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ABSTRACT 

This paper offers a focused overview of pathfinding algorithms, particularly emphasizing Greedy Best First Search 

(G-BFS) and Rapidly-Exploring Random Trees (RRT). Their performance is evaluated within a 2D grid setting tailored 

for Unmanned Aerial Vehicles (UAVs). Divided into two main sections, the study first expounds on the theoretical 

underpinnings of these algorithms, followed by empirical validation. A series of systematic experiments, involving varied 

2D grid dimensions and traversal patterns, facilitates a comparative analysis between G-BFS and RRT. Importantly, the 

real-world implementation of these algorithms in UAV navigation underscores their practicality, illuminating their 

respective execution times and resource utilization. While G-BFS thrives in straightforward scenarios, RRT, especially 

RRT*, displays superior capability in navigating more intricate and expansive terrains, albeit with marginally extended 

execution durations attributed to its explorative nature. 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs), commonly referred to as 

drones, have burgeoned as multifunctional tools with a plethora of 

applications, spanning from surveillance and reconnaissance to 

package delivery and environmental monitoring. Such aerial platforms 

hold the promise of navigating intricate environments both 

autonomously and efficiently, rendering pathfinding an integral facet 

of their functionality. When visualizing UAVs maneuvering in a 2D 

grid, pathfinding algorithms become indispensable in ascertaining 

optimal routes that bypass obstructions while conforming to specific 

constraints[1]. Pathfinding in 2D grids for UAVs amalgamates 

principles from computer science, mathematics and engineering[2], 

aiming to architect methods for UAVs to chart their courses astutely, 

ensuring a seamless and efficient passage through a grid-based milieu. 

This milieu typically mirrors a 2D grid, where individual cells might 

be navigable or non-navigable, signifying open airspace or 

impediments, respectively[3]. 

Pathfinding algorithms find their relevance in an expansive array 

of domains, including real-world autonomous navigation mechanisms, 

simulated digital environments and the diverse terrains of gaming. 
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However, the challenges intrinsic to pathfinding, especially for UAVs, stand distinct. Unlike their terrestrial 

counterparts or vehicles directed by humans, UAVs have the capability to soar over obstructions. Nevertheless, 

their movement is tethered to constraints encompassing limited energy reserves, physical confines and 

regulations governing altitude and airspace[4]. The ever-evolving nature of environmental factors, such as 

shifting weather patterns and unanticipated barriers, further convolutes the pathfinding equation[5]. 

In response to these complexities, a myriad of pathfinding algorithms, fine-tuned specifically for UAVs 

navigating 2D grids, have been conceived. Their designs target the optimization of trajectories, keeping pivotal 

parameters like fuel economy, mission objectives and real-time barrier updates at the forefront. Noteworthy 

algorithms in this realm include A* (A-star), Dijkstra’s algorithm, Greedy Best First Search (G-BFS) and the 

Rapidly-Exploring Random Tree (RRT) algorithm. An ideal pathfinding algorithm merges efficiency with cost-

effectiveness and intuitiveness[6]. Both the G-BFS and RRT algorithms, encapsulated within the 2D grid milieu, 

emulate decisions a human might instinctively make when discerning a practical and frequently trodden path 

from start to endpoint[7]. 

The foundational objective of this paper is to navigate the nuanced intricacies influencing the efficacy of 

the G-BFS and RRT algorithms. By doing so, we aspire to amplify the comprehension of these algorithmic 

behaviours and proficiencies within a 2D grid framework, bolstering their applicability in myriad real-world 

UAV scenarios. 

