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ABSTRACT 

Since Tiny machine learning (TinyML) is a quickly evolving subject, it is crucial that internet of things (IoT) devices 

be able to communicate with one another for the sake of stability and future development. TinyML is a rapidly growing 

subfield at the intersection of computer science, software engineering, and machine learning. Building deep learning (DL) 

networks that are a few hundred KBs in size has been the focus of recent research in this area. Deploying TinyML into 

small devices makes them smart. Reduced computation, power usage, and response time are just a few of the many 

advantages of TinyML. In this work, we provide an introduction to TinyML and demonstrate its benefits and architecture. 

Then, we investigate the meaning of quantization as a standard compression method for TinyML-related applications. 

There are two methods used to obtain the quantized weights of the deep learning models are quantization-aware training 

(QAT) and post-training quantization (PTQ), we described them in details. Next, TinyML-based solutions to improve the 

role of IoT devices in Smart Cities are highlighted as: lightweight training of deep learning models, inference of 

lightweight deep learning models in IoT devices, low power consumption, and inference of deep learning models in 

restricted resources of IoT devices. Finally, presenting some use cases for TinyML studies, with these studies applied to 

several cases in a variety of fields. To the best of the author’s knowledge, few studies have investigated TinyML as it is 

an emerging field. 
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1. Introduction 

Tiny machine learning (TinyML) is a relatively recent discipline 

that has already produced a number of innovations and has sped up the 

development of IoT industries including autonomous vehicles, smart 

cities, and smart transportation. With the aid of the alternative 

paradigm known as TinyML, deep learning operations can be carried 

out locally on systems that typically consume less than one milliwatt 

of power. As a result, TinyML enables real-time data analysis and 

interpretation, which has enormous benefits for latency, privacy, and 

cost[1,2]. The main objective of TinyML is to increase the effectiveness 

of deep learning algorithms by using less computational power and 

data, which supports the enormous edge artificial intelligence (AI) 

industry and the Internet of Things[2]. ABI Research, a global digital 

industry consultancy firm, predicts that 2.5 billion TinyML-equipped 

devices would be sold worldwide by 2030. These gadgets are focused 

on ultra-power-efficient AI chipsets, low cost, low latency data 

transmission, and enhanced automation. While the training phase of 

these devices continues to rely on external resources, such as gateways, 

on-premises servers, or the cloud, the chipsets are characterized as 
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intelligent IoT (AIoT) or embedded AI since they do AI inference almost entirely on the board. 

As stated by the authors of the literature related to TinyML[3], The authors explore the design space for 

machine learning-aware architectures, frameworks, techniques, tools, and approaches that can perform on-

device analytics for a wide range of sensing modalities (vision, audio, speech, motion, chemical, physical, 

textual, cognitive) at [an] mW (or below) power range setting, with a focus on battery-operated embedded 

edge devices, and with an eye toward deployment at scale, preferably in the Internet of Things (IoT) or 

wireless[4]. 

Hardware, software, and algorithms make up the three essential parts of TinyML. For a better learning 

experience, the hardware can include IoT devices that are based on analog computing, in-memory computing, 

or neuromorphic computing, with or without hardware accelerators. Due to their specs, microcontroller units 

(MCUs) are regarded as the best hardware platforms for TinyML[4]. A microcontroller is typically inexpensive, 

compact (less than 1 cm3), and low-power[5]. A CPU, data and program memory (RAM and flash memory), 

and a number of input/output peripherals are all included in the microcontroller chip. Due to its inclusion of 

the majority of useful hardware characteristics, microcontrollers are used on a global scale. Their flash memory 

capacity goes from 32 KB to 2 MB, while their RAM storage spans from 8 KB to 320 KB. Their clock speed 

ranges from 8 MHz to around 500 MHz. Overall, TinyML leverages inexpensive hardware while effectively 

using electricity and delivering great performance[6]. Giants in the industry have recently expressed interest in 

TinyML’s software. The TensorFlow Lite (TFLite) framework, for instance, was made available by Google 

and enables the use of neural network (NN) models on Internet of Things (IoT) devices[7]. Similar to how 

Microsoft released EdgeML[8], ARM[9], and published the Cortex microcontroller software interface standard 

neural net-work (CMSIS-NN), an open-source framework for Cortex-M processors that improves NN 

performance[10]. Additionally, a fresh program named X-Cube-AI[10] has been made available for STM 32-bit 

microcontrollers[11] to run deep learning models. For a TinyML system, deep learning algorithms should be 

compact (just a few KB). The size of the deep learning model is reduced using model compression techniques 

to enable deployment on IoT devices with limited resources[4]. 

