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ABSTRACT 

The lives of people are at risk from security and safety risks with Intelligent Transportation Systems (ITS), 

particularly Autonomous Vehicles. In contrast to manual vehicles, the Security of an AV’s computer and communications 

components may be penetrated using sophisticated hacking methods, preventing us from employing AVs in our daily 

lives. The Internet of Vehicles, which connects manual automobiles to the Internet, is vulnerable to cyber-attacks such as 

lack of service, spoofing, sniffer, widespread denial of service and repeat attacks. This paper presents a unique intrusion 

detection system for ITS, using Enhanced Cuttle Fish Optimized Multiscale Convolution Neural Network (ECFO-

MCNN), that uses vehicles to identify networks and infrastructure and detects careful network activity of in-vehicle 

networks. The primary goal of the suggested strategy is to identify forward events emanating through AVs’ central 

network gateways. Two benchmark datasets, namely the UNSWNB15 dataset for external network communications and 

the car hacking dataset for in-vehicle communications, are used to assess the proposed IDS. The evaluation’s findings 

showed that the performance of our suggested system is superior to that of traditional intrusion detection methods. 

Keywords: intelligent transport systems; CAN bus; deep learning; enhanced cuttlefish optimized Multiscale convolution 

neural network; autonomous vehicles; intrusion detection system 

1. Introduction 

The ITS completely transforms travel and communication with 

transportation systems. The ITS is improved travel’s effectiveness, 

safety, and, sustainability by seamlessly integrating cutting-edge 

technology. Through real-time data collection, processing, and 

transmission, ITS allows transportation systems to make informed 

decisions and respond rapidly to changing situations. ITS combines 

smart infrastructure, vehicle connection, and intelligent applications to 

establish a seamless and integrated transportation environment, 

improving public transit operations, streamlining traffic flow, and 

decreasing congestion[1]. A small group of transportation experts 

developed the concept of ITS, initially known as intelligent vehicle-

highway systems, in the 1980s to acknowledge the influence of 
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computers and communications in transportation. The ITS has had a significant impact on the world during 

the last ten years, and its applications go past only highway traffic. Navigation, rail, maritime, and aviation 

systems are all enhanced with the aid of ITS. As a consequence, a lot of data is generated[2]. Transportation 

studies have developed more sophisticated systems known as ITS due to recent advancements in autonomous 

technology and growing urbanization. The primary objective of ITS is to provide participants with efficient, 

dependable, and safe transportation options. Authorities seek autonomy in ITS for various reasons, including 

safety for all users, energy savings for the environment, and time savings for users[3]. In today’s increasingly 

linked society, security concerns are a major worry. As technology develops quickly, many industries, 

including transportation, are vulnerable to security and privacy breaches. Additionally, there are potential 

hazards associated with integrating smart devices and sensors into infrastructure, such as unconstitutional 

access to sensitive data or disruption of essential operations. Strong cyber security measures, including 

encryption, authentication methods, and frequent system upgrades, are crucial to addressing these security 

concerns[4]. 

Everyday communities and highways are changing in both look and usefulness thanks to the ITS. Thanks 

to the ITS, travelers worldwide may have a more efficient, safe, and enjoyable experience. Many companies 

and local governments have started initiatives to promote the development of ITS technology. Because of the 

increasing integration of unprotected devices and apps, transportation systems provide attackers with greater 

opportunity to exploit vulnerabilities. The physical repercussions of ITS attacks include infrastructure damage, 

an extension in emergency response, injuries, and even concerns to national security[5]. According to many, 

the most eagerly awaited smart city services are ITSs. The foundation of ITSs is that giving motors and 

transportation infrastructure connection, sensing, and autonomy would provide safer driving conditions and 

efficient transit. It is necessary to outfit cars and transportation infrastructure with smart sensors to gather and 

interpret heterogeneous data collection about each vehicle, its occupants, and its surroundings to make this ITS 

