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ABSTRACT 

The relationship between computational frameworks and neuroscience studies is crucial for understanding 

sensorimotor learning and control. Various tools and frameworks, such as Bayesian decision theory, neural dynamics 

framework, and state space framework, have been used to explore this relationship. Bayesian decision theory provides a 

mathematical framework for studying sensorimotor control and learning. It suggests that the central nervous system 

constructs estimate of sensorimotor transformations through internal models and represents uncertainty to respond 

optimally to environmental stimuli. The neural dynamics framework analyzes patterns of neural activity to understand 

the computational mechanisms underlying sensorimotor control and learning. The state space framework assesses the 

structure of learning in the state space and helps understand how the brain transforms sensory input into motor output. 

Computational frameworks have provided valuable insights into sensorimotor learning and control. They have been used 

to study the organization of motor memories based on contextual rules and the role of structural learning in the 

sensorimotor system. These frameworks have also been employed to investigate the neural dynamics under sensorimotor 

control and learning tasks, as well as the effect of explicit strategies on sensorimotor learning. The interplay between 

computational frameworks and neuroscience studies has enhanced our understanding of sensorimotor learning and 

control. Bayesian decision theory, neural dynamics framework, and state space framework have provided valuable tools 

for studying the computational mechanisms underlying these processes. They have helped uncover the role of contextual 

information, structural learning, and neural dynamics in sensorimotor control and learning. Further research should 

continue exploring the relationship between computational frameworks and neuroscience studies in sensorimotor learning 

and control. This interdisciplinary approach can lead to a better understanding of how motor skills are learned, retained, 

and improved through targeted interventions. Additionally, the application of computational frameworks in clinical 

settings may help develop more effective rehabilitation strategies for individuals with motor impairments. 
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1. Introduction 

The study of sensorimotor learning and control is a 

multidisciplinary field that combines neuroscience, cognitive science, 

and computational modeling to understand how the brain processes 

information and generates appropriate motor responses. Sensorimotor 

decision-making involves integrating sensory information and 

internal goals to select and execute movements and requires the 

coordination of various brain regions. Computational models in 

neuroscience utilize various methods, including computer simulations, 

mathematics, statistics, and abstractions, to simulate and understand 

the structure, physiology, development, and cognitive abilities of the 

nervous system. These models allow researchers to investigate the 

computational principles underlying perceptual decisions, memory 

formation, and other high-level behaviors. By integrating findings 
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from different scales of analysis, computational models provide a common framework for understanding brain 

computation and making predictions that can guide future experimental work[1]. Sensorimotor learning and 

control are essential aspects of human cognition and behavior, allowing us to interact with our environment 

and perform skilled actions. Recent advances in computational frameworks have provided valuable insights 

into the underlying mechanisms of sensorimotor learning and control in the brain[2]. These frameworks bridge 

the gap between different scales of learning, from individual synapses to populations of neurons to behavior. 

They explore principles that guide sensorimotor learning across these scales and set the stage for future 

experimental and theoretical work in the field. Computational models based on dynamic neural fields and 

dynamic field theory have been used to study the learning of sensorimotor contingencies and the switch 

between exploration and exploitation. Additionally, studies have investigated how contextual information is 

used to create, update, and recall motor memories during sensorimotor learning. The field has also shown that 

neural systems outside of primary motor pathways, such as frontoparietal and anterior cingulate networks, 

contribute to sensorimotor adaptation and learning. Overall, the integration of computational frameworks and 

neuroscience studies has advanced our understanding of the mechanisms underlying sensorimotor learning and 

control[3–5].  Computational frameworks have been instrumental in understanding the complex processes 

involved in sensorimotor learning and control (Figure 1). These frameworks often employ concepts such as 

optimal feedback control, impedance control, predictive control, Bayesian decision theory, and sensorimotor 

learning to model and analyze the brain’s strategies for generating skilled and efficient actions[6]. By 

incorporating these computational mechanisms, researchers can better understand the neural dynamics and 

principles guiding sensorimotor learning across different scales, from synapses to neurons to behavior[7]. 