2. Background on TinyML 

TinyML is a dynamic and fast evolving subject that, in order to maintain stability and continuing 

advancement, requires interoperability across IoT devices. TinyML is an emerging topic that connects 

hardware, software, and machine-learning algorithms and is getting an incredible amount of traction. TinyML 

combines all three of these aspects of machine learning. Recent research in this area has fo-cused on the 

construction of deep learning networks that are only a few hundred KB in size. TinyML is implemented in 

low-powered devices in order to transform them into intelligent ones. TinyML offers a number of advantages, 

including a reduction in the amount of computation, power usage, and response time. 

2.1. Benefits of TinyML  

TinyML has a series of benefits once it is integrated with IoT devices in smart cities, with these in-cluding 

energy efficiency and latency. Other TinyML benefits are also described below: 

• Energy efficiency: This is a significant advantage when using TinyML because IoT devices that use 

microcontroller units (MCUs) depend on batteries or even energy harvesting; as a result, they use less 

energy than other IoT devices that use more powerful processors and GPUs that demand a lot of power. 

As a result, IoT devices may be installed everywhere without having to be connected to the power grid, 

which makes way for cutting-edge cognitive nomadic applications. IoT devices can also be connected to 

bigger battery-powered devices due to their low power consumption, making them become connected 

smart entities, such as personal mobility devices like scooters or segways[12]; 

• Low cost: Various tasks are carried out by IoT devices in numerous IoT applications. They need great 
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computational processing power, vast storage, and a large memory, among other good criteria. 

Additionally, they use a lot of storage on the cloud to process data and store it, which results in expensive 

prices because they consume a lot of resources. TinyML uses low-cost microcontroller chips to analyze 

data locally and applies AI to the device itself for high-performance data processing[12]. Microcontrollers 

are less expensive than other options since they only employ a small amount of resources; their processors 

operate between 1 MHz and 400 MHz. The storage capacity can be between 32 KB and 2 MB, while the 

microcontroller memory can be between 2 KB and 512 KB. In comparison to other smart IoT devices 

used to process data locally using deep learning models, a microcontroller only costs a few dollars. 

• Latency: TinyML does data processing locally since computations are done on the device. IoT devices 

therefore do not experience latency. In emergency situations, real-time local data processing in the devices 

enables quicker analysis and response times. Furthermore, the strain on the cloud is lessened[13]. 

• System reliability and data security: The transmission of raw data from IoT devices to the cloud re-quires 

communication channels. When data are transmitted to the cloud, they are susceptible to trans-mission 

errors, cyberattacks, such as surveillance or man-in-the-middle problems, and transmission errors. This 

could result in the data being compromised or lost during transmission. According to the “Cost of Data 

Breach” report from IBM for 2020, the average expense of a data breach is $3.86 million. Consequently, 

data must be processed locally to reduce cloud traffic. TinyML can avoid these problems by conducting 

data processing locally on the same device. This allows it to perform fewer transmissions containing 

aggregated or irrelevant data that could be compromised[12,13]. 

2.2. Architecture of TinyML 

The architecture for TinyML (and hence its workflow) is divided into seven phases, with each phase 

connected to the next phase. Figure 1 illustrates the stages which are described as follows:  

1) First phase: Collection and pre-processing of data. Data, such as temperature, sound, signals, images, etc., 

are collected by sensors or any IoT device. Pre-processing is then performed to extract features which can 

be used as input to deep learning models for training and testing. 

 

Figure 1. Workflow of TinyML architecture. 

2) Second phase: Training and testing the deep learning model and evaluating the model’s accuracy 

performance. Subsequently, the model is saved in .pb or .hd5 format. 

3) Third phase: Optimizing and conversion use different compression methods such as quantization-aware 

training (QAT) and post-training quantization (PTQ) (dynamic range quantization [DRQ] or full integer 
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quantization [FIQ]) to quantize the models. The deep learning models are then converted to TFLite format 

(.tflite). 

