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ABSTRACT 

Precision agriculture is a growing concept that frequently refers to enhancing farms via the use of up-to-date 

knowledge and cutting-edge technology, which in turn aids farmers by automating and improving them to increase rural 

profitability. This paper suggests the novel framework Deep-Plant-IoT which amalgamates the Internet of Things (IoT) 

and Deep learning framework for an effective prediction of crop yields which act as intelligent recommendation systems 

that can significantly improve the production. The framework incorporates IoT sensors and devices to collect and store 

the soil parameters in the cloud. Then these data are downloaded offline and the Harris Hawk Optimized Long Short 

Term Memory network is deployed to effectively predict crop yields that can aid in better production. Nearly 15902 data 

were collected for two months and Extensive testing was undertaken to employ these data to evaluate and analyze the 

proposed framework. Moreover, the prediction algorithm proposed in the framework is evaluated in comparison to other 

cutting-edge learning models. The suggested algorithm has demonstrated greater performance such that 98% accuracy, 

97.23% precision, 97.0% recall, and 97.2% F1-score respectively.  

Keywords: Internet of Things (IoT); artificial intelligence; precision agriculture; Harris Hawk optimization; Long Short 

Term Memory 

1. Introduction 

The National Crime Record Bureau (NCRB) reported that 

roughly 10,281 farmers passed away in 2019–2020[1]. Despite the 

stereotype of farmers, suicide in the agricultural industry has increased. 

Inefficient farming practices are still used by many workers, which 

results in low productivity. According to research by the Centre for 

Research of Developing Societies (CSDS)[2], 76% of farmers desire to 

give up their jobs. It further states that 74% of farmers did not get any 

fundamental farming-related information, such as fertilizer doses, from 

agriculture department personnel. The precision agriculture systems 

therefore support and aid farmers in automating and modernizing their 

operations to increase rural profitability and support the development 

of intelligent farming systems[3]. IoT-based devices and other emerging 

technologies would undoubtedly benefit society. Large-scale 

installations are typically challenging to implement in practical 

situations. This study makes use of already-made innovations, such as 

difficult-yet-simple-to-implement sensor-based modules. 

A balanced water level in the field is maintained by a smart 

irrigation system built on the Internet of Things. Whenever the field is 
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dry, it puts the water pump “on”, and when it is wet, it turns it “off”. Additionally, this technology will assist 

in monitoring the level of water while only spraying fields when necessary, which is important given that water 

scarcity is one of the key issues facing the globe today[4]. The three macronutrients N (nitrogen), P (phosphorus), 

and k (potassium) were mostly needed by crops. Lack of nutrients can result in deficiencies and harm the health 

of crops. Fertilizers, which can be either natural or synthetic, are used to add nutrients to the soil. The excessive 

use of fertilizer can harm crops and groundwater in addition to the crops themselves. Therefore, a method for 

recommending fertilizer doses can aid in boosting agricultural output and reducing fertilizer usage. Data can 

be stored using Firebase with the use of an IoT-based fertilizer dose guidance system. Results from previously 

acquired data stored in a Firebase database may be easily tracked. Since Schwalbert et al.[5] introduced 

ImageNet, deep learning has gained popularity and is becoming more widespread. It is possible to use pre-

trained CNN models like VGG16, VGG19, ResNet50, and InceptionV3 to aid with imager-related 

classification tasks. These models can unquestionably help farmers with the automatic early detection of 

infections and damage to crops or plants. 

Besides combining both deep learning algorithms and IoT devices for precision agriculture remains to be 

too complex due to the dynamic behaviour of the system. Hence the idea behind this research article is to come 

up with a framework that gathers all the advantages of both IoT and Deep learning frameworks. This paper’s 

greatest contribution is not the formulation of any strategy but the intelligent framework to elevate precision 

agriculture that can improve the farmer’s life style. The points that follow are the research article’s salient 

contributions: 

1) As far as we’re aware, this is only one of the first attempts to present the intelligent framework that 

combines both IoT and Artificial Intelligence related to the precision agriculture. 

2) The paper successfully leverages the Hyper parameter a deep learning framework that has been designed 

for the accurate prediction of the crop yields based on the real time collected datasets. 

3) Using the real-time data that was gathered, a hawk’s eye experiment was conducted to assess the 

suggested framework, and its performance was compared to that of other cutting-edge learning models. 

The following is how the paper is structured: 1) The associated research and advancements realized in the 

smart precision-based agricultural system are discussed in Section 2. 2) Section 3 details about the Data 

collection unit using Internet of Things (IoT), and proposed deep learning frameworks. 3) Section 4 is 

dedicated to the experimentation and evaluation of the proposed framework by comparing with the other state-

of-art learning models. 4) The paper is ended with a discussion of future research in Section 5. 

2. Related works 

A number of remotely sensed time-series datasets and several algorithms were tried by Ghazaryan et al.[6] 

in 2020 to estimate yield at the county and field scales in the United States. Long-short term memory (LSTM) 

after a 3D convolutional neural network (CNN) was employed in this architecture. The CNN-LSTM model 

showed the best accuracy for county-level analysis, with a mean percentage error of 10.3% for maize and 9.6% 

for soybean. The proposed model has the benefit of being applied to a real-time dataset derived from reliable 

geographical sources. However, the created model lowered the effectiveness of crop production forecast while 

reducing the relative error. 

To identify the most lucrative crop given the current weather conditions, Teja et al.[7] proposed a website 

that used Support Vector Machine (SVM) algorithms in conjunction with past meteorological data. This 

approach can also forecast crop yields using weather, soil, and previous yield data. The goal of this effort is to 

develop a system that combines data from many sources, data analytics, and forecast analysis in order to 

increase agricultural production productivity and, in the long term, increase farmer profitability. The created 

model’s advantage was its ability in identifying various pests and illnesses by handling challenging local 
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circumstances. The robust deep learning approach uses sophisticated pre-processing techniques, which takes 

more time and has a higher computing cost. 

Sindhu Madhuri et al.[8] introduced a decision tree supervised machine learning method in 2022 to 

enhance the predictions of agricultural output based on soil moisture characteristics and to obtain improved 

error rate and accuracy for economic growth. This approach looked at additional geographical variables and 

revealed phonological traits, all of which are important for predicting crop yields. The approach utilized to 

fuse diverse remote sensing data using histogram-based tensor modification, which integrated multisource data 

with varying resolutions, remained difficult. 

A deep learning approach was developed by Bharathi et al.[9] in 2022, and it is known as the Modified 

Deep Learning approach (MDLS). It is intended to help the agriculture sector forecast the crop production 

level in a precise manner. This MDLS is derived from the K-Nearest Neighbour and Decision Tree Algorithms, 

two common learning frameworks. The suggested method takes into account factors like pesticide use, rainfall 

ratios, and temperature levels as prediction limits when examining agricultural production characteristics. This 

framework was more effective. The smart irrigation system for farms, which would have increased yields, was 

not, however. 

Ishak et al.[10]’s proposal from 2021 describes an intelligent system that can forecast the best harvests 

based just on a farmer’s current location, general instructions for crop preparation and producing, and a 

systematic strategy for marketing commodities from grower to customer. For crop modelling, we employed 

Random Forest Regression, Support Vector Regression, and Voting Regression methods. Using current 

climate, weather, and soil data for the particular location, yield projection was made. On the other hand, the 

market monitoring system will aid in accurate crop pricing and offer transparency to all parties involved in 

agricultural marketing so that they may use our system to purchase and sell their goods. The maximum degree 

of crop production prediction was only achieved in sugarcane, cotton, and turmeric, which was a benefit of the 

constructed model. For other crops like wheat, rice, etc., the range was modest. 

With the help of the Kalman Filter Algorithm, we performed data pre-processing, extracted some features 

using Linear Discriminant Analysis, and used an improved version of the Extreme Linear Machine to predict 

crop yield, as suggested by Vashisht et al.[11] in 2022. Based on location, season, and cultivation area, rice crop 

yield has been forecasted. The created model’s ability to estimate crop yield even in the presence of fertilizer—

which is also used to assist soil analysis and allow farmers to make informed decisions in cases of low crop 

yield prediction—was a benefit. However, in a large data environment that demonstrated system complexity, 

the proposed model crop yield prediction proved challenging with a vast soil dataset. 

A research was carried out by Hussain et al.[12] in 2022 to analyze the data and create a yield forecast 

model using machine learning. The farmers may use this model to determine whether or not a specific climatic 

element will affect their harvest. Therefore, under these circumstances, specific decision-making techniques 

can be applied with the goal of effectively increasing crop output. For this, we have utilized a variety of ML-

based techniques. The logistic regression has archived the most appropriate accuracy. The fundamental 

restriction, though, was that increasingly sophisticated models weren’t producing reliable findings. 

A crop yield forecast model based on an optimum bidirectional gated recurrent neural network (OBGRNN) 

was created by ThangaSelvi and Sathish[13] in 2023. Using previous agricultural data, the OBGRNN approach 

seeks to anticipate crop productivity. The prediction and parameter optimization operations are carried out via 

the OBGRNN approach. With this approach, prediction accuracy was improved. The proposed model used a 

physical model to analyze direct inversion, however the combination of residual learning and multi-resolution 

decomposition produced artefacts. As a result, the model was rejected because of the excessive noise level. 
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In order to forecast the yield or success rate using the provided data for various locations, Kuriakose and 

Singh[14], 2022 used LSTM. This framework, which takes into consideration soil type, soil fertility, climatic 

conditions, rainfall, and the specific seed requirements for each crop, aids farmers in determining the sort of 

crop that will generate a satisfactory crop for a given season. This paradigm offers more accurate prediction. 

The model, however, needed an optimization model since it presented challenges throughout the process and 

had poor assessment performance. 

For the unsupervised domain adaptation (UDA) on county-level maize yield prediction, Ma and Zhang[15], 

2022 introduced a Bayesian domain adversarial neural network (BDANN). By collecting domain-invariant 

and task-informative features from both the source and the target domains, BDANN was trained to minimize 

domain shift and reliably forecast maize yield using adversarial learning and Bayesian inference. The outcomes 

also showed that the BDANN model generalized successfully on tiny training sets. This approach was more 

effective, although it had a significant level of computational complexity. Table 1 gives the quick summary 

of related works. 

Table 1. Quick summary of literature survey. 

Authors Techniques incorporated Merits Demerits 

Ghazaryan et al.[6] CNN and LSTM Better accuracy, less relative 
error 

Decreased efficiency 

Teja et al.[7] SVM Better accuracy  Required more time for 
training and High 
computational cost 

Sindhu Madhuri et al.[8] Decision Tree Better performance in terms 
of error rate and prediction 
accuracy 

This framework struggles at 
the phase of feature extraction 

Bharathi et al.[9] K-Nearest Neighbor and the 
Decision Tree Algorithms 

Better efficiency It requires more time for 
training 

Ishak et al.[10] Random Forest Regression, 
Support Vector Regression and 
Voting Regression techniques 

Better prediction accuracy Prediction range was low for 
crops like wheat, rice, etc. 

Vashisht et al.[11] ELM Better prediction accuracy High system complexity 

Hussain et al.[12] Logistic Regression Better prediction accuracy High time complexity 

ThangaSelvi and Sathish[13] bidirectional gated recurrent 
neural network 

Better prediction accuracy Not suitable for Noisy 
environment 

Kuriakose and Singh[14] LSTM Better prediction accuracy Optimization model was 
required for the better 
performance. 

Ma and Zhang[15] LSTM Bayesian domain adversarial 
neural network 

Computational complexity is 
high 

It is evident from Table 1 that the current frameworks take more training time, have greater computational 

complexity, are less accurate, and are not appropriate for real-time environments. Additionally, the current 

framework needs optimization strategies to improve performance in terms of plant production.  

3. System model 

The two main phases of the proposed framework are (i) data collecting and (ii) data analytics. Figure 1 

displays the block structure of the suggested framework. The suggested structure includes crop yield can be 

predicted by using the Optimized training model. To achieve an accurate prediction, system undergoes training 

and testing. Real-time dataset is collected from IoT devices which are implanted on the two different soils such 

as loamy and clay. The model is validated with the real time data obtained from the IoT devices installed on 
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the different categories of soils. The detailed description of the complete framework is described in the section 

before. 

 
Figure 1. Overall representation of the proposed framework. 

3.1. Data collection unit 

In the suggested framework, this research utilizes the publicly accessible yield prediction datasets from 
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the World Bank DataBank and the Food and Agriculture Organization (FAO) in the UN[16-17]. The variety of 

different crops is covered, including jute fiber maize, rice, sugarcane, & wheat for categorization purposes, 

including the seeds of flax lentils as well, grains, sugar cane, & wheat for yielding estimation. This research 

work uses the Internet of Things (IoT) for collecting the soil parameters from different types of soils as 

mentioned above. The primary IoT devices used to collect soil characteristics including temperature, pH, 

wetness, and humidity are MICOTT boards, which have an 8-bit NODEMCU as its main CPU and interface 

with 10-bit SPI (Serial Peripheral Interfaces) driven MCP3008 analog channels and ESP8266 WIFI 

transceivers. These boards are used to collect the soil parameters from the subjects and stores it in the AWS 

cloud for further testing. The IoT boards are powered with the 3.3V batteries and can be replaced with the 

other batteries when it is drained out. Table 2 shows that total number of data  

Table 2. Real time data used for the testing and evaluation. 

Dataset Description No of data No of records No of Attributes Associated Tasks Training Data /Testing 

Real Time Datasets 15,900 212 05 Classification 70;30 

3.2. Data pre-processing technique 

In this research work, data preprocessing embraces three steps such as replacement of missing values, 

redundancy removal and separation. The missing value of a particular attribute is replaced by the checking 

with farmer’s consideration next step is reduction of data by eliminating the duplicated attributes. Finally, the 

data are separated into different classes based on the type of the soil and crops. 

3.3. Proposed model training 

This section discusses about the suggested deep learning framework to identify the different yields for 

the different crops.  

3.3.1. Recurrent neural network 

In RNN, each NN’s hidden layer is linked to the hidden layers of further nodes in a different new network. 

The nodes that make up of the identical layer that is concealed are connected to one another, as in recurrent 

NN. RNN’s ability to encode historical data in just a few milliseconds and its memory activity make it a 

popular choice for time series and big-data research. The RNN approach allows node with their sequences to 

directly form the graphs. Thus, it is possible to illustrate dynamic behavior for sequential synchronization. 

processes input sequences using internal memory (state). The RNN therefore uses historical data to forecast 

future values. Additionally, there still exists a disappearing gradient problems[18] with this method in practical 

applications when there is a significant interval of time between the past and the future data. As a result, the 

results are unsatisfactory in some real-world scenarios. With the addition of the LSTM network, RNN 

performance has increased in order to address this issue. 

3.3.2. LSTM—An overview 

Due to its flexibility in memory and suitability for large databases, a well-known learning model LSTM, 

is used in many applications. Figure 2 shows the LSTM network in action. 
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Figure 2. LSTM structure. 

LSTM and the Whale optimizer are the components of the suggested hybrid learning model. Input gate 

(I.G), forget gate (F.G), cell input (C.I), and output gate (O.G) are the three different building components that 

make up an LSTM. LSTM is a type of neural network that relies on memory and remembers values after each 

iteration. Letting xt, the unnoticed layer output be ht, its former output be ht−1, the cell input be Ct, the cell 

output be Gt, and the states of the three gates be 𝑗𝑡 , 𝑇𝑓&T0. Similar to how both “Gt and ht” are transmitted to 

the following neural network in RNN, LSTM creation is similar. In order to update the memory, LSTM uses 

forget and output gates to combine the outcome of the prior unit with the present input state. The following 

equations are used to determine Gt and ht. 

𝐼. 𝐺: 𝑗𝑡 = 𝜃(𝐺𝑙
𝑖 . 𝑂𝑡 + 𝐺ℎ

𝑖 . 𝑒𝑡−1 + 𝑠𝑖) (1) 

𝐹. 𝐺: 𝑇𝑓 = 𝜃(𝐺𝑙
𝑓
. 𝑂𝑡 + 𝐺ℎ

𝑓
. 𝑒𝑡−1 + 𝑠𝑓) (2) 

𝑂. 𝐺: 𝑇𝑜 = 𝜃(𝐺𝑙
0. 𝑂𝑡 + 𝐺ℎ

𝑜. 𝑒𝑡−1 + 𝑠𝑜) (3) 

𝐶. 𝐼: 𝑇�̃� = tanh⁡(𝐺𝑙
𝐶 . 𝑂𝑡 + 𝐺ℎ

𝐶 . 𝑒𝑡−1 + 𝑠𝐶) (4) 

where 𝐺𝑙
0, 𝐺𝑙

𝑓 , 𝐺𝑙
𝑖 , 𝐺𝑙

𝐶
 input gates & output layers’ weight matrices &𝐺ℎ

𝑖 , 𝐺ℎ
𝑓 , 𝐺ℎ

𝑜, 𝐺ℎ
𝐶
the computed weight 

conditions among the input & hidden layers. The “𝑠𝑖 , 𝑠𝑓 , 𝑠𝑜 , 𝑠𝐶 are the bias vectors and tanh is considered to 

be hyperbolic function”. The computed cell outputs state is reported as follows: 

𝑇𝐶 = 𝑘𝑡 ∗ 𝑇�̃� + 𝑇𝑓 ∗ 𝑇𝑡−1 (5) 

𝑒𝑡 = 𝑇𝑜 ∗ tanh⁡(𝑇𝐶) (6) 

Using the equation above, the final outcome score is determined. 

3.3.3. Reasons for the suggested model 

When using big variety datasets, LSTM has a number of drawbacks[19]. This results in the need of a lot of 

memory cells, which often makes computations more complex and causes overfitting. It is necessary for having 

a computationally properly organized framework that can forecast the various crop yields in order to get around 

this problem. A simple framework for learning has been looked at below in order to meet the requirements 

mentioned above. By incorporating Harris Hawk techniques into LSTM networks, this hybrid model’s main 

goal is to create a new hybrid algorithm. 
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3.4. Harris Hawk optimization 

The HHO algorithm[20] was inspired by the various ways that hawks hunt and attack their prey. The three 

steps of HHO, a population-based optimization technology, are exploration, transforming exploration, and 

exploitation. In Figure 3, the various stages of HHO are depicted. 

 
Figure 3. Illustration of various steps in Harris Hawk optimization process of catching the prey. 

At this point, hawks perch in arbitrary locations dependent on the locations of other members or rabbits, 

which are represented as follows: 

𝑍(𝑖 + 1) = {
𝑍𝑟𝑎𝑛𝑑(𝑖) − 𝑟1|𝑍𝑟𝑎𝑛𝑑(𝑖) − 2𝑟2𝑍(𝑖)|,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞 ≥ 0.5,

(𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝑍𝑚(𝑖)) − 𝑟3(𝐿𝑏 + 𝑟4(𝑈𝑏 − 𝐿𝑏),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞 < 0.5,
 (7) 

𝑍𝑚(𝑡) =
1

𝑁
∑𝑍𝑖(𝑖)

𝑁

𝑡=1

 (8) 

where⁡𝑍(𝑖 + 1) the updated placement of hawks with the subsequent version,⁡𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) a prey’s location, 

&⁡𝑍(𝑖) the location of hawks. The modulus (absolute value) of the elements. 𝑟1, 𝑟2, 𝑟3, 𝑟4 & 𝑞 random 

numbers among 0 and 1. Ub and Lb the variables’ upper & lower bounds, 𝑍𝑟𝑎𝑛𝑑(𝑖) the location for a 

randomhawkpopulation.𝑍𝑚(𝑖) The typical position of the current hawk population. 

3.4.1. Exploitation and exploitation transformation  

The following equations are used to assess the transition stages, which takes into account the prey’s escape 

energy: 

𝐸1 = 2(1 −
𝑡

𝑇
) (9) 

𝐸 = 𝐸0𝐸1 (10) 

where 𝑡⁡ iteration currently in use;⁡𝐸0 the prey’s initial energy, randomly ranging among [1, 1]; and 𝑇 

the most possible iterations. 
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3.4.2. Exploitation stage 

At this moment, the hawks attack the victim using its attempts to flee and four different pursuit techniques. 

A successful capture necessitates the presence of escaping energy (E) with the possibility of escape (r). 

When r ≥ 0.5 and |E| ≥ 0.5, a soft besiege was conducted by hawks in the following equations, which 

means the prey has enough energy but gets a failed try for escaping: 

𝑍(𝑖 + 1) = ∆𝑍(𝑡) − 𝐸|𝐽𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝑍(𝑖)| (11) 

∆𝑍(𝑖) = 𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝑍(𝑖) (12) 

where ∆𝑍(𝑖) the comparison of hawk positions at different iterations I and the present location of prey and 

𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) the leap strength, which fluctuates at random with every iteration. 𝑟5 an arbitrary figure among 

0 and 1. 

Hawks applies a hard besiege to prey with low escaping energy and fails to escape, which is indicated by 

𝑟 ≥ 0.5⁡and |E|< 0.5, modeled as follows: 

𝑍(𝑖 + 1) = 𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝐸|∆𝑍(𝑖)| (13) 

Hawks hunt through a more intelligent soft encirclement known as gentle besiege with progressive quick 

dives when r and |E| are below 0.5. This behavior is depicted as follows: 

𝑃 = 𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖)0𝑣 − 𝐸|𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝑍(𝑖)| (14) 

𝑄 = 𝑃 + 𝑆𝑋𝐿𝐹(𝐷) (15) 

where 𝐷⁡ the size of the issue, 𝑆 a size-random vector 1 × D, & the equations defining the Levy flight (LF) 

function. 

𝐿𝐹(𝑑) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽⁄

 (16) 

𝜎 = (
Γ(1 + 𝛽) × 𝑠𝑖𝑛𝜋𝛽/2

Γ(1 +
𝛽
2⁄ ) × 𝛽 × 2𝛽−

1
2⁄
)

1
𝛽⁄

 (17) 

where u, v  a random vector with a normal distribution of size 1 × d, 𝛽⁡ a constant with a value restricted 

to 1.5, and Γ⁡ a common Gamma function. The hawk’s positions can be updated by modelling 

𝑍(𝑖 + 1) = {
𝑃𝑖𝑓𝐹(𝑧) < 𝐹(𝑍(𝑖))

𝑄𝑖𝑓𝐹(𝑧) < 𝐹(𝑍(𝑖))
 (18) 

A hard besiege is produced when the prey’s energy is exhausted (r 0.5 and |E| 0.5). Equations (19) and 

(20), which resemble the computation of P and Q, are used. The procedure for updating is as follows: 

𝑃 = 𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝐸|𝐽𝑍𝑟𝑎𝑏𝑏𝑖𝑡(𝑖) − 𝑍𝑚(𝑖)| (19) 

𝑄 = 𝑃 + 𝑆 × 𝐿𝐹(𝐷) (20) 

𝑍(𝑖 + 1) = {
𝑃𝑖𝑓𝐹(𝑧) < 𝐹(𝑍(𝑖))

𝑄𝑖𝑓𝐹(𝑧) < 𝐹(𝑍(𝑖))
 (21) 

3.5. Proposed model 

Harris Hawk methods are employed for optimum the weighting of dense layers in LSTM networks, as 

was covered in Section 3.4. Harris Hawk’s criteria for the exploration and exploitation phases of the prey 

finding process are used in this instance as the primary term for optimum the weighting of LSTM networks. 

The LSTM cells are initially fed a random quantity of weights & biases. The fitness function of the suggested 

model is defined as its accuracy. The mathematical Equations (7), (9) and (13) are effectively utilized to 

calculate input bias & weights for every iteration. The LSTM network subsequently processes the weights to 

determine the fitness function. The loop will either stop or continue if the level of fitness functions matches to 

the threshold. The fitness function of the proposed framework is presented as follows 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠⁡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐹𝐹)
= 𝑀𝑎𝑥⁡𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒) 

(22) 

As opposed to additional metaheuristic algorithms, which require lower time for optimization and also 

enhance detection times, Harris Hawk optimization in this method offers a slower rate of convergence. The 

proposed model’s pseudo code is presented in Algorithm1. 

Algorithm 1 Pseudocode for the model that is suggested 

01: 
02: 
03: 
04: 

05: 
06: 
07: 
08: 
09: 
10: 
11: 
12: 

13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

22: 
23: 
24: 
25: 
26: 
27: 

Input: Epochs, Concealed Layers, Biased Weights, rate of learning 
Output—Prediction of Crop Yields  
Biases weights, concealed layers, epochs, and learning rate should be assigned at random. 
Set the three parameters such as  

Start the While loop  
Apply Equation (6) to the LSTM cells’ output. 
          Apply Equation (22) to FF to determine it. 
       Start the For loop from 1 to iteration(maxi)  
Bias weights & input layers should be assigned using Equations (20) and (21). 
                        Using Equation (22), determine FF 
Check for (FF equal to threshold) 
                                                jump to step 17 

                                      otherwise 
                                                 jump to step 08 
halt 
halt 
    Check for (output ≤ 1) 
                // Calculate Crop l 
  Otherwise check for (output ≤ 2 & output > 1) 
              // calculate Crop 2 
Otherwise check for (output ≤ 3 & output e > 2) 

                // calculate Crop 3  
otherwise 
jump to Step 09 
halt 
halt 
halt 

4. Investigation analysis 

The recommended framework was run on a PC workstation equipped with an i9 CPU, 240 GB SSD, 

NVIDIA Titan V4 graphics card, and 3.2 GHz Python, with Keras Libraries and Tensorflow v2.1 as the 

backend. Accuracy, precision, recall, specificity, and F1-score were used as criteria for evaluating the model. 

The mathematical equation used to determine the performance measurements is shown in Table 3. In order to 

show the superiority of the proposed framework, we also computed the AUC using the confusion matrix. Early 

pausing is employed to address the overfitting and generalization concerns. When the validation performance 

of the proposed model shows no improvement over time, this procedure is used to end the iteration. To train 

and test the data in order to address the problem of class inequality, the uniform distribution is utilized. Table 

3 provides the mathematical formula for computing the performance measures needed to assess the suggested 

model. 

Table 3. Performance metrics used for the evaluation. 

Sl.no Performance Standards Statements 

01 Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

02 Recall 𝑇𝑃

𝑇𝑃+𝐹𝑁
 x100 

03 Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Table 3. (Continued). 

Sl.no Performance Standards Statements 

04 Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

05 F1-Score 
2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

TP & TN  “True positive & True negative”, FP & FN  “False positive & False negative”. 

Figures 4–7 depicts the ROC values for the proposed model in predicting the different crop yields based 

on real time datasets. With the ROC curves, Area under curves (AUC) are calculated for each and every dataset. 

It is found that average AUC is found to be 0.98 for predicting the all the crop yields. Figure 8 presents the 

confusion matrix of the proposed algorithm. 

 
Figure 4. ROC of the suggested model in predicting the RICE crop from the real time datasets. 

 
Figure 5. ROC of the suggested model in predicting the Jute crop from the real time datasets. 

 
Figure 6. ROC of the suggested model in predicting the Sugar can crop from the real time datasets. 
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Figure 7. ROC of the suggested model in predicting the Maize crop from the real time datasets. 

 
Figure 8. Matrix of confusion for the suggested model in predicting the various crop yields. 

The suggested model’s performance indicators are assessed for the different number of epochs. With the 

drop-out ratios. Figures 9–11 shows the effectiveness of the suggested model at different drop-outs adopted 

during the process of training. The metrics for the suggested approach when processing the Framingham & 

public health datasets are shown in Figures 9–11. The data clearly show that the suggested model has 

generated the average accuracy of 98.5%,98.45% precision, 97.6% recall and F1-score 98.2% for 200 epochs 

for the drop-outs ranges from 0.2, 0.4, 0.6, 0.8 respectively. It proves that the integration of HHO algorithm 

for tuning the hyper parameters of LSTM has produced the uniform performance even though the drop-outs 

are increasing gradually. Moreover, the predicted values are validated with ground truth scenario in which the 

proposed model has produced the RMSE of 0.0034 as compared with ground truth data source.  

 
Figure 9. Effectiveness of the suggested framework with the drop-outs = 0.2 & 0.4. 
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Figure 10. Effectiveness of the suggested framework with the drop-outs = 0.6 and 0.8. 

 

Figure 11. The suggested model’s typical detection performance for different crop yields and compared with the ground truth model. 

The suggested predictor has been compared with the most advanced options that are similar to this 

framework to demonstrate the superiority of the model that has been suggested. Tables shows the comparative 

analysis between the effectiveness of various algorithms while employing real time datasets. The similar state 

of art works which are included for the comparative studies are LSTM[20], 1D-CNN[21], DNN[22], PSO-ANN[23], 

BAT-LSTM[24],WHALE-SVM[25],and FIREFLY-MLP[26].  

Tables 4–6 show how successfully different algorithms predicted different crop yields. It is evident from 

the tables and recommended model that it has provided the much better results in predicting various crop yields. 

