
Journal of Autonomous Intelligence (2024) Volume 7 Issue 2

doi: 10.32629/jai.v7i2.1182

1

Original Research Article

Comparative analysis of collaborative filtering recommender system

algorithms for e-commerce
Kapil Saini*, Ajmer Singh

Department of Computer Science & Engineering, Deenbandhu Chhotu Ram University of Science & Technology,

Murthal, Haryana 131039, India

* Corresponding author: Kapil Saini, 19001901905kapil@dcrustm.org

ABSTRACT

Collaborative recommender systems are information filtering systems that seek to predict a user’s rating or

preference for an item. They play a vital role in various business use cases, such as personalized recommendations, item

ranking and sorting, targeted marketing and promotions, content curation and catalog organization, and feedback analysis

and quality control. When evaluating these systems, rating prediction metrics are commonly employed. Efficiency,

including the prediction time, is another crucial aspect to consider. In this study, the performance of different algorithms

was investigated. The study employed a dataset consisting of e-commerce product ratings and assessed the algorithms

based on rating prediction metrics and efficiency. The results demonstrated that each algorithm had its own set of strengths

and weaknesses. For the metric of Root Mean Squared Error (RMSE), the BaselineOnly algorithm achieved the lowest

mean value. Regarding Mean Absolute Error (MAE), the Singular Value Decomposition with Positive Perturbations

Singular Value Decomposition with Positive Perturbations (SVDPP) algorithm exhibited the lowest mean value; Mean

Squared Error (MSE) also achieved the lowest mean value. Moreover, the BaselineOnly algorithm showcased superior

performance with the lowest mean test times when considering efficiency. Researchers and practitioners can use the

findings of this study to select the best algorithm for a particular application. Researchers can develop new algorithms

that combine the strengths of different algorithms. Practitioners can also use the findings of this study to tune the

parameters of existing algorithms.

Keywords: recommender system; collaborative filtering; e-commerce

1. Introduction

Collaborative recommender systems are tools that provide

recommendations based on the preferences and behavior of multiple

users[1]. In recent years, these systems have grown in popularity

because to their capacity to tailor recommendations for users and

enhance the overall user experience. Collaborative recommender

systems use data on the preferences and behavior of multiple users to

generate recommendations for each individual user[2]. The system

identifies similarities between users and their preferences, and then

uses these similarities to make recommendations to each user[3]. This

differs from content-based recommender systems, which generate

recommendations based on information about the objects’ qualities.

A key challenge in collaborative recommender systems is the sparsity

problem, this differs from content-based recommender systems,

which generate recommendations based on information about the

objects’ qualities. To address this problem, several techniques have

been developed, including neighborhood-based approaches and

ARTICLE INFO

Received: 8 September 2023
Accepted: 20 September 2023
Available online: 30 November 2023

COPYRIGHT

Copyright © 2023 by author(s).
Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/

2

matrix factorization methods[4]. Neighborhood-based approaches involve identifying a set of users with similar

preferences and using their ratings to make recommendations. Matrix factorization methods involve

decomposing the rating matrix into two low-rank matrices, which can be used to predict ratings for new items.

Several challenges are associated with evaluating collaborative recommender systems, including the need for

diverse evaluation metrics and the difficulty of evaluating the quality of recommendations in real-world

settings. Researchers have proposed new evaluation metrics to address these challenges and developed

simulation techniques to evaluate recommender systems in realistic scenarios [2]. Overall, collaborative

recommender systems are effective instruments for generating individualised recommendations for consumers

based on the preferences and actions of several users. While there are several challenges associated with these

systems, ongoing research is focused on addressing these challenges and improving the quality of

recommendations for users[4]. The problem that this research paper aims to address is the need to evaluate and

compare the performance of different collaborative filtering algorithms for a personalized recommendation.

Several factors influence the effectiveness of collaborative filtering, such as data sparsity, cold-start,

scalability, and interpretability[5]. Additionally, there is a need to investigate how collaborative filtering can be

extended to handle evolving data streams, non-stationary recommendation scenarios, and hybrid approaches

that combine multiple techniques.