4) Fourth phase: The TFLite Interpreter tool is used to evaluate the run time and accuracy of quantized deep 

learning models after the optimization process is performed on these models. 

5) Fifth phase: The model is converted using TensorFlow Lite (TFLite) Micro that converts deep learning 

models to C array. The model is then deployed to an independent platform that uses C++ language to 

connect with IoT devices. 

6) Sixth phase: The model is run on IoT devices in real time, with action taken based on the data. At the 

same time, the inference time and the amount of flash memory and RAM consumption are evaluated. 

3. Quantization as a standard compression method for TinyML-related 

applications  

Quantization methods are an essential step in compressing deep learning models to meet the constraints 

of devices[14]. These methods reduce the number of bits in the weight of models, thus providing a significant 

decrease in the memory footprint. The architecture of deep learning models consists of weight, bias, and 

activation functions. When the neurons receive input data, the data undergo a multi-plication procedure 

involving their weight value; the result is thus passed to the next layer. The weight assigns significance to the 

input data, which in turn affects the output. The format of the weight determines the type of arithmetic 

operations needed for the neuron multiplication process. Thus, this strategy raises the overall computing 

device’s performance, computational capacity, leading to other complications, such as usage of memory, rise 

in energy consumption, and a high level of latency[15]. 

The core idea of quantization is to replace the high-precision parameters of deep learning models with 

low-precision parameters which, by default, are 32-bit floating-point numbers, without changing the models’ 

architecture, as illustrated in Figure 2[15,16]. Quantization is conducted using Equation (1) which represents the 

uniform mapping of real values to integer values: 

Quant(R) = Int (R S⁄ ) + Z (1) 

where R is a collection of real number values, S denotes a scaling factor, and Z denotes an integer zero point. 

In general, Int converts the output result to an integer number by reducing to the closest integer value. S is 

scaling factor which is a positive integer that locates the size of the quantization step.  

 

Figure 2. Quantization from floating-point numbers to int-8 integer. 

Based on the factor of scaling, the set of real number values R is split into multiple stages, with each stage 

there is only one integer value mapped by the real number. Equation (2) calculates the scaling factor S in: 
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S =
Rmax − Rmin

(2B − 1) − 0
 (2) 

where Rmax and Rmin symbolize the clipping range, and B represents the quantization bit width[16]. The results 

of quantization can translate into several benefits. The firstly benefit of quantization is that smaller size models 

are obtained, with models with less volume occupying less storage space on devices. Furthermore, faster 

inference occurs, wherein these models with less volume require less time and bandwidth when deployed on 

devices. In addition, models with less volume use less memory, thus they use less RAM when they are run, 

freeing up memory for other uses by applications, with this translating into better performance and more 

stability. The second benefit of quantization is latency decrease, latency, also known as the duration of time 

required for the models to be executed. Quantization methods can reduce the amount of computation required 

to run inference using a model. The third benefit is accelerator compatibility through which various hardware 

acceleration devices, such as the Edge TPU, are capable of running inference at very high speeds when 

combined with models that have been appropriately optimized[17]. 

The two methods used in the current study to obtain the quantized weights of the deep learning models 

are quantization-aware training (QAT) and post-training quantization (PTQ), with their details described below. 

3.1. Quantization-aware training (QAT) 

Quantization-aware training (QAT) is an innovation produced by Skirmantas Kligys from the Google 

Mobile Vision team. This innovation is a type of quantization method that aims to compensate for the 

quantization error by training deep neural models using the quantized version during the forward pass. This 

should help to mitigate, to some extent, the drop in accuracy. The training of deep learning models still depends 

on non-quantized values or floating-point values. Thus, to obtain better results, on average, for the quantized 

model and to stabilize the learning phase, the deep learning models can be pre-trained using floating-point 

values to initialize the parameters to reasonable values. As shown in Figure 3, the input, bias, and weights for 

each layer are quantized before performing the layer’s computation. The output of the layer is quantized 

immediately following the computation, before it is sent on to the subsequent layer. 

