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ABSTRACT 

There are many researches carried out for different purposes on human-computer interactions. One of them is related 

to stress-related activity detection. Today, in people with disorders whose activity is not understood or misunderstood, 

the correct detection of the relevant movement can be vital in some cases. It may be more advantageous to use 

physiological signals in the body in determining the type of activity. Due to these important situations, two different 

research applications were carried out within the scope of this study in order to automatically detect four different types 

of stress, namely Neutral, Emotional, Mental, and Physical. For both applications, the data was first converted to images 

as a preprocessing. In the first stage of the research, the images of the standard dataset were presented to the VGG16 deep 

learning model. As a result, the highest accuracy rate was obtained as 67% for class 1 Neutral activation. In the second 

part of the study, an application was performed using the Isolation Forest Algorithm on the existing image data to remove 

outliers. The new dataset obtained were presented to the same model and detailed analyses were made. Accordingly, the 

maximum accuracy value was 97% in Physical activity. In the same application, the average rate for all activities was 

82.5%. Briefly, the research contributes to the literature by demonstrating the significant impact of outliers on system 

performance through image transformations of existing time series physiological signals. 
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1. Introduction 

As authors, we define the state of “being active” as showing 

activity, that is, an action that creates a change compared to the 

previous situation. However, according to the definition in the Oxford 

English Dictionary; “active (adjective and noun): Characterized by 

busy or lively activity; engaging or ready to engage in physically 

energetic pursuits; alert, lively; busy”[1]. In the same dictionary, 

activity is “The state of being actively occupied; brisk or vigorous 

action; busyness, liveliness, vigor”[1]. In short, the words active and 

activity generally mean movement and change. In daily life, many 

physical, emotional and mental activities such as talking, thinking, 

walking, jumping, sad, laughing, crying, getting angry, being afraid, 

being happy can cause changes in different physiological signals in 

our body[2–7]. For example, it is known that there are differences in 

heart signals compared to normal as a result of sudden or any 

emotional change[8]. In another study, changes in facial muscle signals 

were investigated in the detection of emotional mimic expressions in 

order to perform human-computer interaction more meaningfully and 

accurately[9]. 
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In the literature, various physiological signals, data read from sensors placed in the environment, and 

methods for utilizing these as input are employed in studies conducted for purposes such as activity detection, 

identification, or determination. One of them is about the presence and type of physical activity as a result of 

evaluating the data collected from sensors such as heat, temperature, humidity, and movement in an 

environment within the scope of the Internet of Things or in smart home systems[10,11]. For the same purpose, 

thanks to wearable smart systems equipped with sensors, activity detection is possible thanks to signals such 

as electrocardiogram (ECG), electromyogram (EMG), Thoracic Electrical Bio-impedance (TEB), Electro 

Dermal Activity (EDA) that change as a result of any activity in the human body[12–16]. There are also studies 

using the heart rhythm rate change parameter extracted from ECG signals for emotional and human activity 

identification[8,17–20]. However, the common feature of these studies is to extract the properties of the obtained 

signals in the frequency and time domain by applying some techniques. In addition, various feature selection 

methods have been applied in order to make more precise evaluations. In a different study, evaluations were 

made on ECG, EDA, and body temperature to determine the stress situation in the body[21]. The researchers 

processed the signals obtained from the skin to detect four different emotional states and presented the obtained 

features to some machine learning algorithms[22]. In a similar study, stress detection was also added for the 

same purpose[23]. In a doctoral thesis[24], the author proposed a hybrid technique for selecting features extracted 

from physiological signals obtained in human activity detection. In another paper[25], many physiological 

signals such as heart, muscle, and respiration were obtained with wearable sensors, and their sensitivity to 

stress responses was investigated. In an interesting study, the authors evaluated different measurements 

together to determine the energy consumed as a result of the activity[26]. In the research carried out on 

electroencephalography (EEG) as a different signal type, the situations exposed to different stress factors were 

examined and classified with support vector machines[27]. In the literature, there are many studies conducted 

to detect stress and activity[28–33]. The common points of all of them were to record some physiological data 

through the necessary sensors, extract features from them, select features, and classify them. 