vision a reality[6].Transportation has always been important to human civilization since it fosters cross-cultural 

understanding and knowledge of the globe. Humans can go further in terms of distance and civilization thanks 

to the advancement of transportation. ITS are created for human safety and convenience in contemporary life, 

particularly in the metropolitan transportation network. As the foundation of ITS, sensors are extensively 

dispersed for signal collecting. And only if sensors are functional across the system can big data and subsequent 

processing be used for scheduling transportation, a process known as intellectualization[7]. Identifying security 

concerns early on in this study, we introduce a new Cuttle fish optimized Multiscale convolution neural 

network (ECFO-MCNN) for ITS based-on Intrusion Detection System (IDS) to identify malicious traffic in 

In-Vehicle Networks (IVNs), V2Is, and other networks. 

The article’s subsequent sections are arranged as follows: Section 2 provides a summary of relevant 

publications; Section 3 provides a more in-depth description of the approach; and Section 4 presents and 

discusses simulation findings. The study is concluded in Section 5 with recommendations for more research. 

2. Related works 

Yu et al.[8] offered an ITS with a combination of autonomous and human-driven automobiles with a Deep 

Learning (DL) based safety in-traffic solution. In a 5G-enabled ITS, long-term memory networks produce 

probability matrices using the trajectory dataset and the vehicle’s natural-driving dataset as network resources. 

The final intended probability is then provided by combining the mean rule with the decision layer.  The 

advancement of ITS research as a result of deep learning while also offering a review and in-depth insight into 

the uses of DL models on ITS. The current uses of these approaches in ITS are studied in depth after providing 

a variety of methods for DL and the present state of the field in Haghighat et al.[9]. Chen et al.[10] combined 

techniques for tracking and recognizing moving cars into a real time counter for automotive tracking. The 

accuracy and efficacy of the framework are then evaluated by installing a network for tracking numerous 
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objects and a network for detecting vehicles on a Jetson TX2 edge device. The test results reveal that their 

model has a 92.0% detection rate for traffic flow on edge devices and an average processing speed of 37.9 

frames per second (FPS). A potential technology that seeks to enhance conventional transport management 

systems is called Cooperative Intelligent Transport System (C-ITS). The study proposes a private preserving 

oriented safe architecture for C-ITS infrastructure that combines Security and privacy to overcome these issues. 

Using blockchain technology and DL modules, the proposed architecture offers two levels of Security and 

anonymity[11]. 

Veres and Moussa[12] emphasized the usage of DL modeling techniques in ITS. They focus on the 

challenges that practitioners have faced in addressing these diverse problems and go into depth on the structural 

and problem-specific elements that were involved in developing solutions. They believe that by connecting 

the machine learning and transport fields, this survey will provide light on emerging topics and aspects. Tan 

et al.[13] addressed these issues, it was recommended that an ITS with SER-enhanced traffic efficiency be built 

on the space-air-ground integrated network, which is 5G capable.  Data on the voice of the car is first converted 

into spectrograms to acquire the high-level characteristics of the vehicle speech acoustic model.  The effort 

will evaluate the Machine Learning (ML) technologies and data mining employed in research and industry to 

address traffic’s immediate and long-term consequences on individuals and society. According to the study’s 

approach, 165 papers will be thoroughly reviewed, critiqued, and grouped into chronological and 

comprehensible categories[14]. Mollah et al.[15] provided a current analysis of the most recent developments in 

blockchain technology for the IoV. They thoroughly analyze the current research before highlighting the many 

IoV application situations. They also go at a few significant problems while blockchain is used in IoV. They 

also discuss the prospects for IoV as a crucial ITS enabler and future research objectives.The open Internet of 

Things (IoT) and its associated IoV will be made possible by 5G in this fashion. This discussion will go into 

depth about the potential effects of 5G wireless networks on smart cities, ITS, driverless or semi-autonomous 

cars, and vehicular communications, as well as on its technical, financial, and governmental challenges 

Guevara and Auat[16]. 