In recommendation systems, collaborative filtering is a popular strategy. There are a number of

collaborative filtering algorithm types, including user-based, item-based, model-based, content-based, cluster-

based, and hybrid approaches, that combine various similarity measures[6]. Specifically, user-to-user and item-

to-item collaborative filtering are two prevalent recommendation system techniques[7]. In addition, there are

numerous sorts of improved algorithms for traditional measuring metrics that can produce superior outcomes

compared to existing algorithms[8]. In addition, a recent study presented a novel collaborative filtering method

based on a restricted random walk, which accounts for the granularity of users’ preference drifting and item

popularity bias to increase the precision of suggestions[9]. Another study examined two collaborative filtering

algorithms, user-based and item-based collaborative filtering algorithms, which use the sparse matrix to

evaluate cosine similarity between users, items, and users to items[10]. This study aims to examine and evaluate

algorithm performance in a recommender system by analysing fit time, test time, and performance metrics.

The study aims to contribute to the understanding of algorithm selection and its implications in

recommendation systems while also identifying avenues for future research to enhance the field further.

2. Literature review

The field of recommender systems has witnessed significant advancements in recent years, particularly

in the domain of collaborative filtering. Collaborative filtering is a popular approach to generating personalized

recommendations by analyzing user behavior, item characteristics, and user-item interactions. In this section,

we provide a comprehensive analysis of existing research on collaborative filtering recommender system

algorithms, highlighting their strengths, limitations, and advancements. The review aims to contribute to a

deeper understanding of the various techniques employed in collaborative filtering and identify potential areas

for future research. Several studies have focused on different collaborative filtering techniques, including

memory-based, model-based, and hybrid models[11]. Memory-based approaches utilize user-item rating data to

identify similarities between users or items and generate recommendations based on nearest neighbors. Model-

based methods, on the other hand, employ machine learning algorithms to build predictive models based on

user-item interactions and other auxiliary data. Hybrid models combine the strengths of both memory-based

and model-based techniques to overcome their individual limitations. The cold start problem, which refers to

the difficulty of providing appropriate recommendations for new users or objects with low or no interaction

data, is one of the greatest obstacles in collaborative filtering. Various strategies have been proposed to address

this challenge, such as content-based filtering, which incorporates item features or attributes to make initial

3

recommendations[12]. Another significant challenge is the sparsity of data, where the available user-item

interactions are insufficient to make reliable predictions. To mitigate this issue, researchers have explored

techniques like matrix factorization and neighbourhood-based methods to handle sparse data scenarios[13]

effectively. The selection of similarity measurements significantly impacts the efficiency of collaborative

filtering algorithms. Numerous metrics, including cosine similarity, Pearson correlation, and Jaccard similarity,

have been used to quantify the similarities between users or objects. Literature indicates that selecting a suitable

similarity measure is contingent on the parameters of the recommendation task and the available data[14]. To

ensure the reliability and validity of our literature review, we adopted a systematic approach, considering

relevant studies and research papers from interdisciplinary fields such as computer science, information

retrieval, and machine learning[15]. The selected references provide a comprehensive understanding of the

collaborative filtering techniques, challenges, and advancements in the field of recommender systems.

Additionally, they serve as valuable resources for researchers, practitioners, and decision-makers interested in

this study area. The findings from this literature review lay the foundation for our comparative analysis of

collaborative filtering recommender system algorithms. By examining the strengths and limitations of different

approaches, we aim to provide insights into their effectiveness, scalability, and computational complexity. The

comparative analysis will assist in identifying the most suitable algorithm for specific recommendation

scenarios and potentially highlight areas for further research. Collaborative recommender systems are gaining

increasing importance in various fields as they help personalise user recommendations based on their

preferences and behaviour. Several studies have focused on the techniques and algorithms used in collaborative

filtering-based recommender systems[16]. Collaborative filtering methods utilize the similarities and differences

in user preferences to recommend items to users. Recent studies have investigated the use of review texts to

enhance the precision of collaborative filtering-based recommender systems. Other research has investigated

the use of hybrid models that integrate collaborative filtering with other recommendation methods, such as

content-based filtering and matrix factorization[17]. Hybrid models can improve the performance of

collaborative recommender systems by utilizing the strengths of multiple techniques. Researchers have also

proposed novel approaches to collaborative filtering, such as social-based filtering and group-based filtering.

Social-based filtering considers the influence of social connections among users, while group-based filtering

utilizes the characteristics of user groups to improve recommendation accuracy[18]. Collaborative recommender

systems are a form of a recommender system that recommends things to users based on user ratings or

behaviour. There are a number of different algorithms that can be used to build collaborative recommender

systems, each with its own advantages and disadvantages are shown below[19–22] (Table 1).