Our methodology fosters an exhaustive juxtaposition of the G-BFS and RRT algorithms, centered on their 

prowess in pinpointing the crux of pathways within a 2D grid dotted with challenges. By infusing diverse grid 

dimensions and tabulating means across multiple instances, we venture to furnish a steadfast appraisal of these 

algorithms’ performance metrics. This evaluation enriches the discourse on their inherent advantages and 

potential bottlenecks. At the heart of our analysis lies an acute recognition of the symbiotic relationship 

between the grid’s scale and the algorithms’ node traversal strategies[8]. As these algorithms embark on their 

node-centric journeys, they leave an indelible mark on pivotal performance indicators, such as execution speed 

and resource commitment[9]. This intricate dance substantially dictates the algorithms’ prowess in unveiling 

the optimal routes. To reinforce the authenticity of our insights, we commit to a rigorous battery of iterative 

tests, establishing both rigor and replicability. This empirical foray begets a vast data repository, forming the 

bedrock for our profound inferences on these algorithms’ performance nuances. In its entirety, this study 

plunges deep into the realm of pathfinding, marrying the theoretical frameworks with the pragmatic challenges 

of maneuvering amidst hurdles. 

2. Literature-pathfinding algorithms 

Efficient navigation remains an intricate issue across domains, from real-world navigation systems to 

immersive computer-generated simulations[10]. At the core of these challenges, pathfinding algorithms stand 

out as pivotal tools. They not only underpin self-driving vehicles and robots but also enhance players’ 

experiences in dynamic gaming environments[11]. Particularly for UAVs, the significance of dynamic 

environments elevates the importance of algorithms like G-BFS and RRT[12]. 

Dijkstra’s algorithm, while reliable, struggles with large search scopes due to time constraints, prompting 

authors[13] to introduce a time-sensitive variant better suited for real-time applications like car navigation. This 

innovative approach attempts to approximate the optimal path swiftly but demands higher computational 

resources, a potential drawback for UAV navigation. 

A* has established its prominence in pathfinding, especially in gaming contexts, due to its optimality. 

However, its performance can be hindered by heuristic choice and its memory usage in vast search areas might 

limit its application in resource-limited scenarios like UAVs. Research into path planning for mobile robots, 

working on reactive navigation and SLAM, has seen A* variants emphasizing computational efficiency and 
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path optimality[14]. But the primary focus remains on algorithm performance rather than intricate aspects of 

robot navigation. A study by Heusner et al.[15] delves deep into GBFS search behaviors, introducing “high-

water mark benches” to understand state expansion patterns in the search space. Similarly, Tripathy et al.[16] 

studied GBFS’s behavior using this concept, revealing nuances in state expansions. 

The growing significance of UAVs in navigation is highlighted by Fu et al.[5], who accentuate the 

differentiation between graph-based and sampling-based path planning algorithms. Their work emphasizes the 

speed and efficiency of random sampling-based methods in complex scenarios. This focus on efficiency in 

path planning extends to the RRT algorithm, which is explored in the context of wheeled mobile robots[17]. A 

novel approach combining artificial-guided points with heuristic search algorithms promises enhanced 

navigation in complex terrains. 

A unique blend of reinforcement learning with path graphs is introduced by Liu et al.[12], targeting 

enhanced robot navigation. This approach aims to surpass traditional BFS and RRT algorithms in generating 

smoother paths. Meanwhile, a study by Navya and Ranjith[18] pits BFS against DFS in the context of medical 

robots in a hospital ward, concluding BFS’s superiority in this specific application. Li et al.[19] proposes a new 

path planning method using visibility graphs (v-graphs) to overcome the challenges of occupancy grid-based 

planning. Despite its efficiency, especially in intricate environments, its primary application focuses on mobile 

robot navigation, with potential limitations in extremely convoluted terrains. 

3. Methodology 

The research methodology comprises a comparative evaluation of G-BFS and RRT pathfinding 

algorithms. The core focus is on determining the path between two random nodes in a 2D grid space, using 

execution time and node traversal as key performance indicators. 

3.1. Experiment space 

A 2D grid described in the study of Yuanhao et al.[20] serves as the experimental backdrop. The grid 

integrates a source, a destination and obstacles making up roughly 20% of the grid space. These obstacles 

simulate real-world navigation challenges where the pathfinding task involves circumventing barriers[21]. 