A safe energy trading ecosystem that can be utilized for activities like charging and discharging from the 

enabling smart grids is one of the critical hurdles to the overall usefulness of autonomous cars, as outlined by 

Chaudhary et al.[17]. Electric cars and uncrewed aerial aircraft are examples of uncrewed vehicles. The majority 

of the solutions available today were built on centralized, traditional security methods, which may not be 

appropriate for distributing energy in a smart city setting. Arthurs et al.[18] analyzed the literature on cloud 

computing utilization with ITS and connected cars and offered taxonomies in addition to their use cases. As a 

conclusion, they highlight research gaps that need to be filled before automobiles and ITS can make regulated 

and automated use of edge cloud computing. They looked at 496 publications published during seven years, 

starting in 2013 and finishing in 2019. Yang et al.[19] analyzed the various Energy management strategies 

(EMSs) for conventional hybrid electric vehicles (HEV) and plug in hybrid electric vehicles (PHEV) as well 

as those that use V2I and vehicle to vehicle (V2V) information. The EMSs for HEV and PHEV under the 

intelligent transport system are in-depth studied in terms of single-vehicle and multiple-vehicle situations. The 

massive, quickly growing volume of data to generate by ITS makes coordinating various transportation 

networks difficult. Therefore, the ancient cloud-centric storage architecture is no longer adequate. Meanwhile, 

a lack of confidence in retention across ITS devices and servers at the edge may result in security difficulties 

with data storage Qiao et al.[20]. Shukla et al.[21] developed a new spatially induced-long-short-term memory 

(SI-LSTM) model to forecast present traffic and weather. A dynamic pricing mechanism is offered to improve 

the vehicle owners’ (VO) quality of experience (QoE). The Markov model, the SI-LSTM, the lanes, and the 

vehicles themselves all feed into this algorithm. Many parties are interested in vehicle-to-everything (V2X) 

communication and services since they will be included in future ITSs. Neither the V2X service placement 

challenge nor the nodes’ computing capabilities have been taken into account in any previous effort. The 
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Greedy vehicle-to-everything Service Placement Algorithm (G-VSPA) is a low-complexity greedy-based 

heuristic approach created to address this issue Moubayed et al.[22]. 

In this study we employed ECFO-MCNN may outperform conventional MCNNs in terms of network 

architecture and parameter optimization by using the CFO algorithm. The CFO technique may enhance the 

neural network’s overall performance and convergence speed during training by imitating the foraging activity 

of cuttlefish. 

Problem statement 

Complex security risks are difficult to correctly identify and mitigate using traditional approaches for 

handling security concerns in intelligent transportation systems (ITS). The dynamic nature of contemporary 

ITS security concerns outpace these approaches, which include rule-based systems, encryption techniques, and 

conventional anomaly detection algorithms, making them ineffective for threat identification and response. 

Additionally, traditional methods may not be able to manage the complex patterns and variances in the data, 

leading to a larger number of false positives and negatives and compromising the transportation network’s 

overall security posture. Thus, we propose the implementation of the Fish Optimized Multiscale Convolution 

Neural Network (ECFO-MCNN) based Intrusion Detection System to improve security and accuracy in 

detecting suspicious network activities within in-vehicle networks, vehicle-to-infrastructure communication, 

and other network components in intelligent transportation systems (ITS). 

3. Methodology 

This part begins by discussing the preliminary processes of the study, which include data collection, data 

preprocessing, and data feature extraction. This study on creating a successful IDS for ITS is built on these 

fundamental goals. Provide the ECFO-MCNN, a cutting-edge method designed to solve the ubiquitous security 

issues in ITS. IVNs, V2I networks, and other pertinent networks are among the network components that IDS 

tries to detect and identify attackers’ interiors (Figure 1). 

 
Figure 1. Analyses of the Proposed Methods and Procedures. 