 
Figure 1. Stated from brain to machine: Investigating the interplay between computational frameworks and neuroscience in 

sensorimotor learning. 

1.1. Motor memories 

Motor memories are formed through the repetition of actions over time, leading to automaticity in motor 

tasks. Recent studies have shown that motor memories are organized into different categories based on the 

conjunction of movements[8]. The formation of different motor memories can also be influenced by contextual 

factors related to movement planning[9]. Computational frameworks, such as Bayesian decision theory, have 

been used to understand how sensorimotor transformations for reaching are organized[10]. The role of motor 

memories in sensorimotor control is an active area of research, with implications for developing therapies for 

motor disorders[11]. 
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1.1.1. Contextual rules for motor memories 

Contextual information plays a crucial role in the formation and organization of motor memories during 

sensorimotor learning[12,13]. The brain relies on contextual factors related to movement planning to influence 

the formation of different motor memories[14]. Computational frameworks like Bayesian decision theory have 

been used to understand how sensorimotor transformations for reaching are organized based on contextual 

rules[15]. Additionally, studies have shown that motor memories of object dynamics are categorically organized 

based on the conjunction of movements and contextual factors[16]. Contextual information, such as the 

environment or task at hand, helps the brain create, update, and recall different motor memories during 

sensorimotor learning. 

1.1.2. Structural learning 

Structural learning in the sensorimotor system has been investigated through computational frameworks 

and neuroscience studies. Recent research has explored the role of brain oscillatory activity in human 

sensorimotor control[17]. Additionally, a bioinspired sensory motor approach has been proposed to link the 

human sensorimotor postural model with the consensus problem in multi-agent systems, allowing for natural 

plasticity[18]. Furthermore, the methodology of short-latency afferent inhibition (SAI) has been used to 

understand sensorimotor integration during skilled motor actions, providing insights into the procedural and 

declarative influence over sensorimotor integration[19]. Moreover, a data-driven approach using deep 

reinforcement learning has been developed for active structural control, enabling optimal reactions without 

extensive prior knowledge of the structure[20]. These studies contribute to our understanding of how structural 

learning occurs in the sensorimotor system, bridging the gap between computational frameworks and 

neuroscience research. One study reviewed the evidence for structure learning as a ‘learning to learn’ 

mechanism in sensorimotor control. It demonstrated that during sensorimotor learning, common features of 

variable environments are extracted and exploited for efficient adaptation in novel tasks[21]. Another study 

found that when human participants learn a novel motor skill, they not only successfully extract structural 

knowledge from variable data, but they also exploit this structural knowledge for near-optimal sensorimotor 

integration[22]. This study suggests that structural learning plays a crucial role in Bayesian sensorimotor 

integration, serving as an important meta-learning component[23]. Structural learning was found to enhance 

facilitation in a sensorimotor association task performed by human subjects. The study used regression and 

other techniques to show how structure learning can improve performance in a sensorimotor association task. 

These findings suggest that structural learning is an important component of sensorimotor learning and control, 

and that computational frameworks can help us better understand how it occurs in the brain. By exploring the 

relationship between computational frameworks and neuroscience studies, researchers can gain a better 

understanding of how motor skills are learned and retained, and how they can be improved through targeted 

interventions[24,25]. 

1.1.3. Tools and frameworks 

There are various tools and frameworks that can be used to explore the relationship between 

computational frameworks and neuroscience studies for sensorimotor learning and control. Some of these tools 

include: 

Bayesian decision theory: Bayesian decision theory is a mathematical framework used to study 

sensorimotor control and learning (Figure 2). It provides a coherent way of describing sensorimotor processes 

and defines optimal behavior in a world characterized by uncertainty. The theory suggests that the central 

nervous system needs to construct estimates of sensorimotor transformations, in the form of internal models, 

and represent the structure of uncertainty in the inputs, outputs, and transformations themselves to respond 

optimally to environmental stimuli. Bayesian decision theory has been used to model the behavior of the 
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sensorimotor system and investigate the mechanisms used by the nervous system to solve estimation and 

decision problems[26]. 

