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ABSTRACT 

Worker safety is paramount in many industries. An essential component of industrial safety protocols involves the 

proper use of hardhats. However, due to lax safety awareness, many workers neglect to wear hardhats correctly, leading 

to frequent on-site accidents in China. Traditional detection methods, such as manual inspection and video surveillance, 

are inefficient and costly. Real-time monitoring of hardhat use is vital to boost compliance with hardhat usage and 

decrease accident rates. Recently, the advancement of the Internet of Things (IoT) and edge computing has provided an 

opportunity to improve these methods. In this study, two detection models based on You Only Look Once (YOLO) v5, 

hardhat-YOLOv5s and hardhat-YOLOv5n, were designed, validated, and implemented, tailored for hardhat detection. 

First, a public hardhat dataset was enriched to bolster the detection model’s robustness. Then, hardhat detection models 

were trained using the YOLOv5s and YOLOv5n, each catering to edge computing terminals with varying performance 

capacities. Finally, the models were validated using image and video data. The experimental results indicated that both 

models provided high detection precision and satisfied practical application needs. On the augmented public dataset, the 

hardhat-YOLOv5s and hardhat-YOLOv5n models have a Mean Average Precision (mAP) of 87.9% and 85.5%, 

respectively, for all six classes. Compared with the hardhat-YOLOv5s model, Parameters and Giga Floating-point 

Operations (GFLOPs) of the hardhat-YOLOv5n model decrease by 74.8% and 73.4%, respectively, and Frame per 

Second (FPS) increases by 30.5% on the validation dataset, which is more suitable for low-cost edge computing 

terminals with less computational power. 

Keywords: occupational safety & health; object detection; deep learning; data augmentation; edge computing terminal 

1. Introduction 

Hardhats are crucial safety equipment for workers in industrial 

settings, serving to shield the head from falling objects and high 

pressure, thus protecting lives in hazardous situations[1]. Regrettably, 

due to inadequate safety consciousness, some workers forgo the use 

of hardhats during daily inspections, equipment maintenance, and 

infrastructure construction, which often leads to injuries or even fatal 

accidents[2].  

Industries involving aerial work, including construction, power, 

mining, and petroleum, underscore the importance of correct 

protective equipment usage. As a primary defense against external 

impact, hardhats are essential to worker safety[3]. From January 2016 

to August 2018, more than 160,000 workplace safety accidents 

occurred across various industries in China, resulting in over 100,000 

deaths. In the power industry alone, 170 accidents resulted in 232 
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deaths and direct economic losses of 22.9 million Chinese yuan[4]. 

In the construction industry, specifically, 2019 saw at least 773 safety accidents and 904 fatalities across 

China[5], a 5.31% and 7.62% increase in total accidents and fatalities, respectively, from the previous year. 

Notably, accidents caused by falling or colliding objects accounted for approximately 15.91% of total 

fatalities[6]. Among the 78 nationwide construction accidents, 53 fatalities involved workers not wearing 

hardhats, accounting for 67.95% of total casualties[7]. 

Conclusively, most work site fatalities stem from the lack of hardhat usage. Prompt detection and 

warnings for non-compliance can significantly reduce incidents and losses attributable to such negligence[8]. 

Some industries have implemented video surveillance systems to monitor workers’ compliance, including 

hardhat usage[9]. Yet, manual surveillance, which often involves a single individual monitoring multiple 

video channels, is labor-intensive and prone to negligence and missed detections[10], highlighting the need to 

transition to an unattended intelligent video analysis system. 

Recently, deep learning algorithms have shown promise in tasks such as image classification and object 

detection. Concurrently, edge computing, an expansion scheme of cloud computing, has been integrated with 

IoT to address these issues[11]. As a novel computing model, edge computing performs data processing, 

storage, and other tasks near users, providing efficient services[12,13]. The YOLO architecture is not only fast 

but also has high detection accuracy. Therefore, YOLO is introduced into IoT for hardhat detection at work 

sites via edge computing terminals, which can significantly mitigate risks associated with incorrect hardhat 

usage. 

2. Literature review 

Due to the rapid development of deep learning, many studies use deep learning methods to detect 

hardhat-wearing at work sites. Although these methods based on Faster Region-Convolutional Neural 

Network (RCNN), YOLOv3, and YOLOv4 had improved the algorithm to perform hardhat-wearing 

detection, their parameters and calculations are enormous, which were not conducive to deploying into edge 

computing terminals. 

Recently, edge computing enabled more image processing tasks to be implemented at edge sides. 

