
Journal of Autonomous Intelligence (2024) Volume 7 Issue 3 

doi: 10.32629/jai.v7i3.1203 

1 

Original Research Article 

ETOSP: Energy-efficient task offloading strategy based on partial 

offloading in mobile edge computing framework for efficient resource 

management 
Chander Diwaker, Aarti Sharma* 

Department of CSE, UIET, Kurukshetra University, Haryana 136119, India 

* Corresponding author: Aarti Sharma, uietphd2124aartisharma@kuk.ac.in 

ABSTRACT 

Mobile edge computing (MEC) is a very promising paradigm that facilitates efficient processing and analysis of 

Internet of Things (IoT) data at the network edge. MEC is a cloud-based platform that offers a range of online resources 

and sophisticated mobile apps to users of mobile devices. The continuing trend among mobile users is the growing need 

for accessing current apps and cloud-based services on their mobile computing devices (MCDs) with high data transfer 

rates and low latency. MCD’s frequently experience situations where they are either overwhelmed with excessive resource 

demands or insufficiently used due to imbalanced requests for resources. Offloading strategies play a crucial role in 

optimizing the efficiency of real-time data processing and analysis. This study proposes an ETOSP: Energy-efficient Task 

Offloading Strategy based on Partial Offloading in Mobile Edge Computing framework for efficient resource 

management as a solution to address the aforementioned difficulty. The application of the genetic algorithm is employed 

to produce strategies that provide balanced resource allocation for the purpose of identifying the most optimum offloading 

approach. The performance evaluation of ETOSP is shown through simulated experiments. 
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1. Introduction 

The growing need for apps and services for mobile consumers is 

made possible by the exponential rise in the technological appraisal 

of mobile devices. Every day, more and more people are using their 

mobile devices, and with that comes a greater demand for high data 

rates and high-quality services[1]. The rapid development of mobile 

computing devices (MCDs) such as smartphones, laptops, and tablets 

has led to the development of an abundance of in-demand services 

and applications. In spite of the improvements in mobile devices’ 

CPUs, they may not be able to run apps that require a great deal of 

processing power in a short time. Furthermore, consumers still face a 

substantial barrier to the complete delight of demanding applications 

due to high battery usage. Due to this, the idea of cloud computing 

(CC) has been developed for mobile phone users. It is the on-demand 

availability of data storage and computational power in a computer 

system that does not require the user to actively manage these 

resources. EC involves storing and processing data on internet-based 

servers, not local servers or personal computers, as a next step after 

cloud computing. For faster responses, lower latency rates, and easier 

maintenance in computing, CC must be upgraded to take advantage 

of 5G wireless technology. 
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The concept of EC involves the processing of data in close proximity to its source, hence facilitating faster 

and more extensive data processing capabilities. This, in turn, enables the generation of real-time outcomes 

that are driven by immediate actions. The integration of centralized and distributed architectures is facilitated 

by Edge. CC and EC collaborate synergistically to provide novel and enhanced user experiences. Data is 

created or gathered from many sources and afterwards sent to the cloud, where computing is consolidated. 

This centralization facilitates the processing of data in a unified and cost-effective manner, enabling the 

aggregation of data at a large scale. EC leverages data created at the local level to provide instantaneous 

response, hence facilitating the development of novel user experiences. The utilization of EC technology 

results in a reduction in latency, hence diminishing reaction time. As a result, computation is done close to the 

data source, rather than sending data to a distant cloud infrastructure and waiting for it to respond. 

The goal of EC is to do real-time, low-latency analysis on data close to where it is stored rather than 

sending it to a centralised data centre. By allowing mobile users to utilise resources and applications locally, 

EC provides a distributed framework that diminishes the burden on the central server while also improving 

reliability and reducing latency. EC has a few drawbacks, such as the fact that information is important to the 

success of any enterprise. Data and information gathered at the edge server must undergo stringent compliance 

and regulatory checks. EC’s networked architecture makes it more vulnerable to previously identified threats. 

A system with certain weaknesses can easily be infiltrated by malware. The integration of blockchain and EC 

is intended to mitigate the risk of data loss, leveraging the promising decentralised nature of blockchain 

technology. More computers are needed as more data is protected at the edge. Therefore, more bandwidth is 

required. EC requires balanced network bandwidth in order to function properly. A newly formed industry 

specification group (ISG) within the European Telecommunications Standards Institute (ETSI) is developing 

a proposal to eliminate these drawbacks in the EC by incorporating the EC into the mobile network design. 

ETSI proposes a solution they call MEC. The ISG MEC group’s primary objective is to facilitate the smooth 

and effective incorporation of cloud computing features into mobile networks, as well as to support the creation 

of beneficial conditions for all parties involved (vendors, service providers, mobile operators, and end users) 

as shown in Figure 1[2–4]. 

 
Figure 1. Overview of MEC architecture. 

Next-generation wireless and computing networks will likely implement MEC[5]. Mainframe approaches 

suffer from latency and network congestion due to big data and long transmission durations, which are 

exacerbated by 5G/6G networks and the Internet of Things. By locating processing, transmission, and data 
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storage closer to end users, MEC improves performance with lower latency and overhead costs while also 

enhancing the user’s skills. Offloading strategies are utilised in MEC locations to increase mobile app reading 

by shifting the load to contiguous servers. Offloading mechanisms typically involve running resource 

functionality scripts locally in MEC. The purpose of offloading is to decrease the workload and cut down on 

computational overhead. Both MDs and MECs are utilised to manage the offloading architecture of 

computations[6]. 

The paper is systematized into six sections. In Section 1, the role of offloading in MEC has been discussed. 

Section 2 presents a review of the literature. Further, in Section 3, discussed about problem formulation and, 

in Section 4, working mechanism of proposed algorithm has been presented. In Section 5, empirical analysis 

has been depicted; at last, in Section 6, conclusions and future research directions have been presented. 

The major contributions of the paper are as follows: 

1) A MEC framework built on optimization technique that ensures data integrity during computation 

offloading is the implementation of Energy- efficient Task Offloading Strategy based on Partial 

Offloading (ETOSP) in 5G networks. An optimized resource utilization strategy is determined by the 

Genetic Algorithm (GA). 

2) The proposed resource management method ETOSP has been tested extensively through simulations and 

experiments. 

2. Related work 

The future iteration of wireless communications, known as 5G, is anticipated to offer enhanced data 

transfer speeds, reduced latency, and improved quality of service for users[7]. Several emerging technologies 

are being considered and studied for integration into the 5G architecture with the aim of enhancing user Quality 

of Service (QoS)[8,9]. To enhance the overall performance of a network, Cho et al. developed a novel cross-

layer architecture incorporating software defined radio and software defined networking capabilities[10]. With 

the projected commercial availability of 5G technology in 2020, it is anticipated that we will soon have the 

opportunity to witness and benefit from the convenience that 5G offers[11]. The integration of EC with 5G 

networks is employed to enhance the quality of service (QoS) experienced by consumers, as the computational 

capabilities of mobile devices are constrained by restricted resources[12]. Several significant topics are 

addressed by Mao et al.[13]. These include EC nodes, cache-enabled MEC, management of dynamic MEC 

systems, and privacy protection mechanisms. Rimal and colleagues[14] conducted a study to explore the 

potential of enabling combined wireless access networks for the purpose of provisioning MEC computing 

capability. Fajardo et al. have developed a method that addresses the issue of restricted network connectivity 

in cells, by supplying processing and storage capabilities in closer proximity[15]. This approach aims to enable 

the provision of services in cells that are now unable to offer them. The optimization of the offloading 

procedure is currently being investigated. Zhang et al.[16] devised a framework that integrates the utilization of 

different network accesses within the context of 5G networks. The use of this strategy results in a significant 

reduction in energy usage during the offloading process. The decentralized computation migrating method 

described by Chen et al.[17] seeks to achieve a Nash equilibrium in order to pick the most optimum solutions 

for decentralized computation migration. Indeed, the Mobile Edge Computing (MEC) paradigm does include 

several limitations, including the potential for data loss or privacy breaches during the offloading procedure. 

The blockchain technology, renowned for its robust security features, is being proposed as a prospective 

remedy to tackle prevailing security concerns. Joshi and colleagues[18] did a comprehensive assessment on 

blockchain technology, focusing specifically on several consensus methods. In this, Zheng et al.[19] provided a 

comprehensive overview of many conventional blockchain consensus-achieving methods and presented an 

extensive array of applications pertaining to blockchain technology. The development of blockchain 

technology has been progressing fast, and significant advancements have also been made in integrating 
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blockchain with MEC technology. Xiong et al.[20] conducted a study on that investigate an effective resource 

management approach to reduce costs associated with handling mobile blockchain applications for EC. A 

proposed solution is introduced in this study, which utilizes blockchain technology to effectively manage 

computer resources while ensuring privacy protection. IoT has given rise to a novel and substantial 

technological domain that is confronted with increasing consumer expectations for internet connectivity 

technologies[21,22]. Roy et al. studied about data routing technique to address the issue of energy consumption 

in IoT. Their proposed approach involves transmitting data to base stations using a mobile data collector, with 

the aim of minimizing power consumption and reducing the time taken up in the sensing area[23]. Salameh et 

al. conducted a study on a unique probabilistic-based channel assignment method in order to mitigate the 

adverse effects caused by transmission delay limitations, as discussed in reference[24]. However, both 

methodologies failed to provide a comprehensive analysis of both energy usage and transmission delay. Dolui 

and Datta[25] conducted an in-depth review and examination of various features related to emerging paradigms 

such as fog computing, cloudlet computing, and MEC in the domain of cloudlet and MEC. In order to mitigate 

the drawbacks of overloaded MEC system, Satria introduced two distinct recovery techniques[26]. One 

proposed approach involves the redistribution of tasks from an excessively burdened MCD to nearby devices 

located within its transmission range. An alternative approach involves utilizing surrounding user devices of 

the MCD that are connected to the overloaded MCD. Yu et al.[27] proposed a scalable and dynamic load 

balancer (SDLB) that utilizes minimum hashing as the main technique for task migration destination 

determination. The rising prevalence of resource-intensive apps in MEC presents significant safety concerns, 

as the differentiation between legitimate users and potential attackers becomes increasingly difficult. The 

utilization of blockchain technology serves to enhance data security and mitigate the risk of unwanted 

alterations. Furthermore, the consideration of vehicle reputations is crucial to the preservation of data sharing 

quality. In order to ensure the confidentiality of users, use of blockchain technology is employed to establish 

a decentralized and secure video system with peer-to-peer access[28]. 

However, there are only a few studies that provide a thorough examination of several factors such as data 

security, offloading process time cost, MCD power consumption, and load balancing. Developing an efficient 

offloading approach that addresses the aforementioned objectives, particularly data security and privacy 

protection, remains a substantial undertaking. 

3. System model 

We apply a GA-based computation offloading model to the MEC architecture. In our proposal, we suggest 

minimizing parameters such as time, energy, delay, and payment cost. It is well known that task-offloading 

optimization is a challenging problem. Various objectives are taken into account when choosing whether to 

process a task locally or at the edge in order to minimize the overall offloading costs. We use ETOSP to 

formulate the task offloading problem in order to optimize time, energy, delay, and cost. 

3.1. Energy consumption model 

In order to get precise estimations of time consumption in the context of integrated blockchain-based 

MEC system, a time consumption model has provided that contains two distinct components. The first 

component of the model is the offloading time model, whereas the second component is the task-based 

queuing model. The improvement in offloading time has resulted in an enhanced Quality of Experience (QoE) 

for users of mobile devices. Hence, it is important to take into account the duration required for transferring 

data from smart devices to edge computing devices (ECDs). 

Consider the binary variable 𝐵𝑚, which finds whether computing work is transferred to cloud platform. 

𝐵𝑚(𝑡) = {
1, 𝑖𝑓𝑗𝑚𝑖𝑠 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑡𝑜 𝐸𝐶𝐷

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (1) 

The Energy consumption of offloading, 𝑗𝑚, is calculated by 
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𝐸𝑚
𝑜𝑓𝑓(𝑡) = 𝐵𝑚(𝑡).

𝑆𝑚

𝛽𝑧
. 𝑍𝐷𝑚

𝑧  (2) 

where 𝑆𝑚 is size of data for 𝑗𝑚 and 𝛽𝑧 is the rate of data transmission between two data transmitters in ecz. 

Furthermore, 𝑍𝐷𝑚
𝑧  denotes the shortest path The offloading time of 𝑗𝑚 to the cloud is calculated by: 

𝐸𝑚

𝑜𝑓𝑓,
  (𝑡) = (1 − 𝐵𝑚(𝑡)).

𝐷𝑚

𝜔
 (3) 

where 𝜔 represents the speed at which data is transmitted. All tasks are offloaded at the same time using the 

following formula: 

𝐸𝑚
𝑜𝑓𝑓(𝑡) = ∑ 𝑇𝑚

𝑜𝑓𝑓(𝑡) + ∑ 𝑇𝑚

𝑜𝑓𝑓,
  (𝑡)

𝑀

𝑚=1

𝑀

𝑚=1

 (4) 

3.2. Execution delay model 

In the context of offloading computational duties to edge nodes (ENs), it is essential to evaluate the 

transmission latency involved in various stages. UEs, DUs, and ENs are all considered here, as well as the 

latency between ENs and DUs. Once the migration method has been selected, it is necessary to take into 

account the delay associated with block generation and verification. However, many other factors must be 

considered, such as the amount of data to be sent, the bandwidth available on the wireless channel, and how 

many CPU cycles each byte of received data will take. Additionally, the processing capabilities of edge servers 

(ESs) and mobile devices (MDs) must be considered. Mobile n’s requests are sent or received using bandwidth 

allocated for 𝐵𝐷𝑛
𝑆 and 𝐵𝐷𝑛

𝑅, respectively. 𝐷𝑢𝑣
𝑆  and 𝐷𝑢𝑣

𝑅  can be defined as: 

𝐷𝑢𝑣
𝑆 =

𝑑𝑢𝑣
𝑆

𝐵𝐷𝑛
𝑆 (5) 

𝐷𝑢𝑣
𝑅 =

𝑑𝑢𝑣
𝑅

𝐵𝐷𝑛
𝑅 (6) 

Assuming 𝑑𝑢𝑣
𝑆  and 𝑑𝑢𝑣

𝑅  represent the vth job of mobile n sends and receives data of size ds and dv. As an 

alternative way of expressing latency at the edge, the following can be used: 

𝐷𝑢𝑣
𝑠𝑒𝑟𝑣𝑒𝑟 =

𝑑𝑢𝑣
𝑆 𝑁𝑢𝑣

𝑐

𝑓𝑠𝑒𝑟𝑣𝑒𝑟
 (7) 

Each bit of received data is processed at ES at a rate of 𝑓𝑠𝑒𝑟𝑣𝑒𝑟and each cycle is processed at N. As a 

result, the total latency of execution offloading can be calculated using the following equation: 

𝐷𝑢𝑣
𝑜𝑓𝑓𝑙𝑜𝑎𝑑

= 𝐷𝑢𝑣
𝑆 + 𝐷𝑢𝑣

𝑅 + 𝐷𝑢𝑣
𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐷(𝑤𝑎𝑖𝑡) (8) 

where 𝐷𝑤𝑎𝑖𝑡 is the total waiting time for the request. For estimating delay for local execution, use the following 

equation: 

𝐷𝑢𝑣
𝑙𝑜𝑐𝑎𝑙 =

𝑑𝑢𝑣
𝑆 𝑁𝑢𝑣

𝑐

𝑓𝑙𝑜𝑐𝑎𝑙
+ 𝐷(𝑤𝑎𝑖𝑡) (9) 

where 𝑓𝑙𝑜𝑐𝑎𝑙 is the processing rate of local MD. 

4. Proposed algorithm 

The flow diagram depicted in the Figure 2, that illustrates the procedural steps of the proposed algorithm, 

namely ETOSP. Firstly, the identification of spare space in the EN system is conducted. The method takes as 

input the set of offloading transactions, Ot, is current time of offloading. It then outputs the identification of 

the spare space, EN. Initially, the acquisition of the offloading transaction is performed for each block. 

Subsequently, the initiation and duration of activities are identified and revised in order to assess the continued 

occupancy of the virtual machine by these tasks. Based on the current task processing condition, the EN spare 

space S has been achieved. The challenge of computation migration is formally stated in our methodology as 

a means to achieve a balance between the transmission delay and load distribution of ENs. 
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To begin, the offloading approach for each job is encoded in order to facilitate subsequent selection. In 

our system, we encode each offloading strategy as a gene, and each job is associated with just one offloading 

strategy. Every gene is represented by an array of numbers, which consists of the DUs (Device Units) and ENs 

(Edge Nodes) to which the job is assigned for offloading. At a given time point t, the collective set of genes 

constitutes the chromosome, which serves as a representation of the migratory techniques employed by 

computing jobs at that specific time point t. In order to assess the optimality of an offloading approach within 

our methodology, we use fitness functions that incorporate both the transmission delay of offloaded tasks and 

the degree of load balancing among all deployed ENs. 

 
Figure 2. Workflow of ETOSP algorithm. 

The fitness values are computed in order to conduct sorting among the genes within the initial population. 

The parent population is composed of solutions with the greatest fitness values after undergoing the sorting 

process. Subsequently, the recombination and mutation techniques are implemented to facilitate subsequent 

selections. 

The single-point recombination procedure involves the generation of new chromosome pairs by using the 

original chromosome pairs from the parent population. Subsequently, a pair of chromosomes is formed in the 
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child. Furthermore, the mutation process is executed with the objective of attaining optimal fitness values. The 

mutation procedure involves the random modification of a single gene inside the chromosome, resulting in the 

generation of a new person. 

Until the population size reaches H, an individual is chosen sequentially from the highest nondominant 

front. The persons in the last front may not be entirely picked, and the solutions in the final front are afterwards 

chosen. 

The first step in facilitating additional selection processes is to normalise fitness values within the 

population. We want to find the 2H people with the lowest latency and load balance degree in the parent 

population. Individuals whose fitness levels have been normalised are linked to reference sites. 

The solutions in the final nondominant front are ranked based on the number of reference points 

associated with them. The solution exhibiting the highest number of interconnected reference points is chosen 

and incorporated into the created population. The method remains active until the population size of the 

offspring reaches the value of H. 

This research presents a novel approach for enhancing transmission delay reduction and load balancing 

efficiency through the utilization of an optimization-based resource management mechanism. Initially, when 

a collection of activities necessitates offloading, the offloading transaction is primarily retrieved. 

Based on the current state of ENs, it is anticipated that the redistribution and offloading of jobs to new 

ENs would be implemented in order to achieve load balance. Following the completion of the offloading 

procedure, the block information undergoes another change in preparation for the subsequent offloading of 

tasks. The resulting output consists of the most optimum offloading method, denoted as Umax, for each 

individual job. Whenever the tasks need offloading, the available capacity in the execution nodes (ENs) is 

initially determined. 

Experimental setup 

This section presents the experimental data that evaluate the performance of the suggested technique, 

ETOSP. The experimental setting is first detailed with great precision. In order to assess the efficacy of our 

suggested strategy, we provide numerous comparing methodologies. Lastly, the performance assessment and 

comparative analyses are given. In our simulation, there exists a multitude of User Equipment (UEs) that 

delegate duties to Edge Nodes (ENs). In this part, we apply numerous comparison methodologies to assess and 

demonstrate the superiority of our suggested method, ETOSP. The concept of combinatorial ordering refers to 

the arrangement or sequencing of elements from a given set in a certain order. It involves non-cooperative 

game model based on sub-gradient, also known as NCGG. The transmitting power of each mobile user in Un 

is initially set to its maximum level at the beginning. The game process will repeat until the users' transmitting 

power reaches equilibrium, and the game model will reach equilibrium. During each iteration of the process, 

mobile users update the transmitting power of their devices to minimize their energy consumption. Users of 

mobile phones need to offload delay-sensitive requests to macro-BSs or BSs after allocating their transmitting 

power. A technique for dealing with this type of problem is called joint request offloading and computing 

resource scheduling (JRORS). As a result, this problem can be divided into two parts: request offloading (RO) 

and computing resource scheduling (RS). Particle swarm optimization (PSO) is used to effectively solve this 

problem. Inspired by the social behaviour of birds and fish, PSO is a technique of computational optimization. 

A natural path or location can be found by imitation of how these organisms cooperate and communicate. PSO 

is a population-based optimization algorithm. It starts with a population of potential solutions, called particles, 

which move through the search space. Each particle adjusts its position based on its own experience and the 

experiences of its neighbours. But it may converge to a local optimum and can be sensitive to parameter 

settings. The ETOSP based on GA is an effective way to solve the local optimum problem of JRORS based 

on PSO. 
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5. Performance evaluation of (ETOSP) 

We used Matlab R-2023b to implement ETOSP in order to evaluate the effectiveness of the proposed 

algorithms. The simulations were run on an Intel i5, 3.7GHz PC with 8 GB RAM. We consider a multi-zone 

edge computing system with mobile users, multiple BSs, and a macro-BS. Each BS is outfitted with an edge 

server and covers a zone. The parameters of the simulation are shown in Table 1. 

Table 1. Parameter settings. 

Parameter Value 

Number of mobile users U {12, 20, 32, 40, 52, 60, 72, 80, 92, 100} 

Number of BSs N {3, 5, 8, 10, 13, 15, 18, 20, 23, 25} 

The number of VM instances in an EN 100 

The transmission rate from UE to DU 1000 Mbps 

The transmission rate from DU to EN 500 Mbps 

The bandwidth between ENs 2000 Mbps 

The number of ENs 60 

The number of tasks G 200, 400, 600, 800, 1000 and 2000 

The present study addresses a multi-objective optimization issue that focuses on minimizing delay and 

achieving a balanced load distribution. The offloading technique that is considered to have the highest utility 

value is deemed to be the most optimum option. This section presents a comparative analysis of the 

performances of JRORS and ETOSP.  