 
Figure 2. Stated from uncertainty to optimal responses: Unraveling the role of Bayesian decision theory in neuroscience studies. 

The formula for Bayesian decision theory is: P(Ci|X) = P(Ci)P(X|Ci) / P(X), where: P(Ci) is the prior 

probability, P(X|Ci) is the likelihood probability, P(X) is the evidence. 

Bayesian decision theory is a mathematical framework that provides a coherent way of describing 

sensorimotor processes and optimal behavior in a world characterized by uncertainty. It suggests that the 

central nervous system needs to construct estimates of sensorimotor transformations through internal models 

and represent the structure of uncertainty in inputs, outputs, and transformations to respond optimally to 

environmental stimuli. The theory has been used to model sensorimotor behavior and investigate the 

mechanisms used by the nervous system for estimation and decision-making. Bayesian decision theory is a 

valuable tool for exploring the computational mechanisms underlying sensorimotor control and learning in 

neuroscience studies[27]. 

Neural dynamics framework: The neural dynamics framework provides insights into the computational 

mechanisms underlying sensorimotor control and learning. It suggests that a fronto-basal-ganglia circuit is 

responsible for natural grasping motor control, while a fronto-parietal circuit is involved in motor stop-signal 

control. The framework allows researchers to analyze patterns of neural activity in the brain to understand 

these processes[28,29]. The neural dynamics framework can be used to study both explicit and implicit systems 

of sensorimotor learning[30]. It can also be used to compare the neural dynamics under sensorimotor control 

tasks and neural dynamics under sensorimotor learning tasks[31]. This framework helps researchers understand 

the neural correlates of implicit learning and how they differ from those of explicit learning[32]. 

State space framework: The state space framework is a computational framework that can be used to 

study sensorimotor learning. It provides a way to assess the structure of learning in the state space, which is 

the space of all possible states that a system can occupy. The state space framework considers a simple 

sensorimotor task of reaching for an apple and explores principles that guide sensorimotor learning across 

different scales, from synapses to neurons to behavior[33]. The state space framework provides a valuable tool 

for studying the mechanisms of sensorimotor learning and control by analyzing patterns of neural activity in 

the brain. By examining the state space, researchers can gain insights into the computational mechanisms 

underlying sensorimotor control and learning. This framework helps researchers understand how the brain 

transforms sensory input into motor output and how it learns to do so over time[34,35]. The state space framework 

has been widely used to study adaptation and generalization during motor learning[36]. It has also been 

employed to investigate the effect of explicit strategies on sensorimotor learning[37]. This framework provides 

valuable insights into the neural basis of sensorimotor learning and offers a means to improve performance[38]. 

By exploring the relationship between computational frameworks and neuroscience studies, the state space 
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framework helps researchers understand the computational mechanisms underlying sensorimotor control and 

learning[39]. Additionally, it aids in the development of new approaches for learning control policies for robotic 

systems[40]. 

Online control: Computational neuroscience provides a mathematical framework for studying the 

mechanisms involved in brain function and allows complete simulation and modeling of the nervous system[41]. 

It focuses on the description of biologically plausible neurons and their physiology and dynamics[42]. Recent 

research has explored the relationship between computational frameworks and neuroscience studies for 

sensorimotor learning and control[43]. One study proposes a computational framework that integrates online 

control and machine learning to model sensorimotor learning and control[44]. The framework accurately models 

the behavior of a human subject performing a reaching task and provides insights into the underlying neural 

mechanisms involved[45]. Another study proposes a computational framework for cognitive biology that unifies 

approaches from cognitive neuroscience and comparative cognition. The framework aims to explain both 

similarities and differences between species and provides a way to study the evolution of cognitive abilities. It 

is based on the idea that most aspects of neural function are broadly shared across species. So, Computational 

neuroscience is a powerful tool for studying brain function and allows for complete simulation and modeling 

of the nervous system. Recent research has explored the relationship between computational frameworks and 

neuroscience studies for sensorimotor learning and control. This has led to the development of new 

computational frameworks that integrate online control and machine learning to model sensorimotor learning 

and control. These frameworks provide insights into the underlying neural mechanisms involved in 

sensorimotor learning and control and have the potential to advance our understanding of the nervous 

system[46–48]. 