Therefore, intelligent video surveillance at the edge has become a trend. Inspired by YOLO, Nguyen et al.[14] 

proposed a novel form of real-time human detection in 2021, focused on a good trade-off between accuracy 

and processing time. The trained model detected humans with accuracies of 95.05% and 96.81% on 

Raspberry PI 3B with 2 FPS. In 2022, Feng et al.[15] investigated the inference workflow and performance of 

the YOLO network in three different edge computing terminals, which were NVIDIA Jetson Nano, NVIDIA 

Jetson Xavier NX and Raspberry Pi 4B. The analysis results indicated that Jetson Nano was a trade-off edge 

computing terminal in terms of performance and cost. The trained model achieved up to 15 FPS of detected 

videos when running YOLOv4-tiny. 

In 2020, Wu et al.[16] proposed a hardhat-wearing detection and identification method based on an 

improved Faster RCNN algorithm. The feature layers obtained in multiple stages were fused, and multi-scale 

detection was performed. Meanwhile, the size of the region proposal was modified to make the model 

optimal. The average detection accuracy rate of the five types of objects for workers wearing red, yellow, 

white, and blue color helmets and not wearing helmets reached 85.8%. 

Wang et al.[17] proposed an improved YOLOv3 object detection algorithm in 2020. Combined with the 

YOLOv3 algorithm’s objective function, this algorithm improved the Generalized Intersection over Union 

(GIoU) calculation method to design a new objective function to achieve Intersection over Union (IoU) local 

optimization as the local optimization of the objective function. The mAP of the improved YOLOv3 



3 

algorithm increased by 2.07% and 2.05% in the Visual Object Classes (VOC) 2007 public dataset and 

helmet-wearing dataset, respectively, compared with the YOLOv3 algorithm. 

In the same year, Ge et al.[18] proposed a helmet-wearing detection method that integrates environmental 

features based on YOLOv4. To supplement the features lost in the convolution pooling process, under the 

condition that the output feature maps of 3 different sizes obtained by YOLOv4 were consistent with the 

receptive fields of the feature maps obtained by feature extraction from the original image, the two were 

added to fuse the high and low layer features to capture more detailed information. A 3 × 3 convolution 

operation was used on the fused feature map to reduce the aliasing effect of the fused feature map to ensure 

feature stability. The mAP reached 91.55%. Compared with YOLOv4, the mAP had increased by 5.2%. 

To solve the problem of enormous model layers and parameters, two models for hardhat-wearing 

detection were trained respectively by using YOLOv5s and YOLOv5n to adapt to edge computing terminals 

with different computing power. In addition, some methods used open-sourced public datasets, and some 

used self-collected datasets. These datasets were usually annotated into only two classes, “person-with-

helmet” and “person-no-helmet”. Therefore, four new classes were added to make the dataset label 

reasonable and scalable. The new dataset label consists of six classes, “helmet”, “head-with-helmet”, 

“person-with-helmet”, “head”, “person-no-helmet”, and “face”. Furthermore, these methods had low 

detection accuracy for occluded and crowded objects. Therefore, images of complex work scenes were added 

to the dataset to improve detection accuracy in this paper. 

3. The YOLOv5 algorithm 

3.1. Introduction to YOLO 

The YOLO series is a popular one-stage object detection methodology, encompassing versions from 

YOLO to YOLOv5. Initially proposed by Redmon et al. at the conference on Computer Vision and Pattern 

Recognition (CVPR) in 2016, YOLO represented a pivotal shift in object detection algorithms[19]. YOLO 

innovatively merged the processes of region proposal generation and detection, effectively treating object 

detection as a regression problem and achieving one-stage detection. YOLO segmented the image into N × N 

sub-regions, predicting the probability, classification, and position offset of objects within each sub-region. 

Due to its simplistic structure, YOLO facilitated rapid operational speed.  

In June 2020, YOLOv5 was open-sourced, featuring a fast detection speed and a substantially 

lightweight model size. YOLOv5 introduced five distinct object detection networks, namely YOLOv5n, 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, tailored to cater to a range of applications. A comparison 

between various versions of YOLO is presented in Table 1, with the YOLOv5s model demonstrating the 

highest detection precision and fastest detection speed. The data represents various iterations of the YOLO 

object detection algorithm. Each version improves upon the speed or precision of its predecessor. The FPS is 

generally used to measure the detection speed of the model, and the larger the value, the faster the detection 

speed. The mAP is generally used to measure the detection accuracy of the model, and the larger the value, 

the higher the accuracy. 