On the other hand, several deep learning models have also produced impressive intermediate prediction 

performances (average performance of 90%). In addition, when compared to other optimized LSTM, the 

inclusion of HHO in LSTM has demonstrated to be crucial in forecasting crop yields. It is evident from Table 

4 through Table 6 that the performance of the other optimization methods is clearly impacted by their 

propensity to become trapped in local minima.  

Table 4. Comparative evaluation of the various algorithms in handling the real time datasets in predicting the rice crop yield. 

Slno Algorithms Performance Standards 

Accuracy Precision Recall Specificity F1-Score 

01 LSTM 92.1% 91.3% 90.3% 88.4% 91.2% 

02 1D-CNN 90.2% 90.23% 89.45% 88.45% 90.0% 

03 DNN 87.3% 86.3% 85.3% 84.4% 85.2% 

04 PSO-ANN 89.4% 87.5% 86.5% 85.6% 86.0% 
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Table 4. (Continued). 

Slno Algorithms Performance Standards 

Accuracy Precision Recall Specificity F1-Score 

05 BAT-LSTM 92.5% 91.4% 90.4% 89.3% 91.3% 

06 WHALE-SVM 93.4% 92.1% 91.5% 90.4% 90.2% 

07 FIREFLY-MLP 92.1% 91.3% 90.3% 88.4% 91.2% 

08 PROPOSED MODEL 98.5% 97.6% 97.0% 97.3% 97.24% 

Table 5. Comparative evaluation of the various algorithms in handling the real time datasets in predicting the maize crop yield. 

Slno Algorithms Performance Standards 

Accuracy Precision Recall Specificity F1-Score 

01 LSTM 91.2% 90.4% 89.2% 87.3% 90.2% 

02 1D-CNN 90.2% 90.23% 89.45% 88.45% 90.0% 

03 DNN 87.3% 86.3% 85.3% 84.4% 85.2% 

04 PSO-ANN 88.4% 86.5% 86.0% 86.1% 86.2% 

05 BAT-LSTM 92.5% 90.54% 89.45% 88.3% 90.2% 

06 WHALE-SVM 93.2% 92.8% 92.5% 89.3% 92.9% 

07 FIREFLY-MLP 92.1% 91.3% 90.3% 88.4% 91.2% 

08 PROPOSED MODEL 98.5% 97.6% 97.0% 97.3% 97.24% 

Table 6. Comparative evaluation of the various algorithms in handling the real time datasets in predicting the sugar cane and jute 
crops yield. 

Slno Algorithms Performance Standards 

Accuracy Precision Recall Specificity F1-Score 

01 LSTM 91.2% 90.4% 89.2% 87.3% 90.2% 

02 1D-CNN 90.2% 90.23% 89.45% 88.45% 90.0% 

03 DNN 87.3% 86.3% 85.3% 84.4% 85.2% 

04 PSO-ANN 88.4% 86.5% 86.0% 86.1% 86.2% 

05 BAT-LSTM 92.5% 90.54% 89.45% 88.3% 90.2% 

06 WHALE-SVM 93.2% 92.8% 92.5% 89.3% 92.9% 

07 FIREFLY-MLP 92.1% 91.3% 90.3% 88.4% 91.2% 

08 PROPOSED MODEL 98.42% 97.5% 97.2% 97.1% 97.30% 

5. Conclusion and its future scope 

This article suggests using the Internet of Things (IoT) effectively using Artificial Intelligence in precision 

agriculture in predicting the different yield that can aid for the better production. This kind of smart prediction 

systems can help the farmers to increase the yields in accordance to the soil and environmental conditions. To 

enable this intelligent precision agriculture, this research incorporates the IoT for the data collection process 

and deep learning framework for the analytics and prediction process. The IoT devices were designed and 

modelled using MICOTT boards interfaced with agricultural sensors such as temperature, humidity, moisture 

and Ph values of soils. The hyper parameter values of the dense layers are adjusted through Harris Hawk 

optimization technique in the LSTM that was trained on over 15,902 data. Both loamy and clay have been 

used in the comprehensive experiments, as well as performance standards like accuracy, precision, recall, 

specificity, and F1-score have been determined and contrasted to other deep learning techniques. Experimental 

findings showed that the suggested model worked better than the other models in use, demonstrating its strong 
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place for the precision agriculture. In the future, these algorithms need more improvisation in terms of 

computational complexity which can be embedded into edge devices that can make the precision agriculture 

even more scalable and flexible. 
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