First, we collected the UNSWNB15 dataset, which contains data on various network activities. Next, we 

preprocessed the data using normalization techniques to standardize the values and ensure uniformity. 
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Following this, we extracted pertinent features from the processed data to identify key patterns and behaviors 

indicative of potential security threats within in-vehicle networks. Finally, we proposed a novel approach that 

aims to enhance both the security and accuracy of detecting suspicious network activities. By leveraging our 

method, we aim to identify and thwart potential threats more effectively, thereby bolstering the overall security 

measures within in-vehicle networks. Then we have analyzed the performance of our proposed approach. 

 Central gateways allow the networks to interact with outside networks. For example, gateways provide 

communication between vehicles, making various services possible. Additionally, V2I communication 

enhances the Security of automobiles, passengers, drivers, and walkers. Malicious hackers may attack IoVs 

via IVNs due to the inadequate security measures implemented by IVNs, such as the absence of encryption 

and authentication methods and the vast and continually expanding number of interfaces. Due to the vehicle’s 

limited memory and processing power, installing an IDS or equivalent software proved difficult. The temporal 

non-linearity and latent spatial in the set of feature vectors could be found using the ECFO-MCNN layer. 

Normal traffic data is encoded and rebuilt by the auto encoder layer. The sliding temporal window created by 

the statistical characteristics is then fed into ECFO-MCNN. After many training rounds, validation losses and 

training are decreased to zero, and it is presumed that the compressed representation of typical traffic has 

acquired satisfaction. 

3.1. Datasets 

The UNSWNB15 dataset for anomaly detection originating through external connections and the vehicle 

hacking dataset for testing detection of irregularities in intra-vehicle communication are the two datasets used 

for evaluating the suggested ECFO-MCNN based on IDS. The 2 datasets are described as follows. The vehicle 

Hacking Dataset is the information regarding the automobile hacking dataset shown in Table 1. 

Table 1. Data types and sizes of car hacking dataset. 

Attack type Overall Messages Standard Messages inject Messages 

DoS assault 3,665,771 3,078,250 587,521 

Gear Spoofing 4,443,143 3,845,891 597,253 

Normal 988,988 988,873 - 

Fuzzy assault 3,838,861 3,347,014 491,848 

RPM guage spoofing 4,621,703 3,966,806 654,898 

This information was created by gathering CAN traffic records from an actual vehicle’s On-Board 

Diagnostics 2 (OBD-II) port. As the attacks were happening, the logs were taken. The dataset was produced 

for Network Based Intrusion Detection System (NIDS) assessment by building a synthetic laboratory setting. 

A mix of regular and attack traffic was made using the IXIA Perfect Storm program. Nine significant attack 

families’ network traffic statistics are included in the collection. The necessary characteristics were extracted 

from the network data’s pcap files using the Bro-IDS and Argus programs. The dataset used to assess the 

suggested IDS is detailed in Table 2. 

Table 2. Unsw-Nb15 dataset categories and levels of data. 

Type of Attack Packets Number 

Exploits attack 5409 

DoS attack 1168 

Recon attack 1760 

Normal 677786 

Generic attack 7523 

Fuzzer attack 5,052 
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3.2. Data preprocessing 

In this study we utilize Normalization data preprocessing technique that is commonly used to scale the 

values of numerical features to a standard range, typically between 0 and 1. This process ensures that all the 

features have a similar scale, which can be beneficial for many machine learning algorithms, including deep 

learning models. The unprocessed data gathered from IoVs and related network traffic pre-processed to 

develop an effective intrusion detection system. 

3.3. Feature extraction  

The extraction of essential data components is also required to implement the recommended DL-enabled 

detection strategy. The data selection of characteristics utilized for more analysis initiates a feature extraction 

step. These qualities are input in the statistical feature extraction process to filter out a sizable number of 

representative features, such as patterns of assault occurrences. To guarantee the remarkable effectiveness of 

the suggested ECFO-MCNN-based IDS, a 3-sec image with additional information is acquired to ascertain the 

actions of servers that interacted via data packets. 