Table 1. Performance comparison of YOLO series object detection models. 

Model Network FPS VOC2007 (mAP/%) VOC2012 (mAP/%) COCO (mAP/%) 

YOLO VGG16 45 66.4 57.9 - 

YOLO9000 Darknet19 40 78.6 73.5 21.6 

YOLOv3 Darknet53 78 74.5 - 57.9 

YOLOv4 CSPDarknet53 66 - - 43.5 

YOLOv5s Conv2d (6 × 6) + CSPDarknet53 113 - - 51.8 

YOLO VGG16 45 66.4 57.9 - 
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The original YOLO model, using a Visual Geometry Group 16 (VGG16) network, operates at 45 FPS, 

with 66.4% and 57.9% mAP on VOC2007 and VOC2012 datasets, respectively. YOLO9000, with 

Darknet19, yields 78.6% and 73.5% mAP on these datasets and introduces Common Objects in Context 

(COCO) evaluation at 21.6% mAP, albeit at a slightly slower 40 FPS. YOLOv3 enhances speed to 78 FPS 

with 74.5% mAP on VOC2007 and 57.9% mAP on COCO, while YOLOv4 focuses on COCO performance, 

reaching 43.5% mAP at 66 FPS. The latest, YOLOv5s, running on a Focus + Cross Stage Partial Darknet53 

(CSPDarknet53) network, maximizes speed at 113 FPS with 51.8% mAP on COCO, illustrating the ongoing 

development of YOLO models balancing speed and precision. 

3.2. YOLOv5 architecture 

The architecture of the YOLOv5 model (Figure 1) is segmented into three core parts: the backbone, the 

neck, and the head. 

 
Figure 1. YOLOv5 architecture. 

The backbone, based on the modified CSPDarknet53 structure, is a critical element designed to extract 

features from the input data. This feature extraction is fundamental to the model’s ability to identify and 

isolate relevant aspects of the data that are informative for the task at hand. Next, the neck, which 

incorporates the Spatial Pyramid Pooling Fast (SPPF) and the updated Cross Stage Partial-Path Aggregation 

Network (CSP-PAN) modules, performs feature fusion. Feature fusion is a crucial aspect of the object 

detection task, as it allows the model to combine features at various scales and levels of abstraction. This 

capability enhances the model’s robustness to variations in object size, shape, and orientation, leading to 

improved detection performance. The final part of the architecture, the head, is responsible for producing 

prediction results. This component of the model interprets the high-level features extracted and fused by the 

previous stages, turning them into a final prediction about the object's class. 

The ConvBNSiLU layer consists of a convolutional layer, a batch normalization layer, and a Sigmoid 

Linear Unit (SiLU) activation function sequentially. The c, k, s, and p represent channel, kernel, stride, and 

padding. The upsampling layer represents an upsampling operation. The concatenation layer represents the 

operation of concatenating two layers. The C3 layer consists of different ConvBNSiLU, two BottleNeck 

structures, and Concat layers. Some C3 layers contain BottleNeck-1 structures, while others contain 

BottleNeck-2 structures. Larger YOLOv5 models, such as YOLOv5x, YOLOv5l, and YOLOv5m, have more 
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repeated BottleNeck-1 or BottleNeck-2 structures in the C3 structure. In contrast, smaller YOLOv5 models, 

such as YOLOv5s and YOLOv5n, have fewer repeated BottleNeck-1 or BottleNeck-2 structures. Both 

BottleNeck structures consist of a ConvBNSiLU layer (k = 1) and a ConvBNSiLU layer (k = 3). The 

BottleNeck-1 adds a residual structure to the initial input, while the BottleNeck-2 does not. 

YOLOv5 has some advantages compared to the previous version. First, the Conv2d (6 × 6) structure 

replaces the Focus structure, and the SPPF structure replaces the SPP structure, boosting efficiency. In 

addition, it uses various data augmentation techniques to improve the model’s ability to generalize and 

reduce overfitting. Furthermore, it applies several sophisticated training strategies to enhance the model’s 

performance. Overall, the design of the YOLOv5 model encapsulates a variety of architectural choices aimed 

at maximizing detection performance while maintaining flexibility in terms of input data and computational 

efficiency. 

4. Methodology 

4.1. Detection framework 

Figure 2 presents a hardhat-wearing detection framework based on YOLOv5 and IoT. Initially, the 

management center uses a cloud server to train a model on a public hardhat detection dataset using YOLOv5. 