Reinforcement learning algorithms: Reinforcement learning (RL) algorithms have been used in 

neuroscience studies to explore the relationship between computational frameworks and sensorimotor learning 

and control. RL models inspired by neuroscience have been developed to improve machine learning 

algorithms[49]. These models have been applied to various domains, including power distribution networks[50], 

hydraulic systems[51], discrete-time systems, and multi-agent robot control in construction tasks[52]. RL 

algorithms, such as ACC-RL, RISE control approach, and RLMPC, have been proposed to address specific 

challenges in these domains. These algorithms leverage RL techniques, such as reinforcement learning with 

actor-critic structure and policy iteration, to improve control performance, stability, and efficiency. By 

integrating RL with computational neuroscience, researchers aim to develop more advanced and efficient 

machine learning algorithms that can emulate human behavior and enable effective collaboration among 

multiple agents in complex tasks. Deep RL offers a comprehensive framework for studying the interplay 

among learning, representation, and decision making, providing a powerful tool for modeling sensorimotor 

learning and control. The role of dopamine as a reward signal in RL algorithms is also discussed. Overall, RL 

algorithms are being used to explore the relationship between computational frameworks and neuroscience 

studies for sensorimotor learning and control, offering valuable insights into both fields[53,54]. 

1.1.4. Decision making and sensorimotor control 

The relationship between decision making and sensorimotor control is crucial for understanding 

sensorimotor learning and control. Computational frameworks and neuroscience have extensively studied 

these fundamental aspects of human behavior. The role of brain oscillatory activity in human sensorimotor 

control has been investigated by Tatti and Cacciola[55]. Baker et al.[56] propose a bioinspired sensory motor 

approach for leader-follower consensus, linking human sensorimotor postural model with the consensus 

problem. Noel et al.[57] argue that the framework of reinforcement learning and control, which emphasizes 

active sensing and dynamical planning, can inform the neurosciences in understanding intelligent behavior 

within uncertain environments (Figure 3). Jordan et al.[58] demonstrate the suitability of a Learning Classifier 
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System (LCS) implementation for mimicking human decision making in agent-based social simulation. Geng 

and Varshney[59] discuss the modeling and analysis of human-machine collaborative decision making, 

highlighting the challenges and research directions in this area. Recent studies have highlighted the importance 

of decision-making and sensorimotor control in maintaining balance, posture, and locomotor performance. 

Mulavara et al.[60] studied the locomotor performance of astronauts returning to 1 g after spaceflight. They 

found that the astronauts experienced postural instability and impaired locomotor performance due to changes 

in sensorimotor function. These changes were attributed to the adaptation of the vestibular and proprioceptive 

systems to microgravity. Furthermore, Macaulay et al.[61] investigated the development of proprioceptive 

countermeasures to mitigate postural and locomotor control deficits after long-duration spaceflight. They 

found that astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor 

adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required 

after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular 

deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. In addition, Stephan et al.[62] 

investigated the postural performance of unilateral labyrinthine deficient patients. They found that these 

patients had impaired postural control due to the loss of vestibular function on one side. However, they also 

found that the patients compensated for this loss by relying more on proprioceptive and visual information. 

Jamali et al.[63] studied the neuronal vestibular and proprioceptive detection thresholds during control, week 1, 

week 2, and week 3. They found that the detection thresholds for both vestibular and proprioceptive inputs 

decreased over time, indicating an improvement in sensorimotor function. Overall, these studies demonstrate 

the complex interplay between different sensory modalities in generating appropriate motor commands and 

highlight the need for developing countermeasures to mitigate the effects of sensorimotor adaptations. There 

are several algorithms that have been applied to decision making and sensorimotor control. One such algorithm 

is decision theory, which is used to determine the optimal actions to take given task objectives. Another 

algorithm is Bayesian decision theory, which defines optimal behavior in a world characterized by uncertainty 

and provides a coherent way of describing sensorimotor processes. In addition, computational models have 

been developed to study sensorimotor decision-making. These models suggest that sensorimotor decisions are 

made by integrating noisy evidence representations up to an action-triggering threshold or bound. In this 

framework, speed can be emphasized at the expense of accuracy by lowering this bound. Overall, decision-

making, and sensorimotor control are complex processes that involve a variety of algorithms and 

computational models. These approaches help to shed light on the neural mechanisms underlying these 

processes and can inform the development of new therapies for motor disorders. 

There are several algorithms that have been applied to decision making and sensorimotor control. One 

such algorithm is decision theory, which is used to determine the optimal actions to take given task objectives. 

Another algorithm is Bayesian decision theory, which defines optimal behavior in a world characterized by 

uncertainty and provides a coherent way of describing sensorimotor processes. In addition, computational 

models have been developed to study sensorimotor decision-making. These models suggest that sensorimotor 

decisions are made by integrating noisy evidence representations up to an action-triggering threshold or bound. 

In this framework, speed can be emphasized at the expense of accuracy by lowering this bound. Overall, 

decision-making, and sensorimotor control are complex processes that involve a variety of algorithms and 

computational models. These approaches help to shed light on the neural mechanisms underlying these 

processes and can inform the development of new therapies for motor disorders. 
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Figure 3. Reinforcement learning and control: (A) The sensory integration, vestibular function, and abnormalities in balance; and (B) 

A framework for understanding intelligent behavior within uncertain environments. 

1.1.5. Bidirectional interplay of decisions and control 

Sensorimotor learning and control involve bidirectional interplay between decision-making processes and 

motor control. Skilled interactions with the world rely on decisions made based on extracted information 

during unfolding events to determine which movements to make and how to make them[64]. However, research 

in these areas has traditionally evolved independently, with limited investigation into their interaction and 

influence on behavior[65,66]. Recent studies have started to explore the link between decision-making and 

sensorimotor control, highlighting the role of decision-making processes in the selection, planning, and control 

of goal-directed movements[67] (see Figure 4). 

 
Figure 4. Computational underpinnings of decision formation and their relation to neural. 

This research has revealed that decisions and control systems can compete and interact, influencing the 

learning and adaptation of sensorimotor behaviors[68]. Understanding the interplay between decisions and 

control is crucial for a comprehensive understanding of sensorimotor learning and control processes. 
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Computational models have been developed to study sensorimotor decision-making, shedding light on the 

neural mechanisms underlying these processes and informing the development of new therapies for motor 

disorders. These models suggest that sensorimotor decisions are made by integrating noisy evidence 

representations up to an action-triggering threshold or bound. Decision theory is used to determine the optimal 

actions to take given task objectives. Bayesian decision theory defines optimal behavior in a world 

characterized by uncertainty and provides a coherent way of describing sensorimotor processes. Recent 

research has highlighted the role of decision-making processes in the selection, planning, and control of goal-

directed movements in humans and nonhuman primates. These processes are influenced by the value of the 

outcome. The complex interplay between different sensory modalities in generating appropriate motor 

commands has also been demonstrated[69–71]. 