Table 1. Advantages & disadvantages of different algorithms for the collaborative recommender system.

Algorithm Description Pros Cons

BaselineOnly Collaborative filtering algorithm

that predicts ratings based on
baseline estimates.

-Simplicity and efficiency.

-Handles both explicit and implicit
ratings.
-Robust to sparsity and cold start
scenarios.

-May not capture complex user-

item interactions.
-Limited in handling contextual
information.

Singular Value

Decomposition

(SVD)

Matrix factorization-based
algorithm using singular value
decomposition.

-Captures latent factors and complex
relationships.
-Performs well with sparse data.
-Effective in handling large datasets.

-Computationally expensive for
large matrices.
-Requires parameter tuning.
-Cold start problem for new
users/items.

SVDpp Enhanced version of SVD
algorithm that considers implicit
feedback and incorporates

additional factors.

-Accounts for implicit feedback.
-Better captures user preferences.
-Can improve recommendations for

new users/items.

-Increased computational
complexity.
-Requires more data for accurate

predictions.
-Vulnerable to overfitting.

4

Table 1. (Continued).

Algorithm Description Pros Cons

KNNBaseline Collaborative filtering algorithm
that incorporates baseline
estimates and utilizes a
similarity-based approach.

-Accounts for baseline estimates.
-Handles both explicit and implicit
ratings.
-Performs well in situations with
sparse data.

-Computationally expensive for
large datasets.
-Sensitive to the choice of
similarity metrics.
-Cold start problem for new
users/items.

KNNWithMeans Collaborative filtering algorithm
that utilizes a similarity-based

approach and incorporates mean
ratings.

-Simple and easy to implement.
-Handles both explicit and implicit

ratings.
-Robust to sparsity and cold start
scenarios.

-Computationally expensive for
large datasets.

-Sensitive to the choice of
similarity metrics.
-Cold start problem for new
users/items.

KNNWithZScore Collaborative filtering algorithm
that utilizes a similarity-based
approach and incorporates mean
and standard deviation ratings.

-Handles both explicit and implicit
ratings.
-Accounts for mean and standard
deviation.
-Robust to sparsity and cold start
scenarios.

-Computationally expensive for
large datasets.
-Sensitive to the choice of
similarity metrics.
-Cold start problem for new
users/items.

CoClustering Matrix factorization-based
algorithm that simultaneously
clusters users and items based on

their ratings.

-Captures both user and item clusters
-Can handle large datasets.
-Effective in handling sparse and

high-dimensional data.

-Computational complexity
increases with the number of
clusters.

-May struggle with highly
imbalanced data.

SlopeOne Collaborative filtering algorithm
that calculates deviations
between item ratings.

-Simple and efficient.
-Handles both explicit and implicit
ratings.
-Robust to sparsity and cold start
scenarios.

-Limited in capturing complex
user-item interactions.
-Cold start problem for new
users/items.

KNNBasic Collaborative filtering algorithm
that utilizes a simple similarity-
based approach.

-Simple and easy to implement.
-Handles both explicit and implicit
ratings.
-Robust to sparsity and cold start
scenarios.

-Computationally expensive for
large datasets.
-Sensitive to the choice of
similarity metrics.
-Cold start problem for new

users/items.

Non-negative

matrix

factorization
(NMF)

Matrix factorization-based

algorithm using non-negative
matrix factorization.

-Interpretable latent factors.

-Handles sparse data.
-Can capture non-linear relationships.

-Requires careful initialization

and tuning.
-May not perform well with
highly sparse or noisy data.

NormalPredictor Algorithm that predicts ratings
based on the distribution of the
training set ratings.

-Simple and easy to implement.
-Provides a baseline performance for
comparison.

-Ignores user-item interactions
and preferences.
-Limited accuracy compared to
more advanced algorithms.

3. Methodology

In this study, we experimentally evaluated various collaborative filtering algorithms to build a

recommendation system. The following parameter values of each algorithm were used to ensure consistency

and fairness in the comparison.

3.1. Experimental setup

In this study, we evaluated various collaborative filtering algorithms to build a recommendation system

with the help of a surprise library[23]. The following parameter values of each algorithm were used to ensure

consistency and fairness in the comparison.

1) Experimental design: The dataset was split into training and test sets using a train-test split of 80:20. This

allowed us to simulate real-world scenarios by training the algorithms on some of the data and evaluating

their performance on unseen ratings.