The literature reviewed highlights the increasing importance of physiological signals and sensor data in 

understanding human activities and states. Researchers have used a wide range of sensors, from environmental 

indicators such as temperature and motion to wearable devices that capture complex signals such as ECG and 

EMG. These studies are not limited to activity detection but extend into the nuanced area of stress assessment 

and emotional states. What unites these is a systematic process of data acquisition, feature extraction, and 

classification techniques. The trend towards multimodality approaches, such as simultaneous assessment of 

various physiological measures, points to the evolving complexity of research methodologies. Additionally, 

the integration of advanced technologies such as EEG expands the scope of inquiry by providing insights into 

stressors that may escape traditional sensor-based approaches. These studies highlight the transformative 

potential of physiological data in shaping the ever-expanding landscape of health monitoring and behavior 

analysis, playing a key role in shaping future applications in health, well-being, and beyond. In this paper, the 

VGG16 deep learning model was used to detect four different stress-related activities, namely Neutral, 

Emotional, Mental, and Physical. For this purpose, feature groups extracted from ECG, TEB, and EDA signals 

obtained by wearable sensor hardware[15,16,34]. In addition, dataset was updated as a result of outlier data 

analysis for each class using the isolation forest algorithm. As a result of this step, more successful results were 

obtained compared to the previous stage. Briefly, the contribution of the research to the literature is to prove 

and show how effective outliers can be on system performance through image transformations of existing time 

series physiological signals. The study provides numerical results affirming the necessity of outlier data 

detection in any data collected for diverse purposes. 

The remaining parts of the paper are as follows: detailed explanations about the research flow, the dataset 

used, the deep learning model, and outlier data detection are given in the Material and Methods section. In the 

experimental results section, evaluation criteria, result tables, and comments are given. The general evaluation 
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and discussion of the results and future studies are mentioned in the discussion and conclusion section. 

2. Material and methods 

In this research, using the VGG16 deep learning model, four different stress-related activities were 

classified over the image equivalents of the data in time series format. In summary, the block diagram 

containing the steps within the scope of the study was briefly presented in Figure 1. 

 
Figure 1. Block diagram with research steps. 

These process steps were run again for the new dataset created after the detection of outliers, which is the 

second stage of the study. Then, the experimental results obtained as a result of the second stage were evaluated 

comparatively. 

2.1. Used dataset 

The dataset were used to determine four stress-related activities, namely Neutral (Class 1), Emotional 

(Class 2), Mental (Class 3), and Physical (Class 4)[15,16,34]. Neutral and Emotional activities from these classes 

were obtained from signals recorded during the viewing of the relevant time periods of three different 

movies[34]. Although the data for Class 3 was collected while playing two different games mentioned in the 
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same reference, for class 4 it consisted only of data while going up and down the stairs. This dataset consist of 

a total of 4480 samples, each of which consists of 533 features. Of the 533 features specified, 174 were obtained 

from ECG signals, 151 from TEB, 104 from EDA data from arm, and the other 104 from EDA data from 

subjects’ hands[15,16,34]. While sampling frequency was taken as 100 Hz for EDA and TEB from the signals 

used in the data collected from 40 subjects, 250 Hz was used for the ECG signal. Detailed information about 

the dataset used by Mohino-Herranz et al.; Mohino-Herranz and Gil-Pita et al.; UCI Machine Learning 

Repository[15,16,34]. Data distribution graphs for each of the classes in the dataset used are given in Figure 2. 

 
Figure 2. Data distribution graphs for four classes. 

Accordingly, when the data distributions of the four classes are examined, it is seen that the distribution 

between the classes has similar characteristics and ranges. This situation has the effect of making the distinction 

between classes difficult. Therefore, machine learning algorithms offer convenience in solving similar 

problems. 