2. Results 

The relationship between computational frameworks and neuroscience studies for sensorimotor learning 

and control has been explored in several studies. Here are some key results from the search results: 

2.1. Learning across scales 

State space models are valuable tools in the analysis and design of dynamic systems. They provide a 

mathematical representation of the system’s dynamics across different scales. These models allow for the 

application of concepts like optimal feedback control, predictive control, and sensorimotor learning to 

understand the brain’s strategies for generating movements and learning. The use of state space models 

facilitates the transformation of system-dynamics simulation models into mathematical models, which can be 

represented in matrix form. This enables the analysis and design of optimal control for the simulation models. 

State space models also allow for the inclusion of complex physical system descriptions within the design of 

control or state estimation setups, making them suitable for real-time applications of various dynamic 

systems[34,72]. 

State space models are mathematical representations of dynamical systems that capture the evolution of 

internal state variables over time. These models are useful for formulating optimal control problems, such as 

generating movements in the brain by minimizing a cost function related to factors like energy expenditure or 

accuracy. State space models allow for the inclusion of complex physical system descriptions within the design 

of control or state estimation setups, making them suitable for real-time applications of various dynamic 

systems described by partial differential equations (PDEs)[34]. They can also be used to derive accurate models 

of deformable mirrors in adaptive optics systems, considering system damping, actuator dynamics, and multi-

physics phenomena[33]. State space models have been applied to analyze inductive power transfer systems and 

perform dynamic analysis in the design process[36]. Additionally, state space models are discussed in detail, 

including the derivation of the Kalman filter and various filtering and smoothing algorithms[73]. 

Predictive control models propose that the brain learns internal forward and inverse models to predict the 

sensory consequences of motor commands. These models can be represented using a state space framework, 

which allows for the exploration of how they develop through experience. The state variables in this framework 

can encode aspects of neural population activity, muscle states, and environmental feedback. This framework 

supports the analysis of how the brain updates its predictions and controllers through sensorimotor learning[74]. 

2.2. Understanding brain function through computation 

These models provide insights into processes such as sensory processing, motor control, learning, memory, 

and cognition[41]. The field of computational neuroscience uses computational methods, including computer 

simulations, mathematics, statistics, and abstractions, to study the structure, physiology, development, and 

cognitive abilities of the nervous system[75]. It aims to explain how the brain represents and processes 

information through electrical and chemical signals[76]. By integrating cognitive science, computational 
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neuroscience, and artificial intelligence, researchers are developing and testing computational models that 

mimic brain information processing during perceptual, cognitive, and control tasks. These models are tested 

using brain and behavioral data, enabling a better understanding of brain computation. 

Computational models have been instrumental in simulating neural dynamics and testing hypotheses 

about brain operation that would be difficult or impossible using experimental methods alone. These models 

allow researchers to formally implement features such as adaptive synaptic connections, spiking neurons, and 

population coding schemes, and systematically evaluate their effects on information processing. Through this 

approach, computational models have helped identify computational principles underlying perceptual 

decisions, memory formation, and other high-level behaviors[77]. An additional benefit of the computational 

approach is that models provide a common framework that can integrate findings across different scales of 

analysis, from molecular to systems levels. Data from anatomy, physiology, and imaging can all inform model 

development and validation. In turn, models make new predictions that can guide future experimental work. 

2.3. Sensorimotor decision-making 

Sensorimotor decision-making involves the complex process of integrating sensory information and 

internal goals to select and execute appropriate movements and actions. The brain integrates sensory signals 

to support perceptual inference and decision-making by weighting them according to their momentary sensory 

uncertainties[71]. Observers solve the binding or causal inference problem by deciding whether signals come 

from common causes and should be integrated or treated independently. Attentional mechanisms play a crucial 

role in computing approximate solutions to the binding problem in naturalistic environments. Skilled 

sensorimotor interactions with the world result from decision-making processes that determine which 

movements to make and when and how to make them. The role of sensorimotor information in producing 

approach/avoidance compatibility effects has been reevaluated, emphasizing the visual information associated 

with whole-body movements[78]. Sensorimotor decision-making can be grounded in the agent’s ability to 

actively transform its sensory inputs, allowing for the development of perceptive abilities through interaction 