 

Figure 3. Quantization-aware training. 
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The quantization process is done through converting the floating-point number to a fixed-point number 

by defining the factor of the scale. This indicates that the value stored in the floating-point format can be 

expressed as an integer that has been multiplied by a factor of scaling. The factor of scale is either a negative 

or positive power of two and its value may be determined only by shifting either to the left or to the right. 

During the training phase, the range of values is reassessed separately to correct the factor of scale before 

performing the computation of the layers. In the inference phase, only the factor of scale is frozen[18]. The 

precision of smaller numbers will suffer as a result of the scaling factor being selected to represent the full 

range of values without overflow. 

3.2. Post-training quantization (PTQ) 

Post-training quantization (PTQ) is processed to quantize deep learning parameters after entirely training 

deep learning models. Once the training of deep learning models is completed, the parameters are frozen and 

then quantized. In other words, the weights of the parameters are quantized without any adjustments to the 

training parameters[19]. The quantization process causes an error to be introduced into each parameter’s 

quantization, which in turn causes an error to be inserted into the activations. As the weight values decrease, 

this produces an increase in the quantization error, thus leading to a drop in the resulting accuracy. The 

disadvantage of PTQ is the buildup of quantized errors at the final result of the system which can cause the 

classifier to incorrectly predict the class of the input data, leading to an accuracy drop in comparison to the 

training model’s accuracy. PTQ achieved a size reduction of approximately four times the deep learning 

model’s size which basically comprised convolutional layers, accruing a faster executive of 10–50%[3]. In the 

study of Mohan et al.[19], they used the PTQ method to quantize the CNN model for inference in the 

constrained-resources device. The size of the CNN, as a training model, was 1.5 MB; after quantization, the 

CNN model’s size using the PTQ was 138 KB. The inference speed was 30 fps with 99.83% accuracy[20]. Due 

to the reduction in the model’s size, memory and computational requirements were also reduced which, in turn, 

reduced power consumption[21]. 

PTQ has three methods, namely, Float16 quantization, dynamic range quantization (DRQ) and full integer 

quantization (FIQ), with only the latter two, DRQ and FIQ, used in the current study. Due to these methods, 

the models were scaled four times smaller, while the 16-bit floating point was scaled twice as small:  

3.2.1. Full integer quantization (FIQ):  

This PTQ method quantizes the weights and activation output of a deep learning model from a 32-bit 

floating-point number to a full 8-bit fixed-point integer number. The FIQ method is valuable for increasing the 

speed of inference in lower-power IoT devices. It requires accelerators, and specifically integer-only 

accelerators, such as the Edge TPU[22]. 

In FIQ, all the weights and activations of the deep learning models are converted from 32-bit floating-

point numbers to 8-bit integer numbers. Despite the advantages of this quantization method, it causes a 

reduction in accuracy, owing to the way that it quantizes the model. Opportunely, even though accuracy is 

reduced, it was within an acceptable range. Weights and activations in FIQ are quantized by scaling them over 

the range of the 8-bit integers. The FIQ method quantizes weights using symmetric quantization; for activations, 

asymmetric quantization is used. Symmetric quantization sets the values for parameter boundaries to an 

equivalent range (from −1 to 1) and convert them to a range of −127 to 127, as illustrated in Figure 4. 
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Figure 4. Quantization of weights (on top) and activations (below) which are symmetric and asymmetric. 

The values of the parameter boundaries are called “clipping ranges,” and their set-up procedures are called 

“calibration.” If the values of the parameter boundaries are out of range, the values are clipped to the nearest 

value. Furthermore, the zero-point value for symmetric quantization is equal to 0 (Z = 0) as described in 

Equation (3): 

Quant(R) = Int (R S⁄ ) (3) 

For this reason, symmetric quantization is more efficient and computationally less expensive. Moreover, 

because of this, weight values typically employ symmetric quantization. With the asymmetric quantization 

method implemented for values of the activation, the range of clipping is not equivalent (Rmin = −0.5 and Rmax 

= 1.5). At the same time, asymmetric quantization is utilized for activations and is implemented in the range 

of −128 to 127 which, in turn, provides better accuracy[23]. 

3.2.2. Dynamic range quantization (DRQ): 

This type of PTQ entails quantizing all the weights and activation of deep learning models from a floating-

point number to a fixed-point integer number after the models are trained. The DRQ method is used as the 

default for PTQ to reduce the size of models and to optimize latency in inference[17]. 