For this research, each data in the form of a time series in the size of 1 × 533 in the dataset was firstly 

converted into images of 256 × 256 size one by one. During the transformation of time series data into images, 

each data was sequentially presented to a small algorithm that was written. Within the scope of this algorithm, 

the received data was first displayed as a “figure” and then the dimensions of this “figure” were resized as 256 

× 256. Finally, this resulting “figure” was stored in a folder for later use. Thus, an “image” based dataset was 

obtained. An example representation of each class from the data converted to images is given in Figure 3. 

 
Figure 3. Sample images for each class. 



5 

When Figure 1 is carefully examined, the visual differences between the classes can be understood. 

However, it is not possible to evaluate them manually and artificial intelligence-based systems are needed. 

2.2. VGG16 deep learning architecture 

In image processing studies, Convolutional Neural Network (CNN) is generally a preferred deep learning 

model, and VGG16 is an architecture derived from this CNN model. This architecture was first developed by 

the “Visual Geometry Group” (VGG) at Oxford University and takes its name from the abbreviation of this 

group. The use of multiple sequential convolution and pooling layers in this architecture makes the VGG16 

model stand out in deep learning architectures. Since the CNN model is generally effective in recognizing 

patterns in images, the VGG16 architecture derived from these networks is a very successful model in this 

context[35]. 

Transfer learning is that machine learning methods store the information obtained during the solution of 

a problem and use this information when another problem is encountered. With the Transfer Learning approach, 

models that show higher success and learn faster can be developed using less training data[36]. As mentioned 

above, deep learning architectures such as VGG16 can be used in different tasks thanks to these features that 

are pre-trained and learned on large dataset. The basic architecture of VGG16 consists of 5 layers and these 

layers are as follows: input layer, convolutional layers, max-pooling layers, fully connected layers, and output 

layer[37]. In the input layer, images are given to the input of the model with RGB (Red, Green, Blue) color 

channels, usually 224 × 224 pixels in size. In the next layer, VGG16 consists of 13 consecutive convolution 

layers. Each convolution layer is created with sequential 3 × 3 dimensional filters, and then the ReLU activation 

function is applied in each layer. These convolution layers produce various feature maps to determine the 

features of the image. The next layers are the max-pooling layers and between each of the three sequential 

convolution layers, there are 2 × 2 dimensional max-pooling layers of 2 steps. These layers help reduce feature 

map size and reduce computational overhead[38,39]. In the next layers, the result is reached with fully connected 

layers. VGG16 has 3 fully connected layers. These layers are used for assigning features to classes and 

calculating the probability distribution of the results. In the last of these layers, there are as many neurons as 

the number of classes, and the Softmax activation function is generally used. In this way, the image results in 

probabilities of belonging to different classes[38,39]. 

2.3. Isolation forest algorithm for outlier detection 

The expectation of a researcher from the data he will work on is to be able to obtain inferences with high 

accuracy and reliability. One of the important problems that undermine the data processing and this expectation 

afterward is the outlier values in the dataset. The observation that is significantly far from the range of the 

majority of observations in the processed dataset is called an outlier. Outliers look different from the rest of 

the observations in the dataset and can therefore be identified. If the dataset used in the studies are not cleaned 

of outliers, the processing steps may become blurred and the quality of the desired outputs may decrease. For 

this reason, the discrete data in the dataset to be used must be determined before starting scientific studies and 

it must be decided what to do with these data[40,41]. 

There are many methods in the literature that can be used for outlier detection. One of them, Isolation 

Forest, is a fast and effective unsupervised learning method and works by assuming that outliers tend to be 

more isolated. The basic idea of this algorithm is based on decision trees and is built on the expectation that 

outlier data points will follow a longer path through many random trees[42,43]. The Isolation Forest algorithm 

estimates the isolation time of each data point and uses these estimates as a score. Points that are isolated faster 

get lower scores, and points that take longer to isolate are given higher scores. These scores are then used to 

identify outliers. Outliers tend to have a larger score because they are not isolated by shorter paths[42,43]. 
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3. Experimental results 

In this study, first of all, 20% of the used dataset was allocated for testing, with equal samples from each 

class. Then, an adjustment was made on the remaining samples to be 80% training and 20% validation. 