5

2) Algorithms: We selected several algorithms, including SVD, SVDpp, SlopeOne, NMF, NormalPredictor,

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering.

3) Training: Each algorithm was instantiated and trained on the training set using the default parameter

values. The training process involved capturing the underlying patterns in the user-item ratings to build

prediction models.

4) Evaluation: The algorithms were evaluated on the test set to measure their performance after training.

5) Parameter values: The following parameters are used in the experiment setup:

i. n_epochs: This parameter represents the number of iterations or epochs used during the training

process. Each epoch consists of one pass through the entire dataset. It is used in SVD, SVDpp, NMF,

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering

algorithms. The value of n_epochs can be adjusted based on the model’s convergence and the

dataset’s characteristics.

ii. biased: This parameter indicates whether the model should include biased terms or not. Bias terms

capture the overall tendencies or biases of users and items in the recommendation system. It is used

in SVD, SVDpp, and NMF algorithms.

iii. init_mean: This parameter controls the mean value of the initial random values assigned to the

model’s parameters during initialization. It is used in SVD, SVDpp, and NMF algorithms.

iv. init_std: This parameter controls the standard deviation of the initial random values assigned to the

model’s parameters during initialization. It is used in SVD, SVDpp, and NMF algorithms.

v. lr_all: This parameter represents the learning rate for the optimization algorithm used to train the

model. It determines the step size taken during parameter updates. It is used in SVD and SVDpp

algorithms.

vi. reg_all: This parameter controls the regularization strength applied to all parameters in the model.

Regularization helps prevent overfitting by adding a penalty term to the loss function. It is used in

SVD and SVDpp algorithms.

vii. k: This parameter determines the number of nearest neighbours to consider in the k-NN algorithms

(KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore). It specifies the size of the

neighbourhood used for making predictions.

viii. min_k: This parameter sets the minimum number of neighbours required for a prediction to be made

in the k-NN algorithms (KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore). The

prediction cannot be made if the number of neighbours falls below this threshold.

3.2. Evaluation metrics

RMSE (root mean squared error) is an evaluation metric that is commonly used to measure the accuracy

of a recommender system. RMSE measures the difference between predicted and actual ratings on a scale of

0–5 (or another rating scale). It is calculated as the square root of the average of the squared differences

between predicted and actual ratings (Equation (1))[24]:

RMSE =
√Σ(𝑅̂ − 𝑅̂)²
2

𝑁
 (1)

where N is the total number of ratings in the dataset, 𝑅̂ is the predicted rating and R represents the actual ratings.

The lower the RMSE value, the more accurate the recommendations made by the system. RMSE is a

useful metric because it considers both the magnitude and direction of the prediction errors. A high RMSE

value indicates that the system is not very accurate in predicting user ratings, while a low RMSE value indicates

that the system is making accurate predictions.

RMSE is particularly useful when the ratings are continuous, and the distribution is normal, as it provides

a way to measure the error in terms of standard deviations. However, it may not be as useful when the ratings

6

are binary or ordinal, as it assumes a continuous scale of ratings.

When comparing different collaborative filtering algorithms, the algorithm with the lowest RMSE value

is typically considered the best-performing algorithm. However, it’s important to note that RMSE is just one

of many evaluation metrics that can be used and that different metrics may be more appropriate depending on

the specific goals of the recommender system. Additionally, RMSE may not capture other important aspects

of recommendation quality, such as diversity or novelty. Therefore, it’s important to use multiple evaluation

metrics to get a more complete picture of the performance of different algorithms.

The mean absolute error (MAE) is an evaluation metric that measures the average absolute difference

between predicted and actual values in a dataset[24]. It is commonly employed in regression and forecasting

tasks. MAE calculates the average magnitude of errors without considering their direction, making it a useful

metric for assessing the overall model performance. The MAE is computed by taking the absolute difference

between each predicted value and its corresponding actual value, summing up these differences, and then

dividing by the total number of observations (Equation (2)). The formula for MAE can be represented as:

MAE =
∑ |𝑦𝑖 − 𝑥𝑖|
𝑁
𝑖=1

𝑁
 (2)

where: N is the total number of observations; yi represents the actual values; xi represents the predicted values.

The MAE metric provides a straightforward interpretation since it represents the average absolute error

in the same units as the predicted and actual values. A lower MAE indicates better accuracy and closer

alignment between predictions and actual values.