To increase the reduction of inference latency within the “dynamic range,” operators quantize activations 

dynamically dependent on their domain, to 8-bit integers and implement the computations with 8-bit integer 

weights and activations. After the accumulation and the multiplication processes, the activation values are 

dequantized to 32-bit floating-point numbers. The DRQ method symmetrically quantizes weight values based 

on Equation (3), while it asymmetrically quantizes activation values according to Equation (1) above[23]. The 

dequantization process of activation from integer values to real values is shown below in Equation (4): 

R = S (Quant(R) − Z) (4) 

where Quant(R) could represent any positive integer. It can be concluded from Formula (4) that the original 

value of the dequantized real number cannot be recovered after dequantization. For this reason, DRQ may 
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suffer a reduction in accuracy. 

The main difference between FIQ and DRQ is that DRQ converts activation values to the integer format 

“on-the-fly” through the time of the inference. This considers the advantages of DRQ compared to the full 

integer as DRQ does not require any representative dataset for quantization. However, as DRQ during the 

“stand-by” period stores the values of activations as floating-point numbers, it is impossible to run Edge TPU 

as the quantized model custom hardware as it only supports integer arithmetic operations[23], as illustrated in 

Figure 5. 

 
Figure 5. DRQ process of quantization of 32-bit to 8-bit and dequantization. 

4. TinyML-based solutions to improve the role of IoT devices in Smart 

Cities 

Today, most smart city applications integrate deep learning with IoT devices and achieve remarkable 

performance in many fields, such as the smart environment, smart transportation, smart agriculture, and the 

smart home in smart cities. However, this leads to a number of challenges identified in the sur-vey and review 

studies. TinyML is a new technology that aims to integrate deep learning with IoT devices in various 

applications. It optimizes various deep learning models to introduce better performance and accuracy within 

the constrained resources of IoT devices. The TinyML system accommodates these requirements and provides 

a solution for integrating deep learning with IoT devices in smart cities. This is achieved by providing 

lightweight training of deep learning models, thus enabling inference of deep learning models in IoT devices 

with restricted resources and low power consumption, as further dis-cussed in the following subsections. 

4.1. Lightweight training of deep learning models 

The smart city applications have become complex, thus requiring complex deep learning models to 

achieve good performance. The size of the training of deep learning models is increasing and requiring 

powerful graphic cards, such as GPUs, and several hours of time in the effort to produce highly accurate results. 

This requires a high level of storage memory in IoT devices which, in turn, consumes power. IoT devices 

should be sufficiently powerful and need many resources to accurately perform certain tasks. TinyML has 

paved the way for IoT devices to be intelligent despite their constrained resources, by seeking to reduce the 

size of the training of deep learning models to enable deployment on IoT devices, such as a microcontroller. 

Using model compression methods, such as pruning and quantization (post-training quantization [PTQ], 

quantization-aware training [QAT]). This develops a lightweight training model to deploy in IoT devices, thus 
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extending the battery life and saving costs of operating these devices which are fundamental to IOT use in 

smart cities[24,25]. 

4.2. Inference of lightweight deep learning models in IoT devices 

Processing data in TinyML happens locally, on the device where the calculations are being done. 

Therefore, there is no latency experienced by IoT devices because data is processed locally in real time, 

allowing for instantaneous response and analysis, even in critical situations. This also reduces the cloud 

load[13,26]. In addition, IoT devices need gateways and cloud services for data intake, as well as for running 

deep learning models for data processing. Due to the large model size, the inference of deep learning in devices 

causes latency and response delays, and takes a long time. TinyML overcomes problems associated with 

response delays, consumption of network bandwidth, and storage problems through inference of the deep 

learning model and data processing on the device itself. Thus, bringing raw data to and processing raw data on 

the device lead to reduced latency and increased savings in terms of connection bandwidth[6,27]. 

4.3. Low power consumption 

Low power consumption is a great benefit when adopting TinyML, as IoT devices working on 

microcontroller units (MCUs) rely on small batteries and consume a low amount of energy. Due to their 

powerful processors and GPUs, IoT devices generally use a large amount of resources including power. 