Experiments are performed on a computer with a 2.40 GHz Intel CPU. The algorithms are coded in Python 

2.8. To gauge the efficiency across different complexities, the experiment spans multiple grid sizes: 64 × 64, 

128 × 128, 256 × 256, 512 × 512 and 1024 × 1024. Each grid dimension is tested using an average of 10 

samples, mitigating anomalies from random obstacle and node placements. The algorithms operate under a 

limitation of strictly horizontal or vertical movements. Moving between two neighbouring points in the grid 

comes at a standardized cost of 1, streamlining the efficiency analysis. 

3.2. Greedy Best First Search (G-BFS) algorithm 

G-BFS is deeply entrenched in the evolution of heuristic search algorithms. It’s foundation lay in the 

invention of Dijkstra’s algorithm by Edsger W. Dijkstra, aiming for the shortest path computation between 

nodes[16]. Dijkstra’s algorithm, while ground-breaking, lacked heuristic guidance. This gap was filled by A*, 

an innovative algorithm introduced by Peter Hart, Nils Nilsson and Bertram Raphael. Merging Dijkstra’s 

precision with heuristic finesse, A* offered an intelligent, optimal pathfinding method. From this backdrop, G-

BFS surfaced as a heuristic-focused variant of A*, characterized by its “greedy” approach: consistently 

selecting the node that, by heuristic measures, seems closest to the goal[22,23]. This made G-BFS a go-to choice 

in situations demanding quick results, even if the resulting path wasn’t always optimal. Today, it is invaluable 

in realms like robotics, gaming and GPS[24]. 

G-BFS uses a heuristic function to estimate costs from the current node to the goal. This estimation makes 

it “greedy”[8]. G-BFS may be efficient but doesn’t always guarantee the shortest path. It can sometimes 
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overlook shorter routes if they are not in alignment with the heuristic prediction. G-BFS is a staple in 

applications where a near-optimal solution is acceptable, but swift computation is essential. 

G-BFS belongs to the informed search category. It assigns an evaluation function, 𝑓(𝑛), to each node. 

This function represents the total estimated cost from the current node to the destination, with nodes expanded 

based on the smallest function value. The heuristic or evaluation function typically used in G-BFS is the 

Manhattan distance: 

𝑓(𝑛) = |𝑦2 − 𝑦1| + |𝑥2 − 𝑥1| (1) 

where 𝑥1, 𝑦1  are coordinates of the current node 𝑥2, 𝑦2  are the destination’s coordinates. The algorithm 

evaluates the Manhattan distance for neighboring nodes and expands to whichever appears closest to the goal. 

Despite its efficiency, it is not always optimal and in certain contexts, the algorithm may get stuck in infinite 

loops. In terms of time complexity, it operates at 𝑂(2𝑛), marking significant progress in pathfinding algorithms. 

For this study, G-BFS (Algorithm 1) is implemented in a 2D grid, treating each grid point as a node 

initially set to infinity. Obstacles are denoted by “1” and paths by “2”. The algorithm initiates at the source, 

estimating heuristic values for each neighbouring node, selecting nodes based on the lowest value and 

bypassing obstacles during evaluation. 

Algorithm 1 G-BFS 

1: Declare an 𝑀×𝑁 integer array with an initial value of ∞ 

2: Initialize Source and Destination nodes with the value 2 

3: Mark obstacles in the array with the value 3 

4: Declare 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 and set it to Source 

5: while 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 ≠ Destination: 

6: for each neighbouring node: 

7: Compute the distance from the node to the Destination 

8: Pick 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 with the smallest distance 

9: Set 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 to 2 (indicating a path) 

10: Update 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 to 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 

11: end for 

12: end while 

13: visually represent the array. 