The mean squared error (MSE) is a widely used evaluation metric in collaborative recommender systems

for comparing and assessing the performance of different algorithms[25,26]. It quantifies the average squared

difference between the predicted ratings and the true ratings of items in the system, providing a measure of the

accuracy and precision of the recommendations (Equation (3)). The MSE can be calculated using the following

equation:

MSE =
∑(𝑅̂ − 𝑅̂)

2

𝑁
 (3)

where R̂ represents the predicted ratings, R represents the true ratings, and N is the total number of ratings. A

lower MSE value indicates better accuracy and effectiveness of the algorithms in generating accurate

recommendations[27]. MSE enables benchmarking and comparison of different algorithms, making it a valuable

metric in the field of recommender systems[25]. However, it is important to consider other evaluation metrics

alongside MSE to obtain a comprehensive assessment of algorithm performance. Mean absolute error (MAE)

and root mean squared error (RMSE) are commonly used metrics in conjunction with MSE[25]. MAE represents

the average absolute difference between the predicted and true ratings, while RMSE captures the square root

of the average squared difference. These metrics provide additional insights into the performance of

recommender systems.

4. Results and discussion

In this section, we discussed the result generated after executing the experiment. Which is divided into

two parts: (i) mean and standard deviation of RMSE, MAE, and MSE for different algorithms, (ii) mean and

standard deviation of fit time and test time for different algorithms. The provided Table 2 presents information

about different algorithms in terms of their RMSE (root mean squared error), MAE (mean absolute error), and

MSE (mean squared error). The algorithms listed in the table are SVD, SVDPP, SLOPEONE, NMF,

NormalPredictor, KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and

CoClustering. The table includes mean and standard deviation values for each metric. Figure 1 represents the

metric comparison of mean deviation for different algorithms.

7

The Table 2 provides insights into the performance of the algorithms based on their RMSE, MAE, and

MSE values. These metrics are commonly used in regression tasks to evaluate the models’ accuracy and assess

the prediction quality.

i. RMSE: The root mean square error (RMSE) measures the average magnitude of errors between predicted

and actual values. A smaller RMSE indicates a more accurate model, as it indicates that the predicted

values are closer to the actual values. In the provided table, the RMSE values range from 0.9330 to 1.2814,

indicating algorithms with varying degrees of accuracy. RMSE can be used in scenarios where accurate

estimation of prediction errors is essential, such as personalized recommendations, item ranking, and

sorting, where accurate predictions are crucial for user satisfaction.

Table 2. Mean and standard deviation of RMSE, MAE, and MSE for different algorithms.

ALGORITHMS RMSE MAE MSE

Mean Std Mean Std Mean Std

SVD 0.9356 0.0049 0.6916 0.0048 0.8794 0.0267

SVDPP 0.9379 0.0095 0.6836 0.0033 0.8726 0.0208

SLOPEONE 1.06 0.0025 0.76 0.0036 1.1182 0.0138

NMF 1.1269 0.0091 0.8571 0.0012 1.264 0.0109

NormalPredictor 1.2814 0.0104 0.9503 0.0026 1.6363 0.0079

KNNBaseline 1.0135 0.0057 0.7080 0.0012 1.0357 0.0178

KNNBasic 1.0736 0.0132 0.7480 0.0084 1.1494 0.0104

KNNWithMeans 1.0153 0.0047 0.7231 0.0054 1.0466 0.0069

KNNWithZScore 1.0248 0.0062 0.7144 0.0001 1.0650 0.0263

BaselineOnly 0.9330 0.0078 1.0650 0.0263 1.0650 0.0263

Clustering 1.0381 0.0099 0.7221 0.0019 1.0807 0.30607

Figure 1. Metrics comparison for different algorithms.

ii. MAE: MAE is the average absolute difference between predicted and observed values. It provides a

measure of the average error in prediction. Similar to RMSE, a smaller MAE indicates greater precision.

In the table, the MAE values range from 0.6836 to 1.2814, indicating differences in the prediction

accuracy of the algorithms. MAE is commonly used in applications where the absolute magnitude of

errors is important, such as content curation, catalogue organization, and feedback analysis. It can provide

a balanced evaluation of prediction accuracy.

iii. MSE: MSE is the average of the squared deviations between predicted and actual values. It magnifies

larger errors than the MAE, making it more sensitive to extreme values. The range of MSE values in the

8

table, from 0.7080 to 1.6363, reflects the variable ability of the algorithms to minimize squared errors.