1) Enhanced cuttle fish optimized multiscale convolution neural network (ECFO-MCNN) 

2) In a 5G-enabled ITS, long-term memory networks produce probability matrices using the trajectory 

dataset and the vehicle’s natural-driving dataset as network resources. 

3) Greedy vehicle-to-everything Service Placement Algorithm (G-VSPA) 

4) Greedy vehicle-to-everything Service Placement Algorithm (G-VSPA) 

Enhanced Cuttle Fish Optimized Multiscale Convolution Neural Network (ECFO-MCNN) based 

Intrusion Detection System (IDS) tailored for ITS. The proposed system aims to efficiently detect suspicious 

network activities within In-Vehicle Networks (IVN), Vehicles to Infrastructure (V2I) connections, and other 

related networks. Notably, the primary objective of this strategy is to identify potential security breaches 

originating from the central network gateways of AVs. Typical components of a CNN framework include an 

input layer, an output layer, and many hidden layers. Convolutional, pooling and fully linked hidden layer 

options are available. Because of the sparse connection between neurons in neighboring layers, local features 

in the convolutional layer are produced by convolutional kernels. Due to comparable statistical characteristics 

across the feature maps, it is possible to reconfigure and mine the necessary features via a sequence of 

convolutions. After convolution, a non-linear activation function is applied (Equation (1)). 

𝐶𝑖
𝑘 = 𝜑 (∑ 𝐶𝑖

𝑘−1 ∗ 𝑓𝑗𝑖
𝑘

𝑗

+ 𝑝𝑖
𝑘) (1) 

where ∗ denotes the convolution operator, and 𝐶𝑖
𝑘−1 and 𝐶𝑖

𝑘 represent the 𝑗𝑡ℎ input and 𝑘 − 1 output feature 

maps for layer 𝑖𝑡ℎ and layer𝑘, respectively, in the convolution process. A nonlinear activation function is used 

as the convolution kernel and bias 𝜑. 

In the pooling layer (PL), to use sub-sampling to make the output feature map insensitive to minor 

variations in the input characteristic map. Additionally, the smaller size of the feature map increases computing 

efficiency. Max-pooling is used, and it is described as 

𝐶𝑖
𝑘+1(𝑣, 𝑡) =

𝑚𝑎𝑥
0 ≤ 𝑏, 𝑜 < 𝑛{𝐶𝑖

𝑘(𝑣. 𝑛 + 𝑏, 𝑡. 𝑛 + 𝑜} (2) 

where 𝐶𝑖
𝑘  and 𝐶𝑖

𝑘−1  are layer F’s layer 𝑖𝑡ℎ output feature map and layer 𝑘 layer 𝑖𝑡ℎinput feature map 𝑘 + 1 

respectively. The set of size 𝑛 × 𝑛 of the pooling filter is to 2 × 2. 

The ITS is susceptible to criminal actions like hacking, data breaches, and system manipulations since it 

depends on linked networks, communication systems, and digital infrastructure. These assaults can potentially 

interfere with transportation services, damage private data, and even endanger public safety. The possibility of 
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illegal access and manipulation of crucial systems is another issue. To solve this issue, use ECFO-MCNN that 

produces a mixed layer by combining the previous pooling layer with the final convolutional layer (CL). The 

fully-connected layer then comes after this mixed layer. This may maintain the synchronization of local and 

global data and provide more accurate regression results. The MSCNN construction is shown in Figure 2. 

 
Figure 2. Structure of MSCNN. 