Accordingly, there are 896 images in total, 224 for each class in the test set, a total of 720 images, 180 for each 

class in the validation set, and finally, there are 716 images for each class in the training set, a total of 2864 

images. After the outlier detection application carried out in the second stage of the research, the test, validation, 

and training dataset consist of 804,648, and 2576 data in total (with an equal number of images in each class), 

respectively. 

The outputs obtained as a result of the experimental researches were first evaluated on the 4-class 

confusion matrix. The confusion matrix was created according to the actual and predicted class labels. As a 

result, True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) numbers of the 

test dataset were obtained. TP rate, FP rate, Specificity, Precision, F1 score and accuracy[44] values were 

calculated over these parameters. The formulas of some of them are as follows[44]: 

𝑇𝑃𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

In addition to these evaluation criteria, Cohen’s Kappa score[45] is also calculated. Finally, the loss and 

accuracy graphs for the training and validation of the outlier detection application, where the best results were 

obtained, were drawn. Thanks to these graphs, the performance changes of the training phase of the relevant 

model according to the epochs can be observed[46–48]. 

In the first phase of the study, the highest performance results for training and validation over 200 epochs 

were 70.15% and 69.44%, respectively. Confusion matrix obtained for the test data is given in Figure 4. 

When the confusion matrix given in Figure 4 is examined, it is understood that class3 performs better in 

terms of TP number and class 1 performs better in terms of TN. Other performance outputs obtained for the 

test data are given in Table 1. 
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Figure 4. The confusion matrix obtained for the test dataset in the first phase of the research. 

When Table 1 is analyzed on a class basis; although class 1 outperformed others in terms of FP, TN, FP 

rate, specificity, kappa, and accuracy, the performance of class 3 was better for TP, FN, TP rate, precision, and 

F1 score. These two classes were followed by class 2 and class 4 in terms of accuracy. The average accuracy 

rate of the system was obtained as 64.3%. For the first stage of the study, test performances were also evaluated 

using VGG19, ResNet50, and DenseNet121 models under the same conditions. Accordingly, the result of 61.4% 

for the VGG19 model was followed by ResNet50 and DenseNet121 models with 60.3% and 58.4%. Since 

VGG16 achieved the best performance outputs for the first stage among all models, the next stages of the 

research were continued with this model. 

Table 1. The test results for the first stage of this research. 

Classes TP FP TN FN TP rate FP rate Specificity Precision Kappa F1 score Accuracy Mean accuracy 

class 1 35 104 568 189 0.16 0.15 0.85 0.25 0.57 0.20 0.67 

0.643 
class 2 41 129 543 183 0.18 0.19 0.81 0.24 0.54 0.21 0.65 

class 3 93 186 486 131 0.42 0.28 0.72 0.33 0.53 0.37 0.65 

class 4 88 220 452 136 0.39 0.33 0.67 0.29 0.47 0.33 0.60 

As a result of outlier detection applied in the second stage of the research, the dataset was presented to 

the same model. The loss and accuracy graphs obtained over 200 epochs for training and validation from these 

datasets are presented in Figure 5. 

 
Figure 5. Loss and accuracy graphs of the training and validation dataset in the second phase of the research. 

When the loss and accuracy graphs in Figure 5 are examined, it is seen that as the epoch number increases, 

the loss value decreases for both datasets, while the accuracy increases. Loss values represent the estimation 
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errors of the model separately for the training and validation dataset. The regular decline curve shows that the 

model has been trained successfully and that the distortions in the data have been eliminated as much as 

possible. After the training process was completed, the system evaluation was made on the test data and the 

confusion matrix in Figure 6 was obtained. 

 
Figure 6. Loss and accuracy graphs of the training and validation dataset in the second phase of the research. 

 
Figure 7. The confusion matrix obtained for the test dataset in the second phase of the research. 