MSE can benefit applications where reducing large prediction errors is critical, such as targeted marketing

and promotions. It places more weight on larger errors and can be used to optimize marketing efforts.

Overall, the provided table allows for comparing algorithm performance based on RMSE, MAE, and

MSE metrics. However, it is important to consider other factors and conduct further analysis to make informed

decisions regarding the selection of an algorithm for a specific task or problem.

The provided Table 3 presents information related to the performance of different algorithms in terms of

fit time and test time. The algorithms listed include SVD, SVDPP, SLOPEONE, NMF, NormalPredictor,

KNNBaseline, KNNBasic, KNNWithMeans, KNNWithZScore, BaselineOnly, and CoClustering. The table

provides mean and standard deviation values for each algorithm’s fit time and test time. The Figures 2 and 3

represents the mean deviation of fit time and test time for different algorithms.

Figure 2. Mean deviation of fit time for different algorithms.

9

Figure 3. Mean deviation of test time for different algorithms.

Table 3. Mean and standard deviation of fit time and test time for different algorithms.

Algorithms Train & inference time RMSE MAE MSE

Mean Std Mean Std Mean Std

SVD Fit time 2.59 0.02 0.12 0 0.12 0

Test time 0.16 0.02 0.04 0 0.04 0

SVDPP Fit time 24.15 8.74 0.27 0.03 1.26 0.01

Test time 0.75 0.31 0.33 0.01 0.31 0

SLOPEONE Fit time 1.87 0.32 0.47 0.02 0.47 0.02

Test time 0.4 0.06 0.14 0.02 0.14 0.01

NMF Fit time 1.56 0.22 0.38 0.02 0.35 0.02

Test time 0.05 0 0.03 0 0.03 0

NormalPredictor Fit time 0.03 0 0.01 0 0.01 0

Test time 0.06 0 0.04 2 0.04 2

KNNBaseline Fit time 0.05 0 0.02 0 0.02 0

Test time 0.2 0.02 0.09 0 0.09 0

KNNBasic Fit time 0.01 0 0 0 0 0

Test time 0.18 0.03 0.07 0 0.08 0.02

10

Table 3. (Continued).

Algorithms Train & inference time RMSE MAE MSE

Mean Std Mean Std Mean Std

KNNWithMeans Fit time 0.02 0 0.01 0 0.01 0

Test time 0.19 0.03 0.09 0.02 0.09 0.02

KNNWithZScore Fit time 0.04 0 0.02 0 0.02 0

Test time 0.2 0.03 0.09 0.02 0.08 0

BaselineOnly Fit time 0.04 0.01 0.02 0 0.02 0

Test time 0.04 0 0.02 0 0.02 0

CoClustering Fit time 0.72 0.02 0.45 0 0.51 0.02

Test time 0.04 0 0.02 0 0.03 0

When evaluating a recommender system using metrics such as RMSE (root mean square error) and MAE

(mean absolute error), etc., calculating the mean and standard deviation (std) values provides valuable insights

into the performance and consistency of the system where mean represents the average value of the metric

across the three folds in our case (or any number of folds in cross-validation). It provides a central tendency

measure and indicates the overall performance of the recommender system. The mean value is particularly

useful for comparing different algorithms or variations of the same algorithm to determine which one performs

better on average across the folds. And the standard deviation measures the variability or spread of the metric

values across the three folds. It quantifies how much the metric values deviate from the mean. A smaller

standard deviation indicates more consistent performance across the folds, with less variation in the metric

values. A higher standard deviation suggests greater variability in the performance, indicating that the system’s

performance may be more inconsistent across different subsets of the data. The standard deviation is valuable

for understanding the stability and robustness of the recommender system. Lower standard deviation values

imply more reliable and consistent predictions.

Fit time refers to the time taken by an algorithm to train or fit a model to the given data. Test time

represents the time the algorithm takes to make predictions or perform computations on unseen or test data.

For each algorithm, the table includes the mean and standard deviation values for fit time and test time.