The trained model is then dispatched to edge computing terminals via IoT, where it is automatically 

deployed. These terminals perform hardhat-wearing detection. The management center can enhance the 

robustness of the detection model by retraining it using images from diverse complex scenarios, captured by 

the terminals. Subsequently, the refined model, once it meets the precision standards, is re-transmitted to the 

edge computing terminals for detection. By exploiting the computational power of the cloud computing 

center to train substantial data, the system can improve model training speed. Additionally, by having the 

edge computing terminals only send images of incorrectly worn hardhats to the management center, the 

system substantially reduces IoT transmission consumption. 

 
Figure 2. Hardhat-wearing detection framework based on YOLOv5 in IoT. 

4.2. Data augmentation 

To improve the robustness of the trained model, images of complex work scenes were added to the 

dataset, such as images containing occluded, long-distance, crowded, and low-light objects. Figure 3 shows 

sample images of complex work scenes included in the dataset. 

    
(a) (b) (c) (d) 

Figure 3. Sample images of complex work scenes: (a) sample image includes occluded objects; (b) sample image includes crowded 
objects; (c) sample image includes low-light objects; (d) sample image includes long-distance objects.  
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The original dataset’s size was insufficient, prompting the use of data augmentation techniques to 

increase its volume. These methods encompassed image distortion, spatial translation, rotation, and flipping. 

Figure 4 displays sample images after the application of these data augmentation techniques. 

    
(a) (b) (c) (d) 

Figure 4. Sample images implemented by data augmentation: (a) sample image after the application of image distortion; (b) sample 
image after the application of image rotation; (c) sample image after the application of image spatial translation; (d) sample image 
after the application of image flip.  

4.3. Data annotation 

At a typical worksite, hardhats usually come in blue, red, yellow, and white. Thus, these objects are 

primarily labeled based on their color. When annotating a “head-with-helmet” object, the bounding box 

should encompass the helmet, head, and neck. A “face” object should be included within the bounding box 

of the “head-with-helmet” object. The bounding box of a “person-with-helmet” object should enclose the 

“helmet”, “head-with-helmet”, and “face” objects. Objects labeled as “head” and “person-no-helmet” denote 

individuals not wearing hardhats.  

The original public dataset contained 5000 images with bounding box annotations in the PASCAL VOC 

format for these three classes (person, head, and helmet), which had 25,501 labels in total[20]. After data 

augmentation, the new dataset had 6583 images. It was relabeled into six classes in YOLO format, which 

had 81,149 labels in total. The number of “helmet”, “head-with-helmet”, “person-with-helmet”, “head”, 

“person-no-helmet”, and “face” labels were 20,803, 17,156, 16,687, 6015, 6405, and 14,083, respectively. 

The number of labels for each class increased significantly. In particular, many interfering images were 

added to improve accuracy, containing people wearing baseball caps or bamboo hats. A comparison of the 

number of labels in different datasets is shown in Table 2. 

Table 2. Comparison of the number of labels in different datasets. 

Label Number (5000 

images) 

Number (5000 

images of relabeled) 

Number (6583 

images of relabeled) 

Comments 

helmet 18,752 17,246 20,803 hardhat 

head-with-helmet 0 14,379 17,156 workers who wear hardhats on their head 

person-with-helmet 0 13,244 16,687 workers who wear hardhats 

head 5525 5525 6015 workers who do not wear hardhats on 
their head 

person-no-helmet 1224 4775 6405 workers who do not wear hardhats 

face 0 12,671 14,083 face of workers 

4.4. Model training 

The experiment was conducted on the PyTorch framework. The hardware contained an Nvidia GeForce 

RTX 3060 Graphics Processing Unit (GPU) with 12 GB of graphic memory, a 13th generation Intel Core i7-

13700KF Central Processing Unit (CPU) with 3.4 GHz frequency, and a Random Access Memory (RAM) 

with 32GB. The operating system was Windows 11 Professional Edition (22H2). The primary software 
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components were Python 3.8.17, PyTorch 2.0.1, YOLOv5 7.0, and Compute Unified Device Architecture 

(CUDA) 11.8.  

The dataset was divided into a training and a validation dataset. The training dataset contained 6083 

images, and the validation dataset contained 500 images. All images were resized to 640 × 640 pixels, and 

the batch size was set to 16 during training. The model was trained for 100 epochs using pre-trained weights 

from the YOLOv5s.pt and YOLOv5n.pt files. 

