAE, and 

MSE metrics. However, it is important to consider other factors and conduct further analysis to make informed 

decisions regarding the selection of an algorithm for a specific task or problem. 

The provided Table 3 presents information related to the performance of different algorithms in terms of 

fit time and test time. The algorithms listed include SVD, SVDPP, SLOPEONE, NMF, NormalPredictor, 

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering. The table 

provides mean and standard deviation values for each algorithm’s fit time and test time. The Figures 2 and 3 

represents the mean deviation of fit time and test time for different algorithms. 

 
Figure 2. Mean deviation of fit time for different algorithms. 
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Figure 3. Mean deviation of test time for different algorithms. 

Table 3. Mean and standard deviation of fit time and test time for different algorithms. 

Algorithms Train & inference time RMSE MAE MSE 

Mean Std Mean Std Mean Std 

SVD Fit time 2.59 0.02 0.12 0 0.12 0 

Test time 0.16 0.02 0.04 0 0.04 0 

SVDPP Fit time 24.15 8.74 0.27 0.03 1.26 0.01 

Test time 0.75 0.31 0.33 0.01 0.31 0 

SLOPEONE Fit time 1.87 0.32 0.47 0.02 0.47 0.02 

Test time 0.4 0.06 0.14 0.02 0.14 0.01 

NMF Fit time 1.56 0.22 0.38 0.02 0.35 0.02 

Test time 0.05 0 0.03 0 0.03 0 

NormalPredictor Fit time 0.03 0 0.01 0 0.01 0 

Test time 0.06 0 0.04 2 0.04 2 

KNNBaseline Fit time 0.05 0 0.02 0 0.02 0 

Test time 0.2 0.02 0.09 0 0.09 0 

KNNBasic Fit time 0.01 0 0 0 0 0 

Test time 0.18 0.03 0.07 0 0.08 0.02 
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Table 3. (Continued). 

Algorithms Train & inference time RMSE MAE MSE 

Mean Std Mean Std Mean Std 

KNNWithMeans Fit time 0.02 0 0.01 0 0.01 0 

Test time 0.19 0.03 0.09 0.02 0.09 0.02 

KNNWithZScore Fit time 0.04 0 0.02 0 0.02 0 

Test time 0.2 0.03 0.09 0.02 0.08 0 

BaselineOnly Fit time 0.04 0.01 0.02 0 0.02 0 

Test time 0.04 0 0.02 0 0.02 0 

CoClustering Fit time 0.72 0.02 0.45 0 0.51 0.02 

Test time 0.04 0 0.02 0 0.03 0 

When evaluating a recommender system using metrics such as RMSE (root mean square error) and MAE 

(mean absolute error), etc., calculating the mean and standard deviation (std) values provides valuable insights 

into the performance and consistency of the system where mean represents the average value of the metric 

across the three folds in our case (or any number of folds in cross-validation). It provides a central tendency 

measure and indicates the overall performance of the recommender system. The mean value is particularly 

useful for comparing different algorithms or variations of the same algorithm to determine which one performs 

better on average across the folds. And the standard deviation measures the variability or spread of the metric 

values across the three folds. It quantifies how much the metric values deviate from the mean. A smaller 

standard deviation indicates more consistent performance across the folds, with less variation in the metric 

values. A higher standard deviation suggests greater variability in the performance, indicating that the system’s 

performance may be more inconsistent across different subsets of the data. The standard deviation is valuable 

for understanding the stability and robustness of the recommender system. Lower standard deviation values 

imply more reliable and consistent predictions. 

Fit time refers to the time taken by an algorithm to train or fit a model to the given data. Test time 

represents the time the algorithm takes to make predictions or perform computations on unseen or test data. 

For each algorithm, the table includes the mean and standard deviation values for fit time and test time. 

Regarding algorithm performance analysis, the fit time values range from 0.01 to 24.15, while the test time 

values range from 0 to 0.75. The standard deviation values provide information about the variability or 

consistency of each algorithm’s fit and test time measurements. When comparing algorithm accuracy, the table 

does not directly provide accuracy metrics such as accuracy score or precision-recall values. Therefore, it 

might be necessary to consult additional resources or experiments to gather accuracy-related information for 

these algorithms. It’s important to note that algorithm performance depends on the specific problem, dataset, 

and context in which the algorithms are being used. The fit time and test time values can provide insights into 

the computational efficiency of the algorithms, but other factors such as prediction accuracy, scalability, and 

suitability for the specific task should also be considered when comparing algorithm performance. 

To analyze algorithm accuracy, it is recommended to refer to additional resources or studies that evaluate 

the performance of these algorithms in terms of accuracy metrics specific to the problem domain. These 

evaluations can involve measures like accuracy score, precision, recall, F1 score, or other domain-specific 

evaluation metrics. Overall, the provided table primarily focuses on the fit and test times of different algorithms 

and does not directly provide a comprehensive comparison of algorithm accuracy. Additional information and 

evaluations specific to accuracy metrics would be required to compare algorithm accuracy thoroughly. 

5. Conclusion and future work 

This study presents insights into the performance metrics of various algorithms used in a recommender 
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system. This research examines algorithm metrics and computing efficiency to determine predicted accuracy. 

These insights can assist academics and practitioners in choosing recommender algorithms. The study 

emphasizes the importance of fit time, test time, and performance indicators when evaluating algorithms. This 

study impacts recommendation systems, where algorithm selection improves user satisfaction and engagement. 

Researchers and developers can improve recommender systems and deliver more accurate and personalized 

recommendations by understanding algorithm strengths and flaws. To fully comprehend this study, its 

limitations must be acknowledged. First, the research focused on one dataset or area. Therefore, the results 

may not apply to others. Validating the findings across contexts requires more studies with diverse datasets. 

The study only investigated a few algorithms, so others may be important to recommendation systems. This 

study’s findings and limitations suggest various research possibilities. First, comparative research using a 

bigger set of algorithms can improve recommendation system performance comprehension. Second, 

examining evaluation data and user satisfaction and engagement might help select algorithms. Explore how 

dataset factors like sparsity and diversity affect algorithm performance to comprehend their real-world 

application better. Finally, researching unique methods or hybrid models that combine the capabilities of 

several algorithms may be interesting. In conclusion, this study summarises research findings regarding 

algorithm performance in a recommender system. The insights obtained from the analysis of fit time, test time, 

and performance metrics contribute to the understanding of algorithm selection and its implications in 

recommendation systems. The limitations of the study highlight the need for further research. 
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