Regarding algorithm performance analysis, the fit time values range from 0.01 to 24.15, while the test time

values range from 0 to 0.75. The standard deviation values provide information about the variability or

consistency of each algorithm’s fit and test time measurements. When comparing algorithm accuracy, the table

does not directly provide accuracy metrics such as accuracy score or precision-recall values. Therefore, it

might be necessary to consult additional resources or experiments to gather accuracy-related information for

these algorithms. It’s important to note that algorithm performance depends on the specific problem, dataset,

and context in which the algorithms are being used. The fit time and test time values can provide insights into

the computational efficiency of the algorithms, but other factors such as prediction accuracy, scalability, and

suitability for the specific task should also be considered when comparing algorithm performance.

To analyze algorithm accuracy, it is recommended to refer to additional resources or studies that evaluate

the performance of these algorithms in terms of accuracy metrics specific to the problem domain. These

evaluations can involve measures like accuracy score, precision, recall, F1 score, or other domain-specific

evaluation metrics. Overall, the provided table primarily focuses on the fit and test times of different algorithms

and does not directly provide a comprehensive comparison of algorithm accuracy. Additional information and

evaluations specific to accuracy metrics would be required to compare algorithm accuracy thoroughly.

5. Conclusion and future work

This study presents insights into the performance metrics of various algorithms used in a recommender

11

system. This research examines algorithm metrics and computing efficiency to determine predicted accuracy.

These insights can assist academics and practitioners in choosing recommender algorithms. The study

emphasizes the importance of fit time, test time, and performance indicators when evaluating algorithms. This

study impacts recommendation systems, where algorithm selection improves user satisfaction and engagement.

Researchers and developers can improve recommender systems and deliver more accurate and personalized

recommendations by understanding algorithm strengths and flaws. To fully comprehend this study, its

limitations must be acknowledged. First, the research focused on one dataset or area. Therefore, the results

may not apply to others. Validating the findings across contexts requires more studies with diverse datasets.

The study only investigated a few algorithms, so others may be important to recommendation systems. This

study’s findings and limitations suggest various research possibilities. First, comparative research using a

bigger set of algorithms can improve recommendation system performance comprehension. Second,

examining evaluation data and user satisfaction and engagement might help select algorithms. Explore how

dataset factors like sparsity and diversity affect algorithm performance to comprehend their real-world

application better. Finally, researching unique methods or hybrid models that combine the capabilities of

several algorithms may be interesting. In conclusion, this study summarises research findings regarding

algorithm performance in a recommender system. The insights obtained from the analysis of fit time, test time,

and performance metrics contribute to the understanding of algorithm selection and its implications in

recommendation systems. The limitations of the study highlight the need for further research.

Author contributions

Conceptualization, AS and KS̱; methodology, KS; software, KS; validation, KS and AS; formal analysis,

KS and AS; investigation, KS; resources, KS; data curation, KS; writing—original draft preparation, KS and

AS; writing—review and editing, KS and AS; visualization, KS; supervision, AS; project administration, AS.

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. Koren Y, Bell R. Advances in collaborative filtering. In: Ricci F, Rokach L, Shapira B (editors). Recommender

Systems Handbook. Springer; 2015. pp. 91–142.

2. Kulkarni A, Shivananda A, Kulkarni A, Krishnan VA. Collaborative filtering. In: Applied Recommender Systems

with Python. Apress Berkeley; 2023. pp. 89–110.

3. Saini K, Singh A. Coherent algorithms of recommender systems in electronic commerce—A retrospection. Neuro

Quantology 2022; 20(9): 318–330. doi: 10.14704/nq.2022.20.9.NQ440033

4. Isinkaye FO, Folajimi YO, Ojokoh BA. Recommendation systems: Principles, methods and evaluation. Egyptian

Informatics Journal 2015; 16(3): 261–273. doi: 10.1016/j.eij.2015.06.005

5. Jain S, Grover A, Thakur PS, Choudhary SK. Trends, problems and solutions of recommender system. In:
Proceedings of the International Conference on Computing, Communication and Automation; 15–16 May 2015;

Greater Noida, India. pp. 955–958.

6. Amin SA, Philips J, Tabrizi N. Current trends in collaborative filtering recommendation systems. In: Xia Y, Zhang

LJ (editors). Services—SERVICES 2019, Proceedings of the SERVICES 2019: World Congress on Services; 8–13

July 2019; Milan, Italy. Springer; 2019. Volume 115117, pp. 46–60.

7. Saini K, Singh A. Hybrid Recommender System for E-Commerce: A Comprehensive Review and Future

Direction. Journal of Harbin Engineering University 2023; 44(8): pp 801-809.