The hidden layers have 3 CL, 2 PL, and a mixed layer. The third CL and the following one PL’s 

characteristics are accepted by the mixed layer. Consequently, the mixed layer’s output is determined as 

𝐶𝑓𝑖𝑛𝑎𝑙 = 𝜑 (∑ 𝑙𝑗
1. 𝑢𝑗𝑖

1 +

𝑗

∑ 𝑙𝑗
1. 𝑢𝑗𝑖

2 + 𝑝𝑖

𝑗

) (3) 

where, respectively, 𝑙𝑗
1, 𝑢𝑗𝑖

1 , 𝑙𝑗
1, and 𝑢𝑗𝑖

2  Consider the neurons and weights of the last pooling layer and the final 

CL. To execute Remaining Useful Life (RUL) estimation, 𝐶𝑓𝑖𝑛𝑎𝑙  is finally delivered into the regression layer. 

As defined by MSE, the loss function is  

𝐹(𝜃; 𝐶𝑓𝑖𝑛𝑎𝑙 , 𝑥) =
1

2
‖𝑧𝜃(𝐶𝑓𝑖𝑛𝑎𝑙) − 𝑥‖

2
 (4) 

where 𝑥  is the RUL ground truth output. The last layer’s regression function (RF) for RUL prediction is 

called 𝑧𝜃.The 𝜃stands for the regression function’s parameters. 

A fish descended from squids, and octopuses took the ECFO-MCNN. Squids could always change their 

skin tone, either to blend in with their surroundings or to produce eye-catching displays. This fish, sometimes 

known as a cuttlefish or a squid, imitates the hues of its environment. The cuttlefish uses three levels of cell 

layers to generate its colors and shapes. The program mimics the cuttlefish’s manner of color-changing 

behavior to address security challenges in ITS. Visibility and Reflection are the two key processes that 

comprise the suggested method. The visibility process provides a simulation of the cuttlefish’s pattern-

matching vision, while the reflection process provides a simulation of the Reflection of light between layers 

of cells. The method used to identify security problems in ITS. 

The ECFO processes are broken down and shown in Figure 2 provides a summary of it. The state of each 

cell is brought up to date by Equation (5). 

𝐻𝑚[𝑖] = 𝑟𝑒𝑐𝑚[𝑗] + 𝑣𝑖𝑡𝑚[𝑗] (5) 

where 𝑗 is the pint index in the 𝑖𝑡ℎ cell, 𝑖 is the cell index, 𝑚 is the group index, 𝑟𝑒𝑐 is the Reflection, and it is 

the visibility. Equations (6) and (7) are used to calculate the visibility 𝑣𝑖𝑡𝑚 and reflection of 𝐻1 and 𝐻1𝑎. 

𝑟𝑒𝑐𝑗 = 𝑇 × 𝐻1[𝑖] × 𝑏[𝑗] (6) 

𝑣𝑖𝑡𝑗 = 𝐷 × (𝐺𝑏𝑒𝑠𝑡[𝑗] − 𝐻1[𝑖] × 𝑆[𝑗] (7) 
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where 𝑆 denotes the study group of points, 𝑇 represents the cell reflection degree, and 𝐷 is the pattern visibility 

degree. Following are the calculations for the variables 𝑇 and 𝐷 (Equation (8) and Equation (9)): 

𝑇 = 𝑟𝑎𝑛𝑑 × (𝑡1 − 𝑡2) + 𝑡2 (8) 

𝐷 = 𝑟𝑎𝑛𝑑 × (𝑑1 − 𝑑2) + 𝑑2 (9) 

where 𝑡1, 𝑡2, 𝑑1, and 𝑑2 are user-specified constants, and the rand is a random integer between (0, 1). Equations 

for Reflection and visibility for the third group 𝐻3 are as follows (Equation (10) and Equation (11)): 

𝑟𝑒𝑐𝑗 = 𝑇 × 𝐺𝑏𝑒𝑠𝑡[𝑗] (10) 

𝑣𝑖𝑡𝑗 = 𝐷 × (𝐺𝑏𝑒𝑠𝑡[𝑗] − 𝐴𝑉𝑆𝑏𝑒𝑠𝑡) (11) 

There was no estimate for visibility and Reflection for the fourth group  𝐻4 . Figure 3 displays the 

flowchart for the algorithm. 

 
Figure 3. Flowchart of the ECFO. 

4. Result and discussion 

To predict potential security issues and offer a novel ECFO-MCNN for ITS based on an IDS to detect 

hostile traffic in IVNs, V2Is, and other networks. The efficiency of the proposed technique is shown by 

comparing the results of the ECFO-MCNN with those of existing methods like SI-LSTM and G-VSPA. 

Accurate and precision evaluation of the proposed system’s adaptability, responsiveness, and prediction is 

shown by the presented technique. 
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4.1. Accuracy 

Accuracy is essential to ITS, as multiple parts, including sensors, communication networks, and control 

systems, interact to ensure the efficiency and safety of the transportation infrastructure. It includes the system’s 

capacity to accurately detect, gather, analyze, and send data and carry out instructions and reach judgments 

with little variation from the planned course of action (Equation (12)). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

where, 

• TP represented as True Positives 

• TN represented as True Negatives 

• FP represented as False Positives 

• FN represented as False Negatives 

The accuracy of the suggested system is shown in Table 3. Both the proposed method and the existing 

systems’ accuracy of consumption forecasts are shown. To compared SI-LSTM’s 79% and G-VSPA’s 81%, 

both get below the desired 95% accuracy for the suggested method. It shows that the proposed method of 

procedure is better than the existing one. 

Table 3. Numerical outcomes of accuracy. 

Method Accuracy (%) 

SI-LSTM [21] 79 

G-VSPA [22] 81 

ECFO-MCNN [Proposed] 95 

4.2. Precision 

Precision is essential for differentiating between legal actions and harmful behaviors in ITS, as identifying 

and preventing possible security breaches are key. While avoiding false positives or misclassifications, high 

precision ensures that security measures properly detect and react to true threats. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

The suggested system’s precision is shown in Table 4. Where FP and TP stand for a true positive value 

and a false positive, respectively. The suggested system and existing systems’ predictions of precision usage 

are discussed. SI-LSTM has attained 79%, G-VSPA has attained 81%, and the suggested system has attained 

94%. It demonstrates that the proposed strategy is more successful than the existing one. 

Table 4. The exact numerical results of precision. 

Methods Precision (%) 

SI-LSTM [21] 86 

G-VSPA [22] 72 

ECFO-MCNN [Proposed] 94 

4.3. Training and hyper parameter tuning 

The length of the sliding window Len = 11 was suitable to facilitate latent encoding and later reconstruction 

for both datasets. Compared to CAN, the UNSW dataset required significantly longer epochs to bring 

validation losses and average training under control. 
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Table 5 and Figure 4 display the two dataset’s most current setting of hyper parameters and the training 

loss direction. 

Table 5. The ECFO-MCNN Model’s Hyper parameters for the Can and Unsw Dataset. 

 F Z P 𝓕(𝒉, �̂�) Epochs 

UNSW 11 101 51 𝜖2 2001 

CAN 11 51 101 𝜖2 501 

 
Figure 4. Loss’s trajectory during the course of the autoencoder’s training on the CAN and UNSW datasets. 

In accordance with the results of the quick search for grids, a batch quantity of between 11 and 100 was 

suitable for development, still, for the UNSW and CAN datasets. Accordingly, b = 100 and b = 50 were chosen 

while considering the appropriate training time. The UNSW dataset’s normalized likelihood transformation 

required four times as many epochs and significantly more hidden ECFO-MCNN units due to its greater 

spatiotemporal complexity to reconstruct the input batches accurately without over-fitting the model and 

lowering accuracy. 

4.4. Selection of optimal threshold 

The accuracy of the error surfaces depends on the selection of the threshold 𝜎, and they may be linearly 

separated for both datasets with varied degrees of error. As illustrated in Figure 5, the best threshold 𝜎𝑜𝑝𝑡  is 

discovered using Receiver Operating Characteristics (ROC) and grid search to apply the decision statistic. 

 
Figure 5. Grid search for the best threshold 𝜎. 
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The estimation of the True positive rate and false positive rate, respectively, and the following formulas 

were used to derive the detection probabilities over the complete collection of 𝑆 = 𝜎𝜖[0.06,0.94] and ROC 

curves (Equation (14) and (15)): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (15) 

where the appropriately recognized normal and attack vectors are, respectively, TP and TN. FN, on the other 

hand, refers to those attack vectors that the classifier incorrectly misclassifies as genuine regular traffic 

considering that the problem may be reduced to a binary classification, with all attack pathways being 

considered fraudulent. Last but not least, FP is regular sequences that are mistakenly labeled as aberrant. 

4.5. Discussion 

The G-VSPA’s security flaws are a major drawback of the protocol. G-VSPA’s selfish character causes 

it to put a premium on near-term and regional optimization of service placement while ignoring the dangers 

that may arise from doing so. As a result, the security of the V2X network’s data transmissions may be 

compromised by malicious assaults or unauthorized access. As a result, G-VSPA has its limits, hence a stronger 

security framework is necessary to guarantee the safe and secure functioning of ITS. The SI-LSTM’s 

susceptibility to hostile assaults is a severe drawback. In order to modify the input data or produce malicious 

results, adversaries might take advantage of the spatial dependencies that SI-LSTM has learnt. SI-LSTM may 

not sufficiently take into account possible security concerns and may not be able to identify or neutralize hostile 

activity since it mainly focuses on collecting spatial correlations. Anomaly detection and intrusion detection 

systems, which assist in identifying and mitigating possible security breaches inside the ITS environment, are 

included in ECFO-MCNN’s increased security mechanisms. By offering real-time network activity monitoring, 

the ECFO-MCNN makes it possible to quickly identify and address any questionable activity or possible 

intrusions. This skill is essential for maintaining the security of in-vehicle networks at all times since failing 

to recognize security risks in a timely manner may have disastrous results, such as compromised data or 

malfunctioning systems. Additionally, the ECFO-MCNN’s Multiscale convolutional neural network design 

enables accurate and fast analysis of complicated transportation data, allowing the real-time identification of 

anomalous or suspicious patterns. 

5. Conclusion 

Deep learning may be used to address several ITS security-related issues, including detection of intrusions, 

anomaly detection, and risk prediction. As a result, risks are reduced, and vital transportation infrastructure is 

protected via proactive monitoring and quick reaction to security issues. The IoVs are vulnerable to numerous 

cyber-attacks due to their pervasiveness and inadequate security implementation in the technologies being 

employed. IoVs may be effectively protected against a variety of assaults with the use of IDSs. This study 

aimed to create an IDS model that could recognize attacks by looking for changes in the latent representations 

of messages and network flows that were learned to behave normally in IVNs. We suggested IDS based on 

ECFO-MCNN auto encoder for identifying odd occurrences in IoVs. The recommended method combines and 

integrates the strength of statistical features of network activity with the reliable learning mechanism of ECFO-

MCNN auto encoder to construct a potent model for learning typical traffic flow in IoVs. For the UNSWNB-

15 and automobile hacking datasets, respectively, the suggested ECFO-MCNN-based IDS’s overall average 

accuracy is 95%. Our method has outperformed well than other existing methods. ECFO-MCNN offers a 

promising approach for addressing complex and challenging tasks in image processing, intelligent 

transportation systems, and other domains that require robust and efficient deep learning solutions. DL models 

could be hard to understand, which makes it hard to comprehend the reason for making judgments and can 
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make users and stakeholders less likely to trust and accept them. Concentrating on these areas of future study 

creates the foundation for an ecosystem of ITS that is strong and secure, able to endure changing security 

threats, and safeguards infrastructure and human life. 
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