5. Results & discussion 

5.1. Training results 

The validation dataset had 7730 instances in total, including 2006 “helmet” instances, 1668 “head-with-

helmet” instances, 1524 “person-with-helmet” instances, 595 “head” instances, 473 “person-no-helmet” 

instances, and 1464 “face” instances.  

The training results of the hardhat-YOLOv5s model on the validation dataset are shown in Table 3. The 

hardhat-YOLOv5s model achieved good performance. The Precision, Recall, mAP50, and mAP50-95 of all 

six classes were 0.886, 0.806, 0.879, and 0.544, respectively. In addition, the mAP50 reached 0.879, 

indicating that good capabilities for object localization and classification can be obtained during the 

prediction process. From the prediction results, the mAP50 of all classes, except the “face” class, exceeded 

88%. The Recall of the “face” class was 0.673, indicating that some face objects failed to predict. 

Table 3. Training results with YOLOv5s. 

Class Instances Precision Recall mAP50 mAP50-95 

all 7730 0.886 0.806 0.879 0.544 

helmet 2006 0.899 0.793 0.883 0.53 

head-with-helmet 1668 0.939 0.817 0.921 0.592 

person-with-helmet 1524 0.895 0.882 0.927 0.659 

head 595 0.916 0.822 0.882 0.538 

person-no-helmet 473 0.841 0.85 0.9 0.629 

face 1464 0.824 0.673 0.76 0.32 

The training results of the hardhat-YOLOv5n model on the validation dataset are shown in Table 4. The 

Precision, Recall, mAP50, and mAP50-95 of all six classes were 0.873, 0.774, 0.855, and 0.511, respectively. 

Therefore, the hardhat-YOLOv5n model also achieved good performance. 

Table 4. Training results with YOLOv5n. 

Class Instances Precision Recall mAP50 mAP50-95 

all 7730 0.873 0.774 0.855 0.511 

helmet 2006 0.883 0.776 0.863 0.504 

head-with-helmet 1668 0.936 0.79 0.908 0.572 

person-with-helmet 1524 0.894 0.843 0.912 0.614 

head 595 0.889 0.793 0.856 0.499 

person-no-helmet 473 0.85 0.825 0.885 0.596 

face 1464 0.788 0.618 0.706 0.283 

Figure 5 shows comparisons of Precision, Recall, mAP50, and mAP50-95 of the two models for all six 

classes. These metrics of the hardhat-YOLOv5s model were better than those of the hardhat-YOLOv5n 

model. 
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Figure 5. Comparison of training metrics of the two models. 

Figure 6 shows the Precision-Recall curves of the two models. For the hardhat-YOLOv5s model, the 

mAP50 of “helmet” class, “head-with-helmet” class, “person-with-helmet” class, “head” class, “person-no-

helmet” class, and “face” class were 0.883, 0.921, 0.927, 0.882, 0.900, and 0.760, respectively. Compared to 

the hardhat-YOLOv5s model, the mAP50 of these classes were 0.863, 0.908, 0.912, 0.856, 0.885, and 0.706, 

respectively, on the hardhat-YOLOv5n model. The average mAP50 of the hardhat-YOLOv5s and hardhat-

YOLOv5n models for all six classes was 0.879 and 0.855, respectively. 

  
(a) (b) 

Figure 6. Precision-Recall curve of the two models: (a) Precision-Recall curve of hardhat-YOLOv5s; (b) Precision-Recall curve of 
hardhat-YOLOv5n. 

Figure 7 shows the mAP50 metric comparison of each class on the two models. The mAP50 metric of 

each class on the hardhat-YOLOv5s model was better than the hardhat-YOLOv5n model. 

 
Figure 7. Comparison of the mAP50 metric of each class on two models. 

5.2. Detection results 

As a result of training with YOLOv5s and YOLOv5n, two distinct hardhat detection models, hardhat-

YOLOv5s and hardhat-YOLOv5n, were obtained. Key performance metrics for these models are outlined in 

Table 5, showing the hardhat-YOLOv5s model achieving a higher mAP50 of 87.9% compared to the 

hardhat-YOLOv5n model’s mAP50 of 85.5%. The metric of Parameters indicates the space complexity of an 
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algorithm, which means how much graphic memory the model occupies in the terminal device. The metric of 

GFLOPs indicates the time complexity of an algorithm, which is generally used as an indirect measure of the 

speed of a neural network model.  

Table 5. Performance metrics of the two models. 