5.1. Comparative analysis on energy consumption 

We assess energy consumption under various numbers of mobile users. It is discovered that energy 

consumption is proportional to maximum power pmax, i.e., the higher the pmax, the higher the energy 

consumption. This is because the average transmitting power of mobile users is higher when the maximum 

power pmax is larger, resulting in more energy consumption. Figure 3 depicts the JRORS algo based on PSO 

performing an energy usage analysis.  

 

Figure 3. Computation of energy consumption using JRORS algo based on PSO. 

As shown in Figure 4, our proposed approach i.e., ETOSP algo based on GA approach. The data indicates 

that ETOSP generates a lower amount of energy compared to other approaches. This may be attributed to 

ETOSP’s utilization of a smaller number of ECDs and its reduced wastage of idle VM instances. These factors 

contribute significantly to the overall energy consumption in ECDs. Moreover, when the work scale expands, 
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there is an accompanying rise in energy consumption. This suggests that ETOSP may be able to mitigate its 

limitations when it comes to handling huge computational job sizes. 

 
Figure 4. Computation of Energy Consumption using ETOSP algo based on GA approach. 

Figure 5 shows a comparison of the existing approach and our suggested strategy. It can be seen 

that as the number of mobile users increases, so does energy consumption. Figure 5 shows how ETOSP 

outperforms the other compared approach when the number of mobile users is varied. It should be noted 

that ETOSP can achieve lower energy consumption even when a large number of mobile users are present, 

demonstrating ETOSP’s extensibility. 

 

Figure 5. Comparative analysis on energy consumption. 

5.2. Comparative analysis on execution delay 

We test the execution delay with a variety of mobile users. The load balancing rate indicates the offloading 

techniques’ unload status. In this section, we compare the proposed ETOSP algorithm to the JRORS baseline 

algorithm. ETOSP represents only cloud computing and MEC resources; based on partial offloading that 

indicates selected modules from the set of modules are executed on the UEs. Because execution delay is the 

optimization target. The performance of execution delay using baseline algorithm i.e., JRORS based on PSO 

under different number of users is shown in Figure 6. 
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Figure 6. Computation of Execution Delay using JRORS algo based on PSO. 

Therefore, Figure 7 presents a ETOSP algorithm based on GA approach. It may be inferred that ETOSP 

demonstrates improved load balancing efficiency in situations where the ECDs are experiencing 

underutilization. The total execution delay of ETOSP is reduced as compared to baseline algorithm. 

 

Figure 7. Computation of Execution Delay using ETOSP algo based on GA approach. 

We compare the JRORS and ETOSP’s performance under different number of UEs. The total execution 

delay can be reduced more than the baseline algorithm. Thus, the performance of the proposed algorithm is 

always better than the baseline algorithm. 

In summary, Figure 8 illustrates ETOSP provides better performance than baseline algorithm and is able 

to provide a better performance by the full utilization of MEC resources.  
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Figure 8. Comparative analysis on Execution Delay. 

6. Conclusion and future research 

The potential for supporting upcoming 5G applications is promising through the combination of 5G and 

MEC, as a result of the hardware limitations and computational capacity constraints of UEs. By transferring 

computational workloads from user equipment (UEs) to edge nodes (ENs), enough computing resources are 

made available to UEs, therefore overcoming the constraints imposed by limited resources. Due to the uneven 

distribution of resources, the operational performance of entrepreneurial ventures is rarely ensured. In addition, 

the transmission latency and data loss incurred during the process of compute offloading have a significant 

impact on the quality of service experienced by the user. Given the above-mentioned problem, we suggest a 

computational migration approach called Energy-efficient Task Offloading Strategy based on Partial 

Offloading (ETOSP). The utilization of Genetic Algorithms (GA) is implemented in order to get the optimal 

and well-balanced offloading techniques. Ultimately, the feasibility and efficiency of ETOSP are validated by 

the execution of systematic experiments and comparative assessments. 

In the future, the proposed ETOSP will be modified to align with the specific demands of real-world 

situations. Additionally, the suggested solution takes into consideration a wider range of user Quality of 

Service (QoS) preferences in order to enhance its practicality and efficiency. 
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