When the confusion matrix in Figure 7 is examined, it is clearly seen that the most successful predictions 

are obtained in class 4. While 196 of the 201 data in this class were predicted correctly, 4 of them were labeled 

as class 3 and 1 of them as class 1. By following this class 1, 153 data are correct and others are incorrect. 

However, inferences made from the multi-class confusion matrix are given in Table 2 in order to make a more 

detailed analysis about the classes. 

Table 2. The test results for the second stage of the research. 

Classes TP FP TN FN TP rate FP rate Specificity Precision Kappa F1 score Accuracy Mean accuracy 

class 1 153 84 519 48 0.76 0.14 0.86 0.65 0.79 0.71 0.84 

0.825 
class 2 103 120 483 98 0.52 0.19 0.81 0.46 0.64 0.49 0.73 

class 3 71 61 542 130 0.36 0.10 0.90 0.54 0.69 0.43 0.76 

class 4 196 16 587 5 0.98 0.02 0.97 0.93 0.97 0.95 0.97 

The average accuracy rate for the test data in the second stage was calculated as 82.5%. As can be seen 

in Table 2, class 4 gave the best results in all performance criteria. Class 4, which had the worst performance 
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in the first stage, was the best in the second stage. It is thought that the reason for this is mostly the detection 

and elimination of disruptive data in this class. Likewise, higher results were obtained for the other classes 

compared to the previous stage. The fact that Kappa and F1 score values for class 4 are very close to 1 indicates 

that the classification performance is very close to perfect. When other classes were evaluated in terms of 

accuracy, class 4 was followed by class 1, class 3, and class 2, respectively. When the whole table is examined, 

it is clearly understood that the outlier detection application affects the results positively. 

4. Discussion and conclusion 

The determination of the type of activity in research and applications carried out under the name of 

human-computer interaction increases its importance day by day. Especially for patients whose activity they 

want to perform is not understood, the correct determination of the relevant activity can be vital in some cases. 

Detection of stress through some physiological signals in the body may be more advantageous for those with 

the aforementioned disorders. For these reasons, it is considered important to automatically identify certain 

stress, especially through relevant signals. 

In this study, two different research applications were carried out to detect four different stress, namely 

Neutral, Emotional, Mental, and Physical. A dataset consisting of 4480 samples with 533 features obtained 

from references[15,16,34] was used for related applications. Features in this dataset are extracted from ECG, EDA, 

and TEB signals. All samples in the used dataset were first converted to images. The first stage of the research 

was to present the images of the standard data to the VGG16 deep learning model. As a result, the highest 

accuracy rate was obtained as 67% for class 1 Neutral activation. In the second part of the study, an outlier 

detection application was performed using the Isolation Forest Algorithm on the available data. The new 

dataset obtained were presented to the same model and detailed analyses were made. Accordingly, the 

maximum accuracy value was 97% in Physical activity. In the same application, the average rate for all 

activities was 82.5%. 

The significant increase in the results thanks to the outlier detection applied in the second stage is related 

to the detection of some of the data that has a disruptive effect on the system. In the first stage, the highest 

performance was obtained for the Neutral activity, but in the next, for the Physical. The activity with the 

highest increase compared to the first stage was Physical. This shows that the disruptive components in the 

dataset of this activity have been largely eliminated. It is seen that the activity with the second highest rate of 

improvement is the first. Then others followed. 

As with any research, this study has some limitations. The first of these is the limited number and variety 

of data. Especially in deep learning applications, having more data contributes to better learning of the model. 

The second is about applying outlier detection from each class equally to avoid class imbalance in the research. 

As a result of this application, which was carried out at an equal rate, a high rate of improvement was achieved 

in one class, while it was limited in another. Therefore, outlier detection can be done at different rates for each 

class. However, the class imbalance that may occur in the data due to this difference should not be ignored. 

In terms of future studies, the variety of stress can be increased by expanding the same dataset. In addition, 

research can be carried out on different deep-learning models and outlier detection algorithms. Most 

importantly, performing studies on original existing and different signals can lead to the emergence of 

remarkable research. 
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