Model Layers Parameters GFLOPs mAP@0.5 

hardhat-YOLOv5s 157 7,026,307 15.8 0.879 (all classes) 

hardhat-YOLOv5n 157 1,767,283 4.2 0.855 (all classes) 

Both models had 157 layers. The hardhat-YOLOv5n model had 1,767,283 parameters. Compared to the 

hardhat-YOLOv5s model with 7,026,307 parameters, its parameters decreased by 74.8%. Therefore, the 

hardhat-YOLOv5n model occupied less graphic memory. The metrics of GFLOPs of the hardhat-YOLOv5s 

and hardhat-YOLOv5n models were 15.8 and 4.2, respectively. Compared to the hardhat-YOLOv5s model, 

the GFLOPs of the hardhat-YOLOv5n model decreased by 73.4%. So, the hardhat-YOLOv5n model 

theoretically had a faster detection speed than the hardhat-YOLOv5s model. 

5.2.1. Model effectiveness evaluation 

The effectiveness of the proposed method was evaluated using images from work sites. By inputting 

these images into the model, detection results were produced, and each object was enclosed by a bounding 

box accompanied by a confidence value. Figure 8 depicts the detection results, wherein the bounding box’s 

color is orange if the individual is wearing a hardhat, and yellow otherwise. Both models correctly predicted 

all objects in the same image. 

   
(a) (b) (c) 

Figure 8. Detection results using sample image: (a) sample image; (b) detection results of hardhat-YOLOv5s; (c) detection results of 
hardhat-YOLOv5n. 

The method was also extended to detecting videos and live camera feeds. Real-time camera detection 

results are shown in Figure 9, where the hardhat-YOLOv5n model inaccurately predicted a hardhat with a 

confidence value of 0.28. On the contrary, the hardhat-YOLOv5s model correctly predicted the head with a 

confidence value of 0.60. 

  
(a) (b) 

Figure 9. Detection results using camera: (a) detection results of hardhat-YOLOv5s; (b) detection results of hardhat-YOLOv5n. 

Figure 10 presents detection results using sample video, with the hardhat-YOLOv5s model 

demonstrating better accuracy in detecting long-distance objects, while the hardhat_YOLOv5n model missed 

these. 
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(a) (b) 

Figure 10. Detection results using sample video: (a) detection results of hardhat-YOLOv5s; (b) detection results of hardhat-
YOLOv5n. 

5.2.2. Model speed evaluation 

Generally, the time it takes a model to perform prediction on an image or a video is expressed in latency, 

the forward propagation time of the model. It contains the time spent on pre-processing, inference, and Non-

Maximum Suppression (NMS) processes. The NMS is used to remove redundant prediction boxes. The 

shape of the image for detection is 3 × 640 × 640. The Latency calculation formula is given in Equation (1). 

FPS is the inverse of Latency. The FPS calculation formula is given in Equation (2). 

Latency = pre-process + inference + NMS (1) 

FPS = 1/Latency (2) 

The images of the validation dataset were respectively validated using the two models. Table 6 shows 

the average detection speed per image for the two models on the validation dataset images. The hardhat-

YOLOv5n model had a higher detection speed with an average FPS of 117.6 than the hardhat-YOLOv5n 

model with an average FPS of 90.1, increasing by 30.5%. 

Table 6. Speed metrics on validation dataset images. 

Model Pre-process (ms) Inference (ms) NMS (ms) Latency (ms) FPS 

hardhat-YOLOv5s 0.3 7.3 3.5 11.1 90.1 

hardhat-YOLOv5n 0.5 4.5 3.5 8.5 117.6 

6. Conclusion 

This paper proposes two detection models based on YOLOv5 customized for hardhat wearing. The 

computing power of the cloud computing center is used to train the hardhat dataset with YOLOv5s and 

YOLOv5n to obtain two detection models, hardhat-YOLOv5s and hardhat-YOLOv5n. The two models can 

be transmitted to edge computing terminals through IoT to detect no-hardhat-wearing. Edge computing 

terminals perform detection tasks at work sides. Compared with traditional video surveillance methods, the 

terminals do not need to transmit images back to the cloud computing center, which can reduce IoT 

bandwidth consumption. The experimental results show that both models based on YOLOv5 have high 

accuracy. Compared with the hardhat-YOLOv5s model, the hardhat-YOLOv5n model has a higher detection 

speed. Therefore, the hardhat-YOLOv5n model is more suitable for edge computing terminals with lower 

computing power and cost. Meanwhile, by training different object datasets, the detection method can be 

used in many industries such as construction, power, mines, petroleum, etc. 
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