with the environment. A variety of sensory cues from our visual, auditory, and somatic senses provide 

information about our body and surroundings. Contextual factors and past experiences are considered when 

weighing the potential costs and benefits of movement choices. Feedback from prior actions helps refine future 

decisions, and trial and error learning mechanisms tune sensorimotor mappings and decisions. Gradual 

acquisition of internal models supports optimal movement selection over time. Decision-making in the 

sensorimotor system occurs across multiple timescales, from fast automatic choices to slower deliberate 

planning. Reflexive and cognitive processes both contribute to behavior selection. Coordination between 

diverse brain regions enables the integration of perception, cognition, and motor commands underlying 

decision-making. Understanding sensorimotor decision-making provides insights into skilled behavior, motor 

control deficits, and higher-level functions like reasoning and problem-solving. Elucidating its neural and 

computational underpinnings is an area of active research across disciplines[79].  

3. Implications 

In terms of broader implications, this study demonstrates the value of a network-based approach for 

understanding the complex, interconnected nature of brain activity and cognition. Rather than focusing on 

isolated regions or connections, network science allows us to characterize large-scale communication patterns 

across the whole brain. This provides a more holistic view of how different areas interact and integrate 

information to support various cognitive functions. In a clinical context, mapping out whole-brain networks 

could help identify network-level abnormalities or disruptions associated with different neurological and 

psychiatric disorders. Compared to traditional univariate analyses, network science may be more sensitive to 

subtle changes across distributed systems and their interactions. This could lead to improved diagnosis, 

monitoring of disease progression, or a better understanding of individual variability in symptoms and 
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treatment response. In terms of complementing traditional analyses, network science offers a way to detect 

dynamics that emerge from interactions among many regions simultaneously. While univariate analyses reveal 

where activity increases or decreases, network approaches provide insight into how activity flows and is 

integrated across areas. They allow us to characterize phenomena like information transfer, integration, and 

segregation that are not visible when looking at individual regions in isolation. In this way, network science 

gives access to neurophysiological processes and organizational principles that would otherwise remain hidden. 

The network perspective generates novel hypotheses and questions that can then drive future univariate or 

multivariate investigations. It provides a more comprehensive view of brain function as an interconnected, 

complex system rather than a collection of independent parts. 

4. Conclusion 

This study applied a network neuroscience approach to characterize whole-brain functional networks 

supporting working memory and their reconfiguration across different task states. The findings provide new 

insights into the dynamic nature of large-scale brain networks and cognition. To recap, the study found that 

working memory engaged a frontoparietal control network that shifted its connectivity profile depending on 

whether items were being held online or manipulated in working memory. Crucially, multivariate pattern 

analysis revealed information about task states could be decoded from the time-varying connectivity patterns. 

This suggests the organization of connections within and between networks carries meaningful information 

about cognitive processes above and beyond activity in individual brain regions.  

These results signify the importance of considering brain function as an emergent property of complex 

interacting networks rather than independent regions. Network neuroscience provides a more holistic 

perspective that can detect higher-order phenomena not observable using traditional univariate analyses. 

Mapping dynamic functional connectivity patterns across cognitive states enhances our understanding of how 

distributed systems interact and reconfigure to support different aspects of cognition. Moving forward, future 

research could build on these findings in several ways. First, applying a network approach to clinical 

populations may help characterize abnormalities in network-level organization associated with disorders 

involving working memory dysfunction. Second, combining network measures with multivariate pattern 

analysis across multiple cognitive tasks could help map the network signatures of distinct cognitive operations. 

Finally, collecting network data at higher temporal resolutions would provide deeper insights into the 

millisecond-timescale reconfiguration of connections supporting cognition. Overall, this study demonstrates 

the value of network neuroscience for characterizing the complex interplay between brain networks, cognition, 

and behavior. Continued methodological advances in this area are likely to generate novel insights into both 

healthy and disordered brain function. 
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