8. Ajaegbu C. An optimized item-based collaborative filtering algorithm. Journal of Ambient Intelligence and

Humanized Computing 2021; 12: 10629–10636. doi: 10.1007/s12652-020-02876-1
9. Bin C. A collaborative filtering recommendation algorithm based on restricted random walk. In: Tuba M, Akashe

S, Joshi A (editors). ICT Systems and Sustainability. Springer; 2022. pp. 763–773.

10. Ahmed E, Letta A. Book recommendation using collaborative filtering algorithm. Applied Computational

Intelligence and Soft Computing 2023; 2023: 1514801. doi: 10.1155/2023/1514801

11. Mustafa N, Ibrahim AO, Ahmed A, Abdullah A. Collaborative filtering: Techniques and applications. Available

12

online:

https://www.researchgate.net/publication/341216858_Collaborative_Filtering_Techniques_and_Applications

(accessed on7 June 2023).

12. Schafer JB, Frankowski D, Herlocker J, Sen S. Collaborative filtering recommender systems. In: Brusilovsky P,

Kobsa A, Nejdl W (editors). The Adaptive Web. Springer; 2007. pp. 291–324.

13. Andika HG, Hadinata MT, Huang W, et al. Systematic literature review: Comparison on collaborative filtering

algorithms for recommendation systems. In: Proceedings of the 2022 IEEE International Conference on

Communication, Networks and Satellite (COMNETSAT); 3–5 November 2022; Solo, Indonesia. pp. 56–61.
14. Fkih F. Similarity measures for collaborative filtering-based recommender systems: Review and experimental

comparison. Journal of King Saud University—Computer and Information Sciences 2022; 34(9): 7645–7669. doi:

10.1016/j.jksuci.2021.09.014

15. Snyder H. Literature review as a research methodology: An overview and guidelines. Journal of Business

Research 2019; 104: 333–339. doi: 10.1016/j.jbusres.2019.07.039

16. Srifi M, Oussous A, Ait Lahcen A, Mouline S. Recommender systems based on collaborative filtering using

review texts—A survey. Information 2020; 11(6): 317. doi: 10.3390/info11060317

17. Roy D, Dutta M. A systematic review and research perspective on recommender systems. Journal of Big Data

2022; 9(1). doi: 10.1186/s40537-022-00592-5

18. Park DH, Kim HK, Choi IY, Kim JK. A literature review and classification of recommender systems research.

Expert Systems with Applications 2012; 39(11): 10059–10072. doi: 10.1016/j.eswa.2012.02.038

19. Lee J, Sun M, Lebanon G. A comparative study of collaborative filtering algorithms. In: Proceedings of the KDIR
2012—Proceedings of the International Conference on Knowledge Discovery and Information Retrieval; 4–7

October 2012; Barcelona, Spain. pp. 132–137.

20. Chen J, Zhao C, Uliji, Chen L. Collaborative filtering recommendation algorithm based on user correlation and

evolutionary clustering. Complex and Intelligent Systems 2020; 6(1): 147–156. doi: 10.1007/S40747-019-00123-

5/TABLES/5

21. Wang Y, Zhao X, Zhang Z, Zhang LY. A collaborative filtering algorithm based on item labels and Hellinger

distance for sparse data. Journal of Information Science 2021; 48(6): 749–766. doi: 10.1177/0165551520979876

22. Qingmin Y, Xingyu C. Research on collaborative filtering recommendation algorithm. In: Proceedings of the 2022

IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA); 20–22

September 2019; Dalian, China. pp. 741–743.

23. Hug N. Surprise: A Python library for recommender systems. Journal of Open Source Software 2020; 5(52): 2174.
doi: 10.21105/joss.02174

24. Stephen SC, Xie H, Rai S. Measures of similarity in memory-based collaborative filtering recommender system—

A comparison. In: Proceedings of the 4th Multidisciplinary International Social Networks Conference; 17–19 July

2017; Bangkok, Thailand. pp. 1–8.

25. Wang N, Wang H, Jia Y, Yin Y. Explainable recommendation via multi-task learning in opinionated text data. In:

Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information

Retrieval; 8–12 July 2018; Ann Arbor, MI, USA. pp. 165–174.

26. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer 2009; 42(8):

30–37. doi: 10.1109/mc.2009.263

27. Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008

Eighth IEEE International Conference on Data Mining; 15–19 December 2008; Pisa, Italy. pp. 263–272.