3.3. Rapidly-Exploring Random Trees (RRT) algorithm 

The history of Rapidly-Exploring Random Trees (RRT) is fundamentally linked to the evolution of 

robotics and autonomous systems. Steven M. LaValle’s introduction of RRT in the 1990s marked a notable 

shift in navigation algorithms, emphasizing efficient exploration of high-dimensional spaces[25]. Unlike 

conventional deterministic models, RRT’s randomized nature allowed for rapid sampling of random points in 

the search space and extending a tree towards them. This method provided a unique edge in traversing intricate 

environments, most prominently seen in robotics. Today, with adaptations like RRT*, the algorithm’s 

variations are central to robotics, autonomous vehicles and other dynamic settings[26]. 

At its core, RRT is random. It grows a tree by regularly sampling points from the search space and inching 

the tree towards them[27]. RRT excels in obstacle-rich settings and complex architectures. It navigates 

challenging terrains without demanding significant memory. Given its versatility, RRT finds use in robotics, 

autonomous vehicles and other unpredictable environments. 

While often dubbed as a “brute-force” approach, RRT’s essence lies in its ability to tackle pathfinding 

issues in challenging environments. The algorithm banks on an iterative tree-building mechanism, 
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commencing from an arbitrary point and systematically growing the tree by adding new random samples. 

RRT’s uniqueness rests in its preference for uncharted regions, facilitating rapid exploration into newer 

territories[28]. 

The method consistently picks a new random point, identifies the nearest node in the current tree and then 

connects them. This random exploration enables RRT to handle intricate environments and identify non-

obvious optimal paths[29]. Both leaf nodes and parent nodes are stochastically chosen, offering RRT its agility 

in traversing terrains laden with obstacles. 

Once the RRT tree takes shape, generating paths between specific start and end points becomes feasible. 

By integrating these points with the tree, the algorithm maps a node sequence, detailing the path from the onset 

to the conclusion. This inherent adaptability shines especially in obstacle scenarios, where RRT instinctively 

plots routes around these barriers. 

A distinctive RRT advantage is its recall ability. By retaining the tree structure, the algorithm can be 

repurposed for subsequent pathfinding missions. This reuse principle amplifies RRT’s efficiency and speed in 

familiar terrains. RRT harnesses randomness and incremental growth to proficiently dissect complex spaces, 

unveiling feasible routes in demanding scenarios. Its adaptability, combined with the probabilistic roadmap 

technique, underpins its formidable reputation in diverse navigation problems[30]. The algorithmic 

impelementation of RRT in this work is shown in Algorithm 2. 

Algorithm 2 RRT 

1: Declare an M × N integer array initialized to 0 

2: Mark Source and Destination as 2 

3: Initialize obstacles with 1 

4: Initialize 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 with Source 

5: Construct a tree structure, 𝑡𝑟𝑒𝑒_𝑣𝑎𝑟𝑖 

6: Set 𝑡𝑟𝑒𝑒_𝑣𝑎𝑟𝑖 parent node as Source 

7: While 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 ≠ Destination: 

8: Randomly pick a node, assign to 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 

9: If 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 isn’t an obstacle: 

10: Check if the line between 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 and 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 doesn’t intersect any obstacle: 

11: Incorporate 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 into 𝑡𝑟𝑒𝑒_𝑣𝑎𝑟𝑖, with 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 as its parent 

12: Update 𝑐𝑢𝑟_𝑣𝑎𝑟𝑖 to 𝑛𝑒𝑤_𝑣𝑎𝑟𝑖 

13: End if 

14: End if 

15: Trace the path between parent and the latest child 

16: Update the array with 2 

17: End while 

18: Render the array visually 

3.4. Experiemntal implementation 

In the fascinating realm of autonomous aerial vehicles, the implementation of advanced algorithms for 

path planning becomes a pivotal aspect. It not only ensures the efficiency of these vehicles but also their safety, 

especially when navigating through obstacle-rich environments. Our experiment with a quadcopter equipped 

with a Pixhawk 4 flight controller offers a comprehensive analysis in this domain, focusing on two prominent 

algorithms: RRT and G-BFS. 
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The quadcopter, powered by the Pixhawk 4, served as the experimental platform. Both RRT and G-BFS 

algorithms were embedded into its onboard computer, designed to churn out a sequence of waypoints. These 

waypoints, essential for guiding the drone’s trajectory, were communicated to the mission planner software, 

offering a visual representation (Refer to Figure 1 for G-BFS and Figure 2 for RRT). These figures showcased 

an aerial perspective of the institute’s playground, indicating the path formulated by each algorithm. The testing 

grounds were carefully chosen – an open space within the academic establishment, its perimeters precisely 

demarcated using GPS coordinates. This controlled yet realistic setting offered the right balance for an 

unbiased assessment of each algorithm. 

To ensure a comprehensive evaluation, each algorithm underwent ten unique tests. This repetitive 

approach aimed to factor in all possible anomalies and ensure a thorough understanding of the algorithms’ 

performance. Realism was at the forefront of this experiment. To emulate genuine challenges a drone might 

face, imaginary static obstacles were deliberately incorporated into the drone’s trajectory. These obstacles 

served a dual purpose – they not only tested the algorithms’ robustness but also their proficiency in real-world 

obstacle avoidance. 

 
Figure 1. Induing G-BFS algorithm in Mission Planner software for obstacle avoidance. 

 
Figure 2. Induing RRT algorithm in Mission Planner software for obstacle avoidance. 
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4. Results and discussion 

Visual representation is a potent means of presenting complex data in an easy-to-digest manner. In the 

domain of path-finding algorithms, this becomes especially pertinent given the inherently spatial nature of 

their task. The use of Heat-Map graphs in our study offered a brilliant way to encapsulate the nuances of the 

G-BFS and the Rapidly-Exploring Random Trees (RRT) algorithms’ performance. 

As depicted in Figures 3 and 4, the yellow dot holds an essential position, marking the starting point for 

the algorithm’s expedition. Acting as the launching pad, it signifies the origin from where the computation of 

the optimal path begins. The transition from the starting point to the desired destination is beautifully illustrated 

either by the light-green line in Figure 3 or the sequence of dots in Figure 4. This demarcation symbolizes the 

calculated trajectory by G-BFS and RRT, providing an immediate visualization of their operational paths. The 

real challenge for any path-finding algorithm is not merely connecting two points but doing so in an 

environment filled with obstacles. The blue boxes in the visuals offer a clear picture of these hurdles. By 

placing these obstacles, the complexity of the task becomes apparent and the proficiency of the algorithms in 

navigating around them gets accentuated. 

Perhaps the most potent representation in the visualization is the dark blue region. This area, free from 

any markings, effectively portrays the discovered path by the algorithms. It underscores the capability of both 

G-BFS and RRT to not just avoid obstacles but to do so in a manner that is efficient and optimal. A unique 

facet of our visual representation was the incremental scaling of the 2D grid. The images in Figure 3, derived 

from the G-BFS, display this scalability. By showcasing results from grids of sizes 64 × 64 to an extensive 

1024 × 1024, we demonstrate the adaptability and scalability of the algorithm. Such scaling gives insights into 

the algorithms’ performance across varying complexities, ensuring that our findings aren’t just confined to a 

specific scenario but have broader applicability. 

 
Figure 3. Greedy Best First Search algorithm (a) 64 × 64 (b) 128 × 128 (c) 256 × 256 (d) 512 × 512 (e) 1024 × 1024 2D grid layout. 
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The Heat-Map representations in Figure 4 capture the intricate workings of the Rapidly-Exploring 

Random Trees (RRT) algorithm. Each screenshot represents the algorithm’s performance over different grid 

scales, from 64 × 64 to 1024 × 1024. The evolution of the algorithm’s behaviour with increasing grid 

complexity offers valuable insights into its scalability and adaptability. 

 
Figure 4. Rapidly-exploring Random Tree algorithm (a) 64 × 64 (b) 128 × 128 (c) 256 × 256 (d) 512 × 512 (e) 1024 × 1024 2D grid 
layout. 

4.1. Execution time 

4.1.1. Simulation 

The G-BFS is an informed search algorithm, but its behaviour can sometimes be likened to brute force in 

certain scenarios. From Table 1, it is evident that the execution time for G-BFS tends to grow, not strictly 

linearly, but more prominently with increasing grid size. For instance, while the execution time for a 512 × 

512 grid layout is approximately 0.04686 seconds, it more than doubles when the grid size is scaled up to 1024 

× 1024, clocking in at roughly 0.11947 seconds. Despite the exponential growth in computational time, its 

speed on larger grids suggests potential suitability for real-world applications where immediate pathfinding 

solutions are required. 

Table 1. Execution time(s) in various 2D grid layout. 

Algorithm 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024 

G-BFS 0.01562 0.0313 0.03952 0.0486 0.1194 

RRT 0.39042 2.7504 14.7392 0.1405 0.5255 

In contrast, the RRT algorithm, known for its randomized exploration behaviour, displayed inferior 

performance in comparison to the G-BFS algorithm, at least in the selected 2D grid scenarios. Its computational 

demands are higher and its execution time lacks the predictability observed with G-BFS. The inconsistency in 
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RRT’s time performance across different grid sizes underscores the unpredictability brought about by its 

randomized nature. The data underscores the complexity inherent in path-finding algorithms and their 

sensitivities to various environmental factors. It is not just about the size of the grid but also about how the 

algorithms interact with the complexities within those grids. 

From a real-world application standpoint, understanding these nuances is critical. If the goal is real-world 

pathfinding in large environments, G-BFS seems to have an edge, especially in grid scenarios. However, the 

increased computational demand of RRT, despite its slower speeds, might offer other advantages in more 

dynamic or unpredictable environments, where exploration can be more valuable than immediate optimization. 

While G-BFS displays superior performance in terms of speed across all grid sizes, the relationship 

between grid size and execution time isn’t strictly linear. The complexities involved in these algorithms 

necessitate careful consideration and optimization for real-world applications, balancing speed, accuracy and 

computational resources. 

4.1.2. Experiment 

When algorithms transition from the simulation phase to real-world application, their true capabilities are 

put to the test. In the context of the G-BFS algorithm, its real-world deployment within a quadcopter’s 

navigation system provided a tangible demonstration of its merits. In the controlled environment of the 

institute’s grounds, with the visual aid from Figures 5 and 6, it is evident that G-BFS was able to consistently 

deliver on its promise. The institute’s grounds, armed with accurate GPS coordinates and an open-air setting, 

acted as a true representation of the challenges that autonomous aerial vehicles face in everyday scenarios. 

This environment was not just a sterile testing ground—it was a dynamic space where the algorithm had to 

contend with real-world variables. 

 
Figure 5. Samples of UAV flying between the designated source and destination. 

 
Figure 6. Manual Inducing of obstacles. 
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Perhaps one of the most challenging aspects of aerial navigation is the unpredictable nature of obstacles. 

While some can be static and known, others might appear suddenly or be less visible. In this experiment, the 

introduction of static imaginary obstacles was a deliberate move to simulate these challenges. 

The G-BFS algorithm’s response to these obstacles was commendable. Not only did it successfully detect 

them, but it also seamlessly recalculated the path to circumvent them. This obstacle avoidance capability is 

paramount for any real-world application of drone technology, whether it is for delivery services, surveillance, 

or recreational use. 

The transition from a simulated environment to a real-world experiment brought forward the strengths of 

the G-BFS algorithm. Its consistent performance, coupled with precise navigation and reliable obstacle 

avoidance, is indicative of its potential in practical applications. Whether it is navigating busy urban spaces or 

exploring remote terrains, the G-BFS algorithm’s real-world experiment underscores its readiness and 

efficiency in guiding autonomous aerial vehicles safely and effectively. 

4.2. Traversed nodes 

4.2.1. Simulation 

In autonomous path planning, the number of nodes traversed by an algorithm is often indicative of its 

search strategy and efficiency. G-BFS, being a more exhaustive search method, naturally examines more nodes 

as it looks for the best possible path. RRT, on the other hand, focuses on quickly expanding into unexplored 

territories and thus often traverses fewer nodes (Table 2). 

From the data, it is clear that the G-BFS algorithm tends to visit significantly more nodes compared to 

RRT, especially as grid sizes increase. This implies that while G-BFS might be more thorough in its search, 

RRT achieves results faster and with less computational effort, at least in terms of nodes visited. 

It is worth noting that a higher node traversal does not inherently mean a better solution. It is about how 

the algorithm uses the information from those nodes. G-BFS might visit many nodes but might also find the 

most optimal path. RRT’s efficiency in terms of nodes traversed could sometimes come at the cost of optimality. 

For applications where quick responses are paramount, the efficiency of RRT in terms of nodes explored 

might be favoured. In contrast, for tasks where the best possible path is crucial and time is less of an issue, G-

BFS’s thorough exploration might be preferred. The trade-off between speed (RRT) and accuracy (G-BFS) 

needs to be carefully considered, depending on the application’s needs. 

Table 2. Consolidated algorithm traverse nodes. 

Algorithm Grid size  

64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024 

G-BFS 1120 2400 5900 10,100 20,300 

RRT 42 69 153 1238 1863 

4.2.2. Experiment 

Implementing the RRT algorithm in a real-world setting like a quadcopter’s navigation system is a 

definitive test of its capabilities. The results from the institute’s grounds suggest that RRT not only meets the 

demands of such a complex system but excels in it. 

The outdoor experiment underscored RRT’s efficiency in real-world navigation. Despite the challenges 

posed by static imaginary obstacles, the algorithm showcased an impressive ability to swiftly compute paths, 

a testament to its quick exploration strategy observed in the simulation. 
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These experimental results reiterate the strengths of the RRT algorithm in scenarios where real-world 

responses are crucial. Its ability to provide efficient paths, especially when faced with unpredictable challenges, 

makes it a strong candidate for applications in aerial vehicle navigation. Developers and researchers might 

consider this algorithm when designing systems where speed and efficiency are at a premium, even if it means 

a slight compromise on the optimality of the path. 

5. Conclusion 

The intensive evaluation and experimentation of the G-BFS and RRT algorithms for path-finding in a 2D 

grid environment reveals the following: 

• G-BFS is particularly effective in smaller grid scenarios due to its heuristic-driven approach, yielding 

faster execution times. However, the algorithm’s performance deteriorates as grid size and complexity 

increase. 

• RRT, with its stochastic nature, excels in large and intricate grid environments. While its execution times 

may be prolonged, especially in more complex search areas, it is notable for its efficient node traversal, 

even in such environments. 

• The exhaustive exploration nature of G-BFS might be ideal for scenarios where high accuracy is 

demanded, especially in manageable grid sizes. 

• Conversely, RRT’s adaptability makes it a more suitable choice for environments that are expansive or 

convoluted, even if some accuracy is compromised. 

• Considering the unique strengths of both algorithms, there is a promising avenue in developing hybrid 

algorithms that capitalize on G-BFS’s precision and RRT’s adaptability. 

• The dynamic nature of path-finding algorithms suggests ample opportunities for future research, 

particularly in enhancing efficiency and broadening their application scope. 

In essence, the nuanced behaviours and performances of G-BFS and RRT in 2D grid environments 

provide valuable insights for practitioners and decision-makers in UAV navigation. The significance of striking 

a balance between accuracy and efficiency remains central and the choice of algorithm should align with the 

specific requirements of the problem at hand. As UAV technology continues to evolve and integrate into 

diverse applications, so too will the necessity to refine and adapt path-finding algorithms for optimal 

performance. Future endeavours could include exploring strategies to tackle the challenges presented by larger, 

more intricate grid scenarios, as well as investigating the integration of other algorithms or methodologies to 

further enhance the efficiency and accuracy of UAV path-finding. 
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