However, TinyML consumes 150 µW to 23.5 mW of energy enables IoT devices to be placed everywhere, 

thus being converted into connected smart entities, for example, scooters, Segway, and other personal mobility 

devices[12]. Thus, smart cities can now benefit from new behavioral wandering applications. 

4.4. Inference of deep learning models in restricted resources of IoT devices 

The significant goal of TinyML is to enable IoT devices with constrained resources to be intelligent. 

TinyML overcomes some challenges encountered by IoT devices in smart cities which can be categorized as 

follows: firstly, smart city applications use sensors and microcontrollers to detect raw data and to perform 

processing of deep learning on remote locations, such as the cloud, and for data storage. When cloud computing 

processes large deep learning models ranging from 16 GB to 32 GB with ultra-fast processing using a powerful 

computational system, such as TFLOPs, with hardware including GPUs, tensor processing units (TPUs), etc., 

this leads to latency of the data and consumption of network band-width. Secondly, in smart city applications, 

the inference of deep learning within devices with GPUs, and microprocessors enables deep learning models 

to be deployed to process data in real time without depending on computing power as would be the case with 

the cloud. For instance, mobile devices, such as laptops, tablets, and smartphones, have large storage and 

computation capacity, and are sufficiently powerful for deployment on devices using, neural processing unit 

(NPU) hardware, and 8 RAM of memory. Shifting smart city applications to mobile devices requires a high 

level of computational power with large storage memory, as well as requiring daily battery charging and 

consumption[28,29]. TinyML can process data on the device using deep learning: it is low cost and uses limited 

resources, with a microcontroller which has 2MB of RAM. Thus, TinyML enables innovation in many fields 

in smart cities. Figure 6 presents the comparison of deploying deep learning on the cloud, on a mobile, and on 

a microcontroller. 
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Figure 6. Comparison of deployment of deep learning on cloud, mobile, and microcontroller. 

5. TinyML case studies in smart cities 

Several scenarios from different fields are shown below as examples of how TinyML research has been 

put to use. To the best of the author’s knowledge, few studies have investigated TinyML as it is an emerging 

field. Research efforts have centered on optimizing deep learning models for usage on devices boasting both 

high precision and high processing power. The subsequent paragraphs cover state-of-the-art TinyML studies 

that have used images in their experiments with sign language detection, handwritten recognition, medical face 

mask detection, autonomous mini vehicles, and the environment. 

As shown in one use case[30], TinyML can be utilized in sign language detection. To aid the deaf-mute in 

communicating with others, a deep learning model was developed to identify the sign language alphabet on 

low-resolution edge devices. In the study of Chen et al.[25], they suggested a model for recognizing the alphabet 

of American Sign Language (ASL) and translating it into text and audio for use on portable, wearable Internet 

of Things gadgets in real time. The device used the smallest and least expensive microcontrollers available. 

The authors themselves built the third dataset using an OpenMV H7 camera and includes photos of the sign 

language alphabet. Two augmentation methods were applied to the suggested CNN model. Firstly, simple 

augmentation methods, such as rotation, flip, etc., were used; secondly, OpenCV made use of five different 

interpolation methods: INTER_NEAREST, INTER_LINEAR, IN-TER_AREA, INTER_CUBIC, and 

INTER_LANCZOS4. Success rates of 98.53 and 99.02 percent were recorded. To accommodate the limited 

memory of the OpenMV H7 board’s microcontroller STM32H743VI, the authors used TFLite to reduce the 

model’s 32-bit floating-point values to 8-bit integers. The model with five interpolation approaches 

outperformed the other after both were installed on the device, with an accuracy of 98.84% and a frame rate 

of 20 fps, respectively, compared to 95.24% for the model with simple augmentation techniques. 

TinyML’s low performance paves the path for the Internet of Things and makes it possible to quickly and 

simply train and implement a model that can identify handwriting on a microcontroller. In the study of Merenda 

et al.[26], they developed various models for TinyML application. The research used the X-CUBE-AI platform 

to test the STMicroelectronics NUCLEO-F746ZG board on the MNIST dataset. Using the TensorFlow library, 

the NN algorithm was developed with two hidden layers between the input and output, and then the CNN was 
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constructed using the Keras library for the training phase. With ReLU and Sigmoid activation functions, the 

CNN raised the training accuracy from 97.25 percent to 99 percent. About 15 MB was needed for the CNN 

model, but only 7,172 KB was needed for the Keras model. The Keras model was converted using TFLite and 

TFLiteConverter and then progressively deployed on real embedded devices. In order to fit inside the memory 

constraints of embedded devices, these tools shrank the model down to 2.4 MB. Pruning and post-training 

quantization were used to improve the model’s inference speed and decrease the energy it consumed, with only 

a little hit to accuracy. Energy and computing needs were reduced by post-training quantization. The prediction 

model achieved a perfect score, with a runtime of 330 milliseconds and a memory and storage footprint of just 

135.68 and 668.97 bytes, respectively. 

With the COVID-19 pandemic, widespread caution was imposed, with cough-related healthcare face 

mask recognition becoming a critical responsibility. TinyML could aid in the security and battery life of IoT-

based smart health. In in the study of Mohan et al.[19], they investigated a real-time clinical face mask detection 

using a miniature convolutional neural network model. This was done without sending images to the server, 

keeping user privacy and security in mind, and the findings were sent back into the program. The model was 

trained and evaluated using four datasets and several augmentation methods. Notably, the third dataset was 

produced by the authors utilizing an OpenMV camera to find the categorization metrics. STMicroelectronics 

STM32H743VI, found inside the OpenMV Cam H7 housing, was used alongside a CNN model for the 

research. In addition, a modified SqueezeNet model was used to evaluate the suggested model’s performance. 

All three models were quantized to minimize their size, but only the proposed model met the requirements for 

deployment on the device: it had a model size of 138 KB, an inference speed of 30 fps, and an accuracy of 

99.83%. 

Many different types of “smart” industries, “smart” environments, “smart” monitoring systems, etc. all 

make use of autonomous mini-vehicles. TinyML boosts their efficiency by facilitating the learning of 

complicated actions with minimal iteration and power usage. In their study, de Prado et al.[31] facilitated the 

execution of deep learning on low-power autonomous driving cars with the purpose of boosting performance 

(e.g., of actions/s) by learning complex challenges. As a result, the vehicle would be able to make decisions 

(picture categorization) in a high-noise environment while using little resources. The authors made use of a 

computer vision algorithm (CVA) to replace a CNN trained with a LetNet5 model, which predicted success 

exclusively in constant lighting conditions. After tweaking the LetNet5, researchers built a new network family 

they dubbed “vehicle neural networks” (VNNs). The researchers developed three datasets (named Dset-2.0, 

Dset-1.5, and Dset-1.0) comprising training sets of 1,000 photos and test sets of 300 images for each class. 

Following VNN training on Dset-All, the VNN model’s weights and activations were post-quantized to 8-bit 

fixed-point integers to lessen the load on the system’s memory and battery life. To test their VNNs, the authors 

used hardware and software from a variety of manufacturers and architectures, including the GAP8 (GAP8, a 

parallel ultra-low-power RISC-V SoC), STM32L4 (Cortex-M4), and NXP k64f (Cortex-M4). The VNN3, 

VNN4, and LeNet5 models employing GAP8 showed a 98.74% accuracy with the Dset-All (I1, I2, and I3) 

reinforced dataset. 

There have been multiple attempts by writers to use deep learning in small devices for improved 

prediction accuracy. However, difficulties have arisen because there is no universal foundation for integrating 

TinyML into devices from different manufacturers. Gorospe et al.[32] developed a general environment for 

implementing the model of deep learning into different small devices. With the goal of enabling deep learning 

inference on various edge devices from various organizations like ARM and NXP, the environment consists 

of TFLite and Mbed OS software. In addition, the MobileNet collection (V1, V2, and V3) was used to compare 

the edge device’s and PC’s performance on a single instance of human detection. VWW was used to evaluate 

the model, with 115,287 photos used for training and 100 images used for testing (50 with people and 50 

without). Both the STM32H747I-Disco (STM) and the OpenMV Cam H7 were used in the authors’ three-
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stage experimentation. The first stage checked if the suggested environment could support deep learning device 

integration. As a result, MobileNet-V2, running on STM, was able to achieve an accuracy of 88% and a latency 

of just 220 ms. In the second stage, we wanted to assess and contrast the efficacy of various models on both 

edge devices and a PC. The comparison findings showed that the STM and PC implementations of the 

MobileNet-V2 model (as well as depth multiplier at 0.1 with resolution at 96 96) achieved the maximum 

degree of accuracy (88%) and model consumption (213,184 KB matrix size and 138,240 KB RAM). The 

purpose of this experiment was to use STM to examine MobileNet-V2’s behavior before, during, and after 

quantization to determine the impacts of the application. The results demonstrated that the accuracy of the 

model might be improved by applying quantization after training. 

In our recent paper[33], state-of-the-art driver drowsiness detection research using five deep learning 

models yielded great accuracy. MobileNet-V2, SqueezeNet, AlexNet, and MobileNet-V3 deep models 

identified driver sleepiness state with 0.9960, 0.9947, 0.9911, and 0.9832 accuracies, respectively. Deep 

learning models perform best with SSD pre-processing. The CNN deep model exceeded other TinyML-related 

research in model size with 0.05 MB. The redesigned SqueezeNet architecture was 0.141 MB less than the 

original. The pre-trained MobileNet-V2 and MobileNet-V3 models reached 1.55 MB and 1.165 MB, 

respectively, followed by the modified AlexNet model at 0.58 MB. DRQ reduced accuracy by 1%. QAT and 

FIQ followed DRQ in optimizing performance. After optimization, accuracy was not degraded by more than 

1%. The experiments show that it can function successfully on resource-constrained IoT devices like the 

microcontroller. The OpenMV H7 board, STM32H743VI, and STM32 Nucleo-144 H743ZI2. The SparkEdge 

development board Apollo3 Blue, with 1 MB of Flash memory and 384 KB of RAM, can also run SqueezeNet, 

AlexNet, and CNN models. The CNN may also be used on an Arduino Nano Ple33 board with 256 KB flash 

and 32 KB RAM. Table 1 summarizes these TinyML case studies. 

Table 1. Case studies of TinyML. 

Study Model Platform Model 

size 

Accuracy Device name Platform after 

inference 

Accuracy after 

inference 

Paul et al.[30] CNN1 
CNN2 

TFLite 185KB 98.53% 
99.02% 

OpenMV H7 
board 
STM32H743VI 

TF-Converter 95.28%  
98.84% 

Merenda et 
al.[26] 

NN TFLite and 
TFLiteConver 

15MB 97.25% F746ZG X-CUBE-AI tool 100% 

 CNN  7172KB 99% - - - 

Mohan et al.[19] CNN OpenMV 1.5MB 
 

99.83% OpenMV H7 
board 
STM32H743VI 

- 99.83% 
 

SqueezeNet  8.0MB 98.50% 98.53% 

SqueezeNet2  3.8MB 98.93% 98.99% 

Prado et al.[31] LetNet5  
VNN1 
VNN2 

PyTorch - 99.53% 
79.62% 
81.27% 
 

STM32 L476 
board 
NXP k64f 
GAP8 

X-Cube-AI 
ARM CMSIS-NN 
PULP-NN 

- 
- 
- 

Gorospe et al.[32] MobileNet-
V2 

TensorFlow Matrix 
size: 
611,912 

- STM32H747I-
Disco 

TFLite and MbedOS 88% 

Alajlan and 
Ibrahim[33] 

SqueezeNet TFLite 0.141 MB - - - 99.6% 

6. Conclusion 

Within the scope of this article, we discuss TinyML in general terms and highlight some of its benefits 

and architecture. Then, we look into quantization as a common compression technique for TinyML-related 
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software. Quantization-aware training (QAT) and post-training quantization (PTQ) are two strategies used to 

get the quantized weights of the deep learning models; we detailed them in depth. Next, we highlight TinyML-

based solutions to enhance the function of IoT devices in Smart Cities, such as light-weight deep learning 

model training and inference, low power consumption, and inference within the constrained resources of IoT 

devices. Finally, we provide examples of how TinyML research has been put to use in the real world, covering 

a wide range of domains. Since TinyML is still a developing area, the author is only aware of a handful of 

research projects devoted to it. 
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