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ABSTRACT 

The integration of the Internet of Things (IoT) into industrial activities has unlocked myriad possibilities, 

particularly in applications like environmental monitoring, which facilitates effective landfill management. Nevertheless, 

IoT environments present challenges, including resource constraints, heterogeneity and potential hardware/software 

failures. These issues often lead to sensor anomalies, triggering false alarms and stalling data-driven systems. Existing 

models for edge devices frequently overlook the sensor life cycle, leading to extensive training times and significant 

computational demands. In this paper, a collaborative approach is proposed wherein a Markovian architecture gauges the 

operational state of a sensor, assisting the Long Short-Term Memory (LSTM) model in outlier detection within real-world 

data. Commercially available MQ-4 sensor alongside a microwave RADAR-based Methane (CH4) sensor in a tandem 

setup is employed to evaluate our methodology. The Bathtub curve and the Pearson Correlation Coefficient (PCC) 

function as the switching mechanisms for the Markov chain. Real-time data validation yielded an impressive 92.57% 

accuracy and 94.86% efficiency in anomaly detection. When benchmarked against the Autoregressive Integrated Moving 

Average (ARIMA) and the Prophet algorithm, our method demonstrated superior anomaly rejection rates of 9.63% and 

3.01%, respectively. Implementing the Markov-LSTM model in methane sensing significantly enhances the accuracy of 

recorded sensor values compared to standard methane sensors. 

Keywords: sensor anomaly detection; edge computing; bathtub curve; methane monitoring; industrial IoT; LSTM 

Network; Markov model 

1. Introduction 

The Internet of Things (IoT) has revolutionized our 

communication with physical devices, catalyzing a paradigm shift and 

paving the way for innovative applications, especially in real-time 

monitoring realms such as gas surveillance over a Solid Waste Landfill 

Site (SWLS). While IoT offers the capability to harness automation for 

capturing real-time data changes and environmental conditions, its 

reliability can be jeopardized by factors like sensor anomalies. 

From the perspective of a SWLS, the emission of hazardous 

methane stands out as a paramount concern. methane, a potent 

greenhouse gas, can trap heat in the atmosphere at magnitudes far 

greater than carbon dioxide. Beyond its environmental implications, 

methane emissions from landfills also pose substantial health and 
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safety hazards. Short-term exposure to humans can induce symptoms like headaches, dizziness, nausea and 

fatigue. Long-term exposure has been associated with chronic respiratory ailments, neurological damage and 

even an augmented risk of cancer[1]. Given these stakes, the need for precise and dependable methane sensing 

technologies becomes paramount. 

One contemporary solution involves deploying drones outfitted with sensors to survey landfills, 

presenting an economical method to monitor methane emissions. Various sensor technologies cater to methane 

concentration measurements, including Metal Oxide sensing[2], Electrochemical sensing[3], Infrared sensing[4] 

and Laser-Based sensing[5]. However, these methods grapple with challenges like sensor poisoning and 

external interferences, including light, dust and fog[6]. Recent advancements in using microwave RADAR to 

sense methane, which factors in microclimatic conditions, are showing promise. Yet, in aerial survey setups, 

sensor accuracy is vulnerable to an array of elements, such as dynamic moving environments, UAV battery 

life, sensor placement and overarching atmospheric conditions[7]. These variables can induce sensor anomalies, 

causing discrepancies between sensor readings and actual values. 

Given the potential for false readings in SWLS management, the implications are grave—leading to 

suboptimal waste management and the unwarranted release of pollutants. To address this, our study employs 

two distinct methane sensors in a tandem arrangement, as depicted in Figure 1, bolstering the UAV-IoT 

system’s ability to execute accurate in-situ measurements. 

 
Figure 1. Architecture of methane monitoring expert system. 

Both internal and external factors often contribute to sensor anomalies. Internal elements encompass 

issues in transducers, signal conditioner circuits and power supplies. In contrast, external factors include flight 

turbulence, vibrations, dynamic environments and cross-gas interference. Moreover, cyber-attacks and weak 

communication network links can also be counted as external factors affecting sensor reliability[8]. Given that 

IoT sensor systems are susceptible to either or both types of anomalies[9], pinpointing and managing these 

discrepancies to maintain optimal system functionality can be daunting and time-intensive[10,11]. In scenarios 

where malfunction arises, an IoT expert system should possess the capability to detect and mitigate the 

fallout—like isolating a node transmitting erroneous data. Thus, robust monitoring systems that can detect 

anomalies and security breaches in real-time, issue alerts promptly and initiate corrective actions are pivotal 

to uphold a system’s reliability and precision[12,13]. Conventional methods that rely on threshold-based anomaly 

detection for edge devices grapple with the challenges of requiring skilled operators to set appropriate threshold 

values and an inability to auto-adjust these values based on changing situations. 

There’s been a growing interest in devising anomaly detection techniques for sensors that can 

autonomously identify issues and notify users. These techniques employ diverse methods, ranging from 
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Statistical Analysis and Machine Learning (ML) to Signal Processing, to discern and categorize sensor 

anomalies. An effective approach involves leveraging ML-based anomaly detection in edge computing, which 

lightens the load on the cloud side. This strategy promises zero-latency in data processing, improved response 

times, reduced network burdens and decreased cloud costs by relocating data processing tasks closer to data 

sources. 

Methane sensing is paramount in landfill operations. Disruptions due to sensor malfunction or failure can 

severely impact these operations, leading to public health risks and environmental deterioration. Consequently, 

systems should be structured to autonomously detect and rectify technical glitches. To preemptively identify 

faults and outliers in lightweight sensor data, an intelligent framework that synergizes Markov and LSTM 

models for deployment on edge devices is designed. This paper elaborates on an IoT-driven methane sensing 

architecture proficient in real-time anomaly detection. 

The rest of this paper is structured as follows: Section II provides a succinct overview of related works. 

Section III elucidates the proposed methodology. Section IV delves into the results procured from laboratory 

experiments and insights from an in-situ study at a landfill site. Section V concludes the paper, encapsulating 

the primary findings and discussing prospective avenues. 

2. Related works 

Landfill emissions, deemed hazardous, have garnered attention due to their contribution to climate change 

and public health concerns. For surveillance applications like SWLS monitoring of lower atmospheric gas 

dispersion, multi-rotor UAVs have emerged as the optimal solution[14–16], addressing both horizontal and 

vertical dimensions. Parameters such as Received Signal Strength and battery voltage can serve as indicators 

of communication-link quality and energy levels. These could potentially pinpoint sensor malfunctions and 

ensure dependable service in power-restrained UAV-based gas monitoring setups. However, sensors affixed 

to drones come with inherent challenges, such as data processing, wireless communication and particularly 

power consumption. Given that IoT modules draw from the primary power source, power-intensive algorithms 

can drastically reduce flight endurance. Semiconductor and Electrochemical gas sensors, often chosen for gas 

monitoring, are prone to issues like non-linear responses, unstable baselines and sensitivities to temperature 

and humidity[17]. Catalytic bead sensors, extensively used in the gas industry, have a vulnerability to drift and 

cross-responses in mixed gas environments[18]. With the advent of Industry 4.0, research has intensified around 

communication protocols, emphasizing energy efficiency, link stability and delay minimization[8], all critical 

to averting sensor data deviations alongside transducer malfunctions. 

In the realm of IoT, Contreras-Castillo et al.[19] championed a routing method using the Markov model, 

accentuating the enhancement of network lifespan and decision-making efficiency—pertinent for UAV-based 

wireless gas sensing. Martín et al.[20] provided an in-depth comparison of three binary classifiers: ARIMA, 

Generalized Additive Model (GAM) and LOcal RegrESSion (LOESS). Factoring in IoT’s inherent resource 

constraints, ARIMA emerged as the superior outlier detection tool when parameters were aptly calibrated. ML 

holds promise for anomaly detection. Chen et al.[21] introduced Autoencoder-based deep learning algorithms 

for anomalies, tailored for image and dense sensor values. These algorithms, focused on dimensionality 

reduction for outlier identification, are computationally intensive. Another proposal by Jiang et al.[22] centered 

on a dynamic collaborative structure for continuous IoT-generated data, with impressive classification 

accuracy but lacking in predictive foresight. This limitation can be rectified by adopting the techniques of 

Siami-Namini et al.[23] who championed time series data prediction. Kim et al.[24] suggested a “correlation 

coefficients and clustering” approach for industrial IoT, which, although promising, lacks real-time data 

validation. Meanwhile, the Prophet algorithm found favor with Yang et al.[25] for its stellar prediction of time-

series solar irradiance, showcasing a remarkