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ABSTRACT 

Wheat head detection is a critical task in precision agriculture for estimating crop yield and optimizing agricultural 

practices. Conventional object detection architectures often struggle with detecting densely packed and overlapping wheat 

heads in complex agricultural field images. To address this challenge, a novel CEnternet-vision TRansformer model for 

Wheat Head Detection (CETR) is proposed. CETR model combines the strengths of two cutting-edge technologies—

CenterNet and Vision Transformer. A dataset of agricultural farm images labeled with precise wheat head annotations is 

used to train and evaluate the CETR model. Comprehensive experiments were conducted to compare CETR’s 

performance against convolutional neural network model commonly used in agricultural applications. The higher mAP 

value of 0.8318 for CETR compared against AlexNet, VGG19, ResNet152 and MobileNet indicates that the CETR model 

is more effective in detecting wheat heads in agricultural images. It achieves a higher precision in predicting bounding 

boxes that align well with the ground truth, resulting in more accurate and reliable wheat head detection. The higher 

performance of CETR can be attributed to the combination of CenterNet and ViT as a two-stage architecture taking 

advantage of both methods. Moreover, the transformer-based architecture of CETR enables better generalization across 

different agricultural environments, making it a suitable solution for automated agricultural applications. 
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1. Introduction 

Wheat is indeed a heavily explored crop as it is a significantly 

important staple food source worldwide. Wheat head detection from 

farm images is a critical task in precision agriculture and crop 

monitoring[1]. It involves identifying and localizing individual wheat 

heads within agricultural field images. Accurate wheat head detection 

is essential for various applications, such as estimating crop yield, 

assessing crop health, optimizing irrigation, and implementing targeted 

interventions. Advanced computer vision techniques are significantly 

used for wheat head detection from farm images. The most popular 

object detection techniques are deep learning-based models. 

Deep neural networks are now considered to be the systems of 

artificial intelligence in use today[2,3]. Various tasks have traditionally 

required different types of neural networks. Traditional deep learning 

models are generally sufficient for handling a wide range of data types 
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and tasks. They can handle image data, text data, tabular data, multimedia data, time series data, sensor data 

etc. Well-designed and fine-tuned traditional deep learning models have been highly successful in many 

application domains. They took leverage of knowledge learned from large-scale datasets and adapted it to new 

tasks with limited labeled data. However, when dealing with shift-invariant data, such as image data, the deep 

model’s behavior shall not depend on the absolute position of features in the image but on their relative 

positions. In shift-invariant deep learning models, the algorithm shall be capable of detecting objects 

irrespective of their location within the image. This property is crucial for various computer vision tasks 

because objects of interest may appear at different locations in different images. Shift-invariance allows the 

model to recognize the same object regardless of where it is situated within the input image. 

Many different approaches for solving object detection problems have been developed by using different 

deep learning methodologies[2,4]. The objective of this research paper is to develop a two-stage deep model to 

locate wheat heads quickly and precisely from agricultural farm images. This research proposes an efficient 

two-stage object detection model CEnternet-vision TRansformer (CETR) for wheat head detection from 

agricultural farm images. The first stage of CETR uses CenterNet deep architecture[3] and the second stage 

uses a Vision Transformer (ViT)[5]. In the proposed model, object detection is viewed as a problem with explicit 

object detection. By efficiently eliminating the need for multiple manually constructed components, such as a 

non-maximal suppression mechanism or anchor creation of the task, the proposed approach optimizes the 

object detection pipeline. CETR is a methodology that relies on a transformer encoder-decoder structure with 

an CenterNet objectness loss and CenterNet Center Regression Loss that drives accurate predictions. CETR 

simultaneously generates the final number of predictions by inferring associations between the objects and the 

visual context in the wheat farm images. Unlike traditional object detection methods that use region proposal 

networks, CETR directly predicts object bounding boxes and class labels from a set of fixed-length object 

detection queries. 

The aim of this research is to show how accurate are the vision transformer based deep learning models 

for object detection in comparison with traditional deep learning methods. The proposed model eliminates the 

need for manual anchor box design and non-maximum suppression, making the framework highly efficient 

and accurate. Utilizing a CenterNet objectness loss and CenterNet Center Regression Loss, the model is trained 

from beginning to end applying a combination of classification and regression losses. When compared to 

traditional convolutional neural networks, CETR demonstrates its potential as a powerful and robust object 

detection framework wheat head detection from agricultural farm images. This suggests that CETR can offer 

significant advantages in terms of accuracy and efficiency for agricultural applications, ultimately contributing 

to improved crop management and productivity. 

2. Related work 

Deep learning has become a revolutionary technology with wide-ranging applications and significant 

importance across various domains. Some of the key fields for the importance of deep learning are speech 

recognition, healthcare, agriculture, finance, economy etc.[6–12]. 

In 2020, Facebook’s research team made significant advancements in computer vision research. They 

introduced a novel approach to object detection using transformer architecture. Transformers are originally 

popular in natural language processing[13]. The proposed model presented an end-to-end detection pipeline. 

This pipeline seamlessly integrates the entire process of object detection, panoptic segmentation, and object 

identification. This development marked the first-time transformers were effectively incorporated as a 

fundamental component in the object detection pipeline. 

Deep learning plays a critical role in precision agriculture by processing data from various sources, 

including drones, satellites, and IoT devices. This data is used for tasks like soil analysis, irrigation control, 



3 

and crop monitoring. Deep learning models, including CNNs and RNNs, have been employed to detect 

diseases in crops based on leaf images. These models can accurately identify diseases such as rust, blight, and 

wilt, enabling timely intervention and reduced crop loss[14]. Deep learning techniques have been applied to 

identify and manage weeds in agricultural fields. They have been used for accurate weed classification, which 

enables targeted herbicide application. Crop phenotyping extracts features from plant images and analyzes 

growth patterns, stress responses, and other traits. This assists breeders in developing more resilient and high-

yielding crop varieties. Deep learning is used to build models that simulate complex agroecological processes. 

These include crop growth, soil nutrient dynamics, and climate interactions. These models assist in sustainable 

agricultural practices. 

Vision transformers have shown great promise in various computer vision tasks such as medical imaging, 

agriculture imaging etc.[15]. The ability of vision transformers to process large-scale agricultural imagery, 

capture global contextual information, and handle complex spatial relationships makes them well-suited for 

various tasks in agricultural imaging. Vision transformers are anticipated to play a bigger part as technology 

develops in revolutionising sustainable agricultural methods and precision agriculture[16–18]. 

CenterNet is based on a simple architecture that directly predicts object centers and their corresponding 

bounding box offsets[3]. This simplicity makes it computationally efficient compared to more complex object 

detection models, which is beneficial for processing large-scale agricultural images. In order to predict accurate 

bounding boxes for precise wheat head identification, accurate localisation of each wheat head’s centre is 

essential. CenterNet is specifically designed to predict accurate center points of objects. CenterNet’s ability to 

predict center points makes it more robust to object occlusion, allowing it to handle overlapping wheat heads 

effectively. CenterNet’s attention mechanism enables it to focus on relevant object centers, filtering out clutter 

and improving the quality of feature maps. CenterNet can be easily scaled to handle various image resolutions 

and aspect ratios. This flexibility is advantageous when dealing with different types of agricultural farm images 

with varying sizes and orientations. CenterNet captures global contextual information from the entire image, 

which is essential for understanding the spatial relationships between wheat heads. This contextual awareness 

can improve the overall performance of wheat head detection. CenterNet allows for end-to-end training, where 

the entire model is trained jointly for both object center prediction and bounding box regression. This joint 

training simplifies the training process and often leads to better performance.  

Agricultural farm images can be cluttered and contain various objects and vegetation. Vision 

transformer’s ability to attend to relevant parts of the image and filter out irrelevant background clutter ensures 

that the extracted embeddings focus on wheat heads and their distinctive features[1]. Wheat heads in agricultural 

fields may be located far from each other, and their detection might require understanding long-range 

dependencies between them. ViT’s self-attention mechanism can effectively capture such dependencies, 

enabling the model to establish connections between widely distributed wheat heads. 

3. Proposed CETR deep model 

A novel deep learning model CETR is proposed in this research paper for wheat head detection from farm 

images. CETR deep learning model performs object detection using a two-stage detection system with 

CenterNet and vision transformer. The major goal of CETR is to successfully evade the necessity for several 

manually built components, such as a non-maximum suppression approach or anchor generation, which clearly 

embed prior information about the task, make the process complicated, and are costly in terms of computing. 

CETR architecture is a combination of the CenterNet and vision transformer deep learning models. CETR 

is customized to efficiently detect wheat heads from farm images. In object detection, understanding the 

context is crucial for accurate localization and recognition of objects, especially in cluttered or complex scenes. 

Its attention mechanism adaptively assigns different levels of importance to different regions of the image. 
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Objects of interest may be surrounded by cluttered backgrounds, such as leaves, stems, or other debris. 

Attention mechanism allows the model to focus on the relevant object while filtering out irrelevant background 

information. It allows to effectively handle occlusion scenarios by dynamically attending to visible parts of 

objects. ViTs are capable of processing images with variable numbers of objects effectively. This is crucial in 

object detection scenarios where the number of objects varies from image to image. ViTs can generalize to 

novel objects that might not be present in the training data, making them more versatile for real-world 

applications. 

The aim of CETR is to leverage vision transformer’s ability to capture global contextual information. 

CenterNet offers several advantages for extracting feature maps from farm images for wheat head detection. 

Figure 1 illustrates the methodology for proposed two-stage CETR model. CenterNet deep learning 

architecture is used in stage-1 for extracting relevant features (feature maps) from wheat farm images. 

CenterNet serves as the backbone network. The feature maps generated by CenterNet are flattened and passed 

through the encoder-decoder mechanism of vision transformer with positional encoding. The output 

embeddings are generated by the decoder. The one-dimensional representation of the data is then processed by 

the detection heads to generate the final predictions. They predict object classes and bounding box coordinates 

using output from vision transformer. 

 
Figure 1. The methodology of proposed CETR for wheat seed detection. 

The CETR architecture is made up consisting of three tiers (Figure 2). 

1) CenterNet as backbone network to generate features maps from wheat farm images 

2) Encoder-decoder structure of vision transformer output embeddings 

3) Layer of detection heads to predict class labels and evaluate the predictions using the composite CenterNet 

loss function. 
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Figure 2. The proposed CETR architecture for wheat seed detection. 

3.1. Stage-1: CenterNet as backbone 

The CenterNet architecture is responsible for extracting feature maps from the input wheat farm images. 

The CenterNet architecture modules and functionalities along with its specifications are as follows. 

Input Layer: Receive the input wheat farm images of fixed size. 

Convolutional Layers: Four Convolutional layers are designed with filters of size 3×3 to capture 

different scales of features. ReLU is used to learn complex relationships between objects and backgrounds. 

Batch normalization improves training stability and accelerate convergence. 

Feature Pyramid Network (FPN): Feature maps from multiple layers with different resolutions are 

integrated to capture both fine and coarse details. Skip connections are utilized to combine high-level and low-

level features. 

Residual Connections: Residual connections are incorporated to prevent vanishing gradients and 

improve gradient flow during training. 
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Max Pooling: Max pooling is applied to downsample the feature maps, reducing spatial dimensions while 

increasing receptive fields. 

Feature Fusion: Feature maps are fused from different levels of the FPN to create a final feature map 

with enhanced representation. 

Output Feature Maps: CenterNet architecture generates a set of feature maps that encodes rich 

information about the input images. 

3.2. Stage 2: Vision transformer 

Vision transformer is made up of the encoding and decoding units, as well as many transformer segments 

having an identical structure. A detailed description of Stage-2 of the proposed deep model, which involves 

using a Vision Transformer is as follows. 

Input: Feature maps extracted by the CenterNet backbone from Stage-1. These feature maps contain 

encoded information about the wheat farm images. 

Flatten Feature Maps: Feature maps in the form of 2D spatial maps are flattened to 1D vectors. Each 

vector represents a learned feature from a specific region of the image. 

Positional Encoding: Positional encoding is applied to the flattened feature vectors. Positional encoding 

is necessary for the vision transformer to capture the spatial relationships between different features. 

Patch Embeddings: Encoded feature vectors are divided into fixed-size patches. Each patch corresponds 

to a specific region of the image. 

Patch-to-Token Conversion: Each patch is transformed into a token using a linear projection. These 

tokens are the input elements that the vision transformer processes. 

Positional Embeddings: Positional embeddings are added to the tokens. to provide information about 

their spatial positions. This information includes both the x and y coordinates of each token within the image 

grid. 

Multi-Head Self-Attention: It allows to capture global contextual information and learn relationships 

between different tokens. 

Feedforward Neural Network (FFN): After self-attention, each token’s representation is refined using 

FFN. The FFN consists of multiple fully connected layers. 

Layer Normalization and Residual Connections: These techniques are applied to both the self-attention 

and FFN layers. These mechanisms stabilize training and improve gradient flow. 

Transformer Encoder Layers: Transformer encoder layer (with self-attention and FFN components) 

refines the token representations and capture higher-level features. 

Global Average Pooling: Global average pooling is performed on the token representations to aggregate 

information from all tokens into a fixed-length vector. 

Classification Head: A classification head is connected to the global average-pooled vector. It uses 

softmax activation function. It generates class probabilities for each token, indicating the presence of a wheat 

head. 

Output: The output of Stage-2 is a set of class probabilities and bounding box predictions for each token. 

These predictions correspond to potential wheat head locations in the input image. 

The proposed CETR deep learning model exhibits the pros of CenterNet and ViT, providing an efficient 

and effective solution for wheat head detection. CETR has ability to effectively handle occlusion scenarios by 

dynamically attending to visible parts of objects. CETR can adaptively attend to visible parts of wheat heads, 
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even if they are partially obstructed. These capabilities makes CETR a promising approach to accurately detect 

wheat heads. Figure 2 presents the proposed CETR architecture. Figure 3 presents the proposed CenterNet 

architecture of stage-1. 

 
Figure 3. The Proposed CenterNet architecture for wheat seed detection. 

3.3. Loss function 

The CETR methodology is comprised of a loss function that enforces classification via a combination of 

CenterNet objectness loss and CenterNet Center Regression Loss along with a transformer-based encoder-

decoder structure. CETR pursues the relationships of the objects and the larger visual background to 

immediately generate the final predictions, on providing a finite training object data. 

3.3.1. CenterNet objectness score 

The CenterNet objectness loss is used to evaluate CETR. This metric measures the capability of CETR to 

differentiate between object centers (regions of interest) and background regions. It employs Binary Cross-

Entropy (BCE) loss to penalize the misclassification of object centers. This loss function measures the 

difference between predicted objectness score and ground truth objectness label. This loss function helps 

CETR to accurately predict the presence or absence of objects at each spatial location in the output heatmap. 

Let the output of the proposed model be represented as a heatmap. This heatmap is a set of binary numbers. 

In Heatmap, a binary digit 1 represents object centers whereas a 0 represents background. Let H be a 2-

dimensional heatmap of size (L, W). Let G be the corresponding binary ground truth heatmap G of the same 

size as H. The CenterNet objectness loss can be defined as follows. 

Let i, j represent any position in the heatmap H. Let Hij represent the predicted objectness score at position 

(i, j). Let Gij represent the corresponding ground truth objectness label. The CenterNet objectness loss L_obj 

is given by Equation (1). 

𝐿_𝑜𝑏𝑗 =
−1

(𝐿 ×𝑊)
∑(𝐺𝑖𝑗 × log(𝐻𝑖𝑗) + (1 − 𝐺𝑖𝑗) × log(1 − 𝐻𝑖𝑗)) (1) 

The BCE loss is computed element-wise for each position in the heatmap and then averaged across all 

positions. BCE loss penalizes the model for incorrect predictions of object centers (when Gij = 1 and Hij is 

close to 0) and for incorrect predictions of background regions (when Gij = 0 and Hij is close to 1). The objective 

of this loss function is to accurately predict the presence or absence of objects at each spatial location in the 

output heatmap. This helps in identifying object centers and generating bounding boxes during the object 

detection process in the CenterNet. 
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3.3.2. CenterNet center regression score 

The CenterNet center regression loss is used to evaluate CETR. It measures the deviation of the detected 

object centers compared to the corresponding ground truth object centers. This loss function penalizes 

discrepancy between predicted and ground truth center coordinates. 

Let H be a 2-dimensional heatmap of size (L, W). Let G be the corresponding ground truth heatmap of 

the same size as H. Each heatmap cell contains the coordinates (x, y) of the ground truth center. The CenterNet 

center regression loss can be computed as follows: 

Let Hij = (Hx_ij, Hy_ij) represent the predicted center coordinates at position (i, j) in the heatmap H. Let Gij 

= (Gx_ij, Gy_ij) represent the corresponding ground truth center coordinates. The CenterNet center regression 

loss L_center is given by the Mean Squared Error (MSE) loss between predicted and ground truth center 

coordinates. The CenterNet center regression loss L_center is given by Equation (2). 

𝐿_𝑐𝑒𝑛𝑡𝑒𝑟 =
1

(𝐿 ×𝑊)
∑((𝐻𝑥_𝑖𝑗 − 𝐺𝑥𝑖𝑗)

2 + (𝐻𝑥_𝑖𝑗 − 𝐺𝑥𝑖𝑗)
2) (2) 

MSE loss is computed element-wise for each position in the heatmap, and then the losses are averaged 

across all positions. The objective of the CenterNet center regression loss is to encourage the model to 

accurately predict the deviation between detected object centers and corresponding ground truth object centers. 

By minimizing this loss during training, the model learns to regress the centers of objects accurately. This is 

crucial for generating precise bounding boxes. Also, this process will efficiently localize objects during the 

object detection process in CenterNet. 

4. Experimentation results and discussion 

By employing CETR, researchers and agricultural practitioners can enhance the precision and efficiency 

of wheat head detection, resulting in improved crop management practices and heightened agricultural 

productivity. The strengths of CenterNet deep learning architecture in terms of accurate center point 

localization, robustness to occlusion makes it a promising choice for feature extraction in farm images for 

wheat head detection. Vision transformer plays a crucial role in generating output embeddings from feature 

maps extracted by CenterNet in farm images for wheat head detection. ViT’s importance lies in its ability to 

capture global contextual information and effectively process long-range dependencies in the image, which 

complements the strengths of CenterNet and enhances the overall performance of the wheat head detection 

system.  

Figure 4 shows sample training wheat farm images. The dataset comprises of images collected with and 

without wheat heads. The dataset comprises of images with and without annotations of bounding boxes. Wheat 

image dataset is used for CETR model training[19]. CETR is trained with varying dataset sizes 1K, 2K and 3K. 

Batch size, number of epochs for training CETR is varied. The details are tabulated in Table 1. A variant of 

vision transformer ViT-L/16 is used as stage-2. 

 
Figure 4. Sample training images. 
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Table 1. Performance of CETR model. 

Dataset Size Batch Size Epochs mAP mAP50 

1K 32 20 0.8035 0.8155 

50 0.8123 0.8318 

68 20 0.815 0.8087 

50 0.8186 0.8046 

2K 32 20 0.8233 0.8164 

50 0.8166 0.8156 

68 20 0.8123 0.8059 

50 0.7964 0.8182 

3432 32 20 0.8144 0.8163 

50 0.8087 0.807 

68 20 0.7985 0.8006 

50 0.8002 0.7934 

The map, mAP50 (mean average precision at Intersection over Union threshold of 50) scores for each 

model are tabulated, analyzed, and conclusions are drawn based on the results. Remarkably, CETR model, 

achieves the highest mAP of 0.8318, surpassing the performance of CNN. CenterNet’s keypoint-based 

approach is well-suited for detecting objects like wheat heads, which have distinctive keypoints. The two-stage 

detector approach using CenterNet and ViT proves more effective than employing CNN alone. Wheat heads 

often exhibit complex spatial arrangements in agricultural images. CenterNet, when combined with ViT, can 

effectively handle these complexities by detecting keypoints and considering the global context. Overall, the 

CETR model stands out as an efficient and compelling approach for wheat head detection. 

The experimental evaluation of CETR is detailed in Table 1. Average precision and average recall 

performance of CETR is presented in Table 2. The COCO evaluation format provides evaluation results in 

terms of precision and recall, which are computed across different IoUs, areas, and maximum number of 

detections (maxDets). For instance, the notation [IoU = 0.50:0.95 | area = all | maxDets = 100] signifies that 

precision is computed over the range of IoUs from 0.5 to 0.95, with 0.05 as the step size. All detections falling 

within this IoU range are considered positive detections. In addition, the evaluation is performed for small, 

medium, and large areas, with a maximum number of detections of 100. It is noteworthy that lower IoU 

thresholds result in more detections being considered as true positives, thereby leading to higher precision 

scores. 

Table 2. Quality metrics of CETR. 

Model Panoptic Quality Segmentation Quality Recognition Quality 

CETR 44.3 79.3 53.4 

Therefore, the highest precision score is obtained for IoU = 0.5, which has the largest number of positive 

detections. Conversely, when the IoU threshold is set to 0.95, fewer detections are considered as true positives, 

leading to lower precision scores. The IoU = 0.50:0.95 represents the average of all precisions computed across 

different IoUs, and hence, the precision score for this category is lower than that obtained for IoU = 0.5. The 

CETR model has undergone multiple experiments, and its performance has been evaluated based on accuracy 

scores. CETR model consistently achieved accuracy scores above 80% in most experiments. The accuracy 

range provided, from 79.34% to 83.18%, indicates the CETR’s performance variation across different 

experiment setups. 
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Table 3 reports the panoptic quality, segmentation quality and the recognition quality of CETR. A 

segmentation quality score of 79.3 indicates that the model performs relatively well in segmenting different 

semantic classes in the images, with a relatively high accuracy in assigning class labels to pixels. A recognition 

quality score of 53.4 indicates that the model’s performance in instance segmentation is moderate, with scope 

for improvement in accurately recognizing and distinguishing individual instances of objects. The panoptic 

quality score is 44.3, representing the overall quality of the panoptic segmentation model on the dataset. The 

panoptic quality score indicates a moderate level of performance by the model. This suggests that there’s 

potential for improvement in both the tasks of semantic segmentation and instance segmentation. 

Table 3. Average precision and average recall performance of CETR. 

Metric Area IoU Maximum Detections Value 

Average Precision 

All 0.50:0.95 100 0.314 

All 0.50 100 0.745 

All 0.95 100 0.259 

Small 0.50:0.95 100 0.012 

Medium 0.50:0.95 100 0.279 

Large 0.50:0.95 100 0.467 

Average Recall 

All 0.50:0.95 1 0.024 

All 0.50:0.95 10 0.175 

All 0.50:0.95 100 0.489 

Small 0.50:0.95 100 0.008 

Medium 0.50:0.95 100 0.438 

Large 0.50:0.95 100 0.587 

Table 4 and Figure 5 show the comparative evaluation of CETR against deep models—AlexNet, VGG19, 

ResNet152 and MobileNet. The AlexNet model achieved an mAP50 score of 0.7160 and was the weakest 

model. This means that when the model predicts bounding boxes for objects (e.g., wheat heads) in the images, 

it has an average precision of 71.60% when considering a moderate overlap (50%) between predicted bounding 

boxes and ground truth. In other words, about 71.60% of the predicted bounding boxes have a good spatial 

agreement (intersection over union ≥ 0.50) with the ground truth. Proposed CETR model achieved a higher 

mAP50 score of 0.8318. This indicates that CETR model performs better than CNN model for the undertaken 

task. The CETR model achieves an average precision of 83.18% when considering a 50% intersection over 

union threshold, implying that it has a higher accuracy in localizing wheat heads and predicting bounding 

boxes that closely match the ground truth. 

Experimental results demonstrated that ViT effectively encoded high-dimensional feature maps extracted 

by CenterNet into compact and meaningful embeddings. These embeddings preserved critical information 

about the detected objects, allowing for accurate classification and precise bounding box regression. By using 

ViT to generate output embeddings, the proposed CETR model was able to refine the localization of detected 

object centers, leading to improved accuracy in bounding box predictions. ViT is capable of learning global 

patterns and representations from large datasets. CETR leveraged this capability of ViT to generalize the 

knowledge gained from diverse agricultural farm images. This led to improved performance of CETR on new, 

unseen data. 
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Table 4. Comparative evaluation of the proposed model. 

Model mAP50 Accuracy Precision Recall F1-Score 

Alexnet 0.7160 78.0 71.0 79.6 89.5 

VGG19 0.7638 80.7 75.4 78.7 81.7 

ResNet152 0.7702 86.1 85.8 87.4 86.3 

MobileNet 0.7854 81.2 77.9 84.2 89.0 

CETR 0.8318 93.1 83.9 87.2 88.6 

 
Figure 5. Comparative evaluation of CETR model. 

5. Conclusion 

The proposed CETR deep learning model proves to be a highly effective and promising approach for 

wheat head detection from agricultural farm images. By adopting a transformer-based architecture, our model 

can efficiently process agricultural field images and capture spatial relationships between wheat heads, 

enabling effective detection in challenging conditions. Through its innovative combination of CenterNet and 

vision transformer, the CETR model leverages the strengths of both architectures, achieving outstanding results. 

Usage of vision transformer in the wheat head detection pipeline enhanced the understanding of global context 

by capturing long-range dependencies, and effectively encoded features from CenterNet’s extracted feature 

maps. This fusion of CenterNet and ViT leveraged the strengths of both approaches, leading to more accurate 

and robust wheat head detection in agricultural farm images. The model performed relatively well in semantic 

segmentation with a score of 79.3, but its performance in instance segmentation is relatively moderate, 

obtaining a score of 53.4. The PQ score is 44.3, representing the overall quality of the panoptic segmentation 

model on the dataset. These scores provide insights into the strengths and limitations of CETR and thus can 

suggest areas for potential improvement. The higher mAP value 0.8318 for CETR compared to 0.7160 of CNN 

indicates that the CETR provides more effective wheat head detection in agricultural images. It achieves a 

higher precision in predicting bounding boxes that align well with the ground truth, resulting in more accurate 

and reliable wheat head detection. In conclusion, this research introduces CETR, a CenterNet-Vision 

Transformer model, which addresses the challenges of wheat head detection in agricultural farm images. The 

model’s high accuracy, robustness, and efficiency make it a valuable tool for advancing crop yield estimation 

and agricultural decision-making, thus contributing to sustainable and efficient agricultural practices. 
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