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ABSTRACT 

A major portion of the world’s population relies on rice as a staple diet, hence rice is essential to maintaining food 

security worldwide. Unfortunately, rice crops are susceptible to a number of illnesses that, if detected and treated promptly, 

can result in significant output losses. Expert visual inspection is a time-consuming and arbitrary part of the conventional 

procedures for diagnosing diseases in rice. An effective method for automated illness diagnosis in agriculture has evolved 

in recent years: deep learning, a branch of artificial intelligence. The objective of this research is to compare AlexNet, 

DCNN, MobileNet, GoogleNet, VGG16, ResNet50 and Xception, these are various deep learning models in order to 

choose the one that would produce the highest levels of accuracy, precision recall, specificity, and F1-score for detecting 

rice diseases. In this study we train the model for nine different types of rice diseases named as Rice Blast (Pyricularia 

oryzae), Rice Sheath Blight (Rhizoctonia Solani), Bacterial Leaf Blight (Xanthomonas oryzae pv. oryzae), Tungro 

Disease, Rice Grassy Stunt Virus (RGSV), Rice Yellow Mottle Virus (RYMV), Bakanae Disease (Fusarium moniliforme), 

Brown Spot (Cochliobolus miyabeanus) and Rice Tungro Bacilliform Virus (RTBV) with 30,000 images. For this we 

used the secondary dataset for analyzing the performance of models. We trained the model for both normalized and non-

normalized dataset. After comparing the various models we get the better result from ResNet50 model with accuracy of 

97.50%. 

Keywords: deep learning; rice disease; CNN; feature extraction; AlexNet; DCNN; MobileNet; GoogleNet; VGG16; 

ResNet50; Xception 

1. Introduction 

A significant majority of the world’s population is fed by rice, 

which is frequently referred to as the “staple of staples” and is an 

essential component of global agriculture. Nonetheless, a wide range 

of illnesses continue to pose a threat to the health and productivity of 

rice crops. In regions that primarily rely on rice as a key food source, 

notably, these diseases can result in considerable yield and quality 

decreases, which could jeopardise food security. For efficient disease 

management of rice illnesses, accurate and prompt diagnosis is crucial. 

This enables farmers to execute focused control measures and reduce 

potential losses. Conventional disease diagnosis techniques 

frequently rely on skilled visual inspection, which can be time-

consuming and prone to inaccuracy. There is an increasing chance to 

enhance the method of identifying rice diseases as a result of the quick 

development of technology, notably in the agricultural sector. To 

improve disease detection and diagnosis, a number of techniques are 
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being used, including remote sensing, image analysis, and artificial intelligence. 

In this research we train the model for nine different types of rice diseases named as Rice Blast 

(Pyricularia oryzae), Rice Sheath Blight (Rhizoctonia Solani), Bacterial Leaf Blight (Xanthomonas oryzae pv. 

oryzae), Tungro Disease, Rice Grassy Stunt Virus (RGSV), Rice Yellow Mottle Virus (RYMV), Bakanae 

Disease (Fusarium moniliforme), Brown Spot (Cochliobolus miyabeanus) and Rice Tungro Bacilliform Virus 

(RTBV) with 30,000 images. We used secondary data for processing and trained the different models for these 

different diseases detection. Three sets of the images—one for training, one for validation, and one for testing—

each containing 75%, 10%, and 15% of the total images. 

The diseases, which range from fungal blast to bacterial blight, can completely destroy rice harvests, 

resulting in decreased yields and grain quality. When a plant’s defenses are weak, pathogens like Xanthomonas 

oryzae and Magnaporthe oryzae take advantage, causing symptoms like water-soaked lesions, leaf 

discoloration, and panicle destruction. Temperature and humidity levels in the environment can hasten the 

onset of sickness. Researchers and farmers use a range of tactics, such as the cultivation of disease-resistant 

rice cultivars, crop rotation, and the application of integrated pest management approaches, to counteract these 

challenges. In order to contain disease outbreaks, monitoring, early discovery, and quick action are essential. 

Understanding and controlling these diseases is crucial to guaranteeing food security and sustaining 

agricultural production given the rising worldwide demand for rice. Nematodes, bacteria, viruses, fungi, or 

other pathogens may cause these illnesses. Among the widespread diseases of rice are listed in Table 1: 

Table 1. Classification of rice diseases. 

Diseases of rice Description Image 

Rice Blast (Pyricularia 
oryzae) 

Rice blast is one of the worst illnesses to ever affect rice 
harvests. The fungus Pyricularia oryzae is the cause. The 
disease manifests as lesions on leaves, stems, panicles, and 
grains. It can drastically reduce yields if not properly 
controlled[1,2]. 

 

Rice Sheath Blight 
(Rhizoctonia Solani) 

Sheath blight is caused by the fungus Rhizoctonia Solani. 
It affects the leaf sheaths and could hasten the 
degeneration of stems that are close to the soil’s surface. 
The affected plants have white, water-soaked sores on their 
leaf sheaths[3,4]. 

 

Bacterial Leaf Blight 
(Xanthomonas oryzae pv. 
oryzae)[5] 

The initial signs of this bacterial infection are water-soaked 
blisters on the leaves, which later turn yellow and then 
brown. It may reduce productivity and cause the entire 
plant to dry out[6,7]. 

 

 

 

 



3 

Table 1. (Continued). 

Diseases of rice Description Image 

Tungro Disease Leafhoppers disperse a virus known as tungro. It affects 
rice plants by causing slowed growth, yellowing of the 
leaves, and poor grain quality. 

 

Rice Grassy Stunt Virus 
(RGSV) 

This viral disease causes plant yellowing and stunting, 
which ultimately lowers rice yield. It is carried by 
planthoppers[8]. 

 

Rice Yellow Mottle Virus 
(RYMV) 

This virus causes leaf mottling and yellowing, which 
hinders photosynthesis and causes grain filling to be 

poor[9]. 

 

Bakanae Disease (Fusarium 
moniliforme) 

Bakanae, a fungus, kills seedlings, resulting in plants that 
are elongated, slender, and light green. It might 
significantly reduce yield. 

 

Brown Spot (Cochliobolus 
miyabeanus) 

Brown spot is a fungus that affects photosynthesis and 
reduces yields by causing brown, oval lesions on the 
leaves[10] 

 

Rice Tungro Bacilliform 
Virus (RTBV) 

The viral illness RTBV can produce plant yellowing and 
stunting, which can lower yield 
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1.1. Various stages for identifying rice diseases 

The development of an automated system that can accurately identify and classify diseases affecting rice 

plants based on input pictures is required for the diagnosis of rice diseases using deep learning. Many crucial 

steps in this procedure are often carried out: 

a) Data collection: Similar to any deep learning study, gathering a huge and diversified set of images of 

rice illness is crucial. The collection should contain images of both sound and various types of diseased 

rice plants. It is essential to cover a range of illness types, stages, and severity levels to ensure that the 

model can generalize effectively. 

b) Data preprocessing: The captured images need to be preprocessed in order to guarantee consistency and 

raise the caliber of the data. Preprocessing includes resizing images to a predetermined size, standardizing 

pixel values, and extending the dataset to boost its size and diversity. 

c) Model architecture selection: The success of the diagnosis system hinges on choosing the best deep 

learning architecture. Convolutional neural networks are a popular option for image classification tasks 

because they have the ability to automatically recognize relevant attributes from images. 

d) Model training: The dataset has training and validation sets. The deep learning model is taught by adding 

the disease-related photographs and labels to the training set. Throughout training, the model develops 

the ability to recognize patterns and features that indicate specific diseases. The validation set prevents 

over fitting and assists in performance monitoring. 

e) Model evaluation: A different test dataset is utilized to measure the model’s effectiveness and precision 

following training. The test dataset should consist of unknown data that the model has not encountered 

during training or validation. An excellent test set accuracy illustrates the model’s capacity to recognize 

rice sickness with accuracy. 

f) Fine-tuning and optimization: If the model’s performance is subpar, its precision can be increased using 

optimization and fine-tuning techniques. To do this, it may be necessary to adjust hyper parameters, use 

alternative model architectures, or fine-tune the pre-trained models using relevant data[11]. 

g) Deployment: After the model has an appropriate level of accuracy, it can be utilized as an application or 

incorporated into agricultural systems. Farmers or agricultural experts can use the technology to 

automatically detect the presence of diseases by providing photographs of rice plants[12]. See Figure 1. 

 
Figure 1. Several phases for detecting pest insects or diseases that affect rice[13]. 

1.2. Deep learning models 

Finding the best deep learning technique for recognizing diseases in rice leaves is the study’s main goal. 

The deep learning models we are looking at for categorization of images include AlexNet, DCNN, MobileNet, 

GoogleNet, VGG16, ResNet50, and Xception. These models are based on convolution neural networks[14,15]. 

AlexNet: The AlexNet version reduces the size of the network, reduces overfitting, and increases 

generalisation by using max-pooling rather than average, overlap pooling filters. The eight-layer AlexNet 

architecture is composed of three FC layers and five convolutional networks. The remaining three sets with 

the same activation function employ Conv3-256, Conv3-512, and Conv3-512, respectively[16,17]. 

DCNN: A method for learning extensive visual highlights is deep-CNN. For deep learning of visual peaks, 
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it uses symmetric skip connections (SSC) between rotating convolutional-deconvolutional layers in a layer-

oriented convolutional-deconvolutional technique. Continuous linear and nonlinear capacity make up a deep 

CNN. Contrary to nonlinear functions, which explain unexpected events, convolution tasks directly express 

linear functions[18,19]. Convolution layer begins sophisticated component paddy disease depictions after 

detecting the surrounding properties of paddy crop photographs. The hidden, input, and output layers are each 

separated into at least three layers in backpropagation neural networks, which employ a multiple-layer 

feedforward neural network technique[20,21]. 

MobileNet: In several fields, including object identification, semantic segmentation, and picture 

classification, MobileNet models have found use, particularly in situations where edge computing or real-time 

processing are critical. They enable a wide range of applications that need on-device machine learning 

capabilities because of their effective design, which makes them suited for deployment on gadgets like 

smartphones, embedded systems, and IoT devices. 

GoogleNet: The GoogleNet design gives the network the opportunity to choose from a range of 

convolutional filter sizes in each block to maximise computational efficiency. The network operates at the 

same layer thanks to Inception modules. The design contains a total of 27 levels, including 9 stacked inception 

modules and 22 layered parameters[22]. GoogleNet is constructed on top of the previous layers, with the 

inception module acting as its base layer. The top layer then applies parallel filtering to the input layer from 

the layers below it. 

VGG16: The CNN architecture known as the Visual Geometry Group (VGG) is intricate and multi-

layered. There are 16 and 19 convolutional layers in the VGG-16 and VGG-19, respectively[23]. To boost 

network depth, these topologies employ incredibly tiny convolutional filters. VGG16 and VGG19 both accept 

images with three colour channels and a 224 × 224 resolution as input. Convolutional layers with a 3 × 3 

receptive field size and maximum pooling layers receive the input. 

ResNet-50: This design incorporates the residual block concept to overcome the Resnet50 gradient 

vanishing/exploding issue. This network uses a technique called skipping connections. Connections are built 

between them to connect activations in various layers. The block is now finished. To build a ResNet, these 

remaining blocks are layered. ResNet is a type of artificial neural network that includes “identity connections”, 

allowing the model to delete one or more layers. The network can be trained using this strategy on a huge 

number of layers without experiencing performance drawbacks. This has led to ResNet becoming one of the 

most popular designs for many computer vision issues. An extensive investigation shows that ResNet has the 

lowest error rate (3.57%) for the top five percentiles of all CNN designs currently in use[24,25]. 

Xception: A 71-layer deep CNN is called Xception. It is possible to import a pre-trained network that 

has previously been created using ImageNet and a number of input photos. All of the input photographs are 

divided into 1000 different categories by the network, including pencils, pens, books, and a lot more. The 

network has access to a vast library of different feature representations with a variety of input datasets. This 

pre-trained network requires 299 × 299 pixel input data. A deep convolutional neural network with only 

convolutional layers is called Xception. The feature extraction building of the Xception architecture consists 

of 36 convolutional layers[26]. 

2. Related work 

Latif et al.[1] observed that almost half of the world’s population depends on rice, yet diseases that harm 

rice plants can reduce productivity by 20%–40% annually. Rice prices rise because manual identification 

necessitates in-depth visual observation and farmer experience. Based on visually distinguishable 

characteristics of leaves, an automated system using computer vision technology can detect and diagnose five 

rice illnesses. In order to accurately recognize and diagnose six classes of rice leaves, including healthy ones, 
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this research suggests a modified VGG19-based transfer learning algorithm. The device can identify rice 

problems in real time when paired with IoT and drone technology. 

Fei et al.[9] The study shows how employing ensemble learning techniques can increase the precision of 

wheat grain yield predictions. Comparing numerous base leaners to simple regression techniques increases the 

estimate of attributes. The study emphasises the value of phenotyping systems based on UAVs for calculating 

spectral data from various growth phases. When using a four base learner combination, the results demonstrate 

strong grain yield prediction results at mid-grain filling stages. For accurate crop breeding, more testing is 

required. 

Using a total of 25,000 photos of stressed and healthy leaves, Jena et al.[12] developed a deep machine 

vision-based model to detect, categorise, and quantify 8 soybean plant stressors. By using the suggested deep 

CNN methodology, this method has a detection rate of 94.13%. Vasantha et al.[13] used five different CNN 

techniques to recognize plant diseases from leaf photos. Agrawal et al.[14] sed the supervised DL model to 

create an automated wheat disease identification model. A collection of wheat photos with 50k tagged leaf 

images is used to test it. Four different CNN models are used in the suggested model to identify the seven 

classes of wheat diseases. According to the findings, the VGG-16 model has a higher detection rate of 97.95%. 

Mohapatra et al.[15] used DL techniques to create a model for disease recognition in rice plants. 500 photos 

of rice plant leaves and stems are used to test it. LeNet-5 and AlexNet CNN models are employed. This study 

showed that stochastic pooling improves the CNN approach’s capacity to generalise while preventing 

overfitting. 

A DenseNet169-MLP model for categorising illnesses of rice plants is presented in the Narmadha et al.[19] 

Preprocessing, FCM segmentation, and MLP extraction are performed on it. Maximum sensitivity is 96.40%, 

specificity is 98.27%, precision is 96.82%, accuracy is 97.68%, and F-score is 96.43% according to 

experimental validation on a benchmark dataset. Hyperparameter tuning methods can be used to make future 

advancements. 

3. Evaluation of the models 

The seven network models’ performances were contrasted in order to select the top models. Four 

categories were created from the disease prediction findings for each network model: True Positive (TP), False 

Positive (FP), True Negative (TN), and False Negative (FN). False positive findings meant that other sorts of 

diseases were anticipated to be this disease; true positive results meant that the type of disease was correctly 

predicted. Accuracy, precision, recall, specificity, and F1-score performance indicators were created using 

these findings. The formula and justifications for each of the many measures utilized in this study are provided 

in Table 2. The fact that this expression stands for True Positive, True Negative, False Positive, and False 

Negative should be emphasized. 

Table 2. Parameters used in models. 

Metric Equation Measure 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃
 

A measure of the ratio of all correct classifications to the total number of the 
classifications 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ratio of the true positive cases over the total classified positive cases 

Recall/sensitivity 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(Sensitivity) The measure of the proportion of the actual positive cases that were 
classified correctly 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The measure of the proportion of the actual negative cases that were classified correctly 

F1-score 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The harmonic mean of the precision and recall 
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3.1. Mean average precision 

Mean average precision controls how well the framework can identify items (mAP). For all types of things, 

it serves as the fundamental unit of measurement. The mean average precision is calculated by dividing the 

total number of successfully identified photos by the total number of wrongly detected images for each class. 

The mean average precision is discernible for a number of parameter types. Some of these settings are the 

minimum batch size, the image scale that matches to the image’s short edge, and the maximum pixel size of 

the scaled input image. For each class of object or class of objects found in the image, the mean average 

precision is determined. Using the formula below, average precision determines the average precision for recall 

value for the range of 0 to 1. See Equation 1. 

𝑃 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑁𝑜 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

3.2. Data distribution and segmentation 

The dataset used for detection of rice diseases containing 30,000 images of nine different diseases such 

as Rice Blast (Pyricularia oryzae), Rice Sheath Blight (Rhizoctonia Solani), Bacterial Leaf Blight 

(Xanthomonas oryzae pv. oryzae), Tungro Disease, Rice Grassy Stunt Virus (RGSV), Rice Yellow Mottle 

Virus (RYMV), Bakanae Disease (Fusarium moniliforme), Brown Spot (Cochliobolus miyabeanus) and Rice 

Tungro Bacilliform Virus (RTBV) were collected from different resources. 24,068 images of different diseases 

were collected[27]. And rest of the data collection includes 5932 number images that show four different types 

of rice leaf diseases: brown spot, bacterial blight, blast, and tungro[28]. We used secondary data for processing 

and trained the different models for these different diseases detection. Three sets of the images—one for 

training, one for validation, and one for testing—each containing 75%, 10%, and 15% of the total images. 

The input image of a distinct diseased rice leaf is chosen from the dataset folder in the first phase. In order 

to create a contrast image in natural light conditions and then convert it back to a grayscale image, the contrast 

of the image must be increased. The RGB to HSV image format colour transformation is then applied to 

analyse the segmentation of the image. HSV colour models were used to extract those colours (hue, saturation 

and value). The hue component of the colour space transformation is employed for additional analysis. Next, 

using image segmentation, the illness spot region is retrieved. Another technique for segmenting images is K-

means clustering. Using the k-means clustering technique, the object collection was divided into k groups. The 

method begins by computing the mean values across all clusters and then determines how far apart each cluster 

is from the associated mean. At last, allocate the point to the closest cluster. 

4. Results and discussion 

Initially, experiments were performed with non-normalized data on different CNN models such as 

AlexNet, DCNN, MobileNet, GoogleNet, VGG16, ResNet50 and Xception using different parameters as 

shown in Table 3. It has been seen that ResNet50 provide the accuracy of 97% for non-normalized dataset. In 

this we also do the data augmentation to increase the size of dataset and to avoid over fitting problem. For 

normalized augmented data set ResNet50 achieved 97.50% accuracy as compared to other models. 

Table 3. Analysis of different models for non-normalized and normalized data. 

Dataset CNN Model Accuracy Precision Recall/sensitivity Specificity F1-score 

Non-Normalized Alex Net 93.0 93.13 93.0 93.24 93.0 

DCNN 89.10 89.0 89.20 88.75 89.15 

Mobile Net 91.80 92.20 92.10 92.24 92.0 

Google Net 94.07 94.10 94.27 92.20 93.19 
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Table 3. (Continued). 

Dataset CNN Model Accuracy Precision Recall/sensitivity Specificity F1-score 

 VGG16 92.25 93.0 93.0 92.70 93.0 

ResNet50 97.0 97.15 97.0 97.15 97.25 

Xception 96.15 96.10 96.12 96.18 96.27 

Normalized 

Augmented 

Alex Net 93.18 93.73 93.07 93.84 93.22 

DCNN 89.80 89.20 89.80 89.07 89.71 

Mobile Net 92.40 92.60 92.40 92.84 92.29 

Google Net 94.87 94.23 94.87 92.42 93.79 

VGG16 93.15 93.39 93.15 93.07 93.20 

ResNet50 97.50 97.52 97.50 97.50 97.50 

Xception 96.52 96.61 96.52 96.58 96.57 

 
Figure 2. Study of the accuracy for different DL Methods for both normalized and non-normalized data. 

The above figure describes the comparison for various models such as AlexNet, DCNN, MobileNet, 

GoogleNet, VGG16, ResNet50 and Xception, on the basis of accuracy for detecting rice diseases in case of 

both normalized and non-normalized dataset. From Figure 2, it is clear that normalized data provide more 

accuracy as compared to non-normalized data. ResNet50 model achieved around 97.5% accuracy as compared 

to other models. 

 
Figure 3. Study of the precision for different DL methods using normalized and non-normalized data. 

Figure 3 describe the comparison for various models such as AlexNet, DCNN, MobileNet, GoogleNet, 

VGG16, ResNet50 and Xception, on the basis of precision for detecting rice diseases for both normalized and 

non-normalized dataset. From figure it is cleared that normalized data provide more precision in ResNet50 

model as compared to non-normalized data with 97.52%. 
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Figure 4. Study of the Recall for different DL Methods using both normalised and non-normalized data. 

The above figure describes the comparison for various models on the basis of recall, for detecting rice 

diseases for both normalized and non-normalized dataset. From Figure 4, it is clear that normalized data 

provide more recall as compared to non-normalized data with 97.5%. 

 
Figure 5. Study of specificity for several DL approaches for both normalized and non-normalized data. 

The above figure describes the comparison for various models such as AlexNet, DCNN, MobileNet, 

GoogleNet, VGG16, ResNet50 and Xception, on the basis of accuracy, precision recall, specificity and F1-

score for detecting rice diseases for both normalized and non-normalized dataset. From Figure 5, it is clear 

that normalized data provide more specificity as compared to non-normalized data. For evaluating the model’s 

capability to accurately identify negative instances, it is crucial to examine the specificity of deep learning 

techniques utilising both normalised and non-normalized data. Because of enhanced convergence, feature 

balance, and the network’s capacity to recognize negative instances, normalised data typically results in better 

specificity. 

 
Figure 6. Study of F1-score for several DL approaches for both normalized and non-normalized data. 

Study of the F1-score for several DL Approaches using both normalized and non-normalized data 



10 

including both accuracy and recall when analyzing the F1-score of deep learning approaches on normalized 

and non-normalized data gives a complete picture of model performance. Because normalized data affects 

convergence, stability, and the capacity to identify important patterns, it is generally predicted to produce better 

F1-scores. The precise effect, however, can change depending on the model designs and data properties used. 

See Figure 6. 

5. Comparison of the submodels with existing models 

Using the same rice dataset, both normalised and non-normalized, we investigated a number of deep 

learning techniques, including AlexNet, DCNN, MobileNet, GoogleNet, VGG16, ResNet50, and Xception to 

assess each model’s accuracy, precision, recall, specificity, and F1-score. In order to generate better results, 

the data is normalised using the mean average precision. 

It is evident from Figures 3–6 that ResNet50 achieves greater values when compared to the other models 

in terms of all evaluated parameters. 

6. Conclusion 

This paper presents the analysis of various deep learning models named as AlexNet, DCNN, MobileNet, 

GoogleNet, VGG16, ResNet50, and Xception for detection of nine different rice diseases such as Rice Blast 

(Pyricularia oryzae), Rice Sheath Blight (Rhizoctonia Solani), Bacterial Leaf Blight (Xanthomonas oryzae pv. 

oryzae), Tungro Disease, Rice Grassy Stunt Virus (RGSV), Rice Yellow Mottle Virus (RYMV), Bakanae 

Disease (Fusarium moniliforme), Brown Spot (Cochliobolus miyabeanus) and Rice Tungro Bacilliform Virus 

(RTBV) at the early stage. For this purpose we used secondary dataset containing 30000 images of different 

diseases. We compared the various models on the basis of accuracy, precision, recall, specificity, and F1-score. 

We analysed that ResNet50 model produce 97.50% accuracy and 0.97 F1 score as compared to other models. 

Among them, GoogleNet and Xception both did well. In the future, we’ll expand the horizon to include new 

diseases and algorithms, which will vastly improve, accelerate, and simplify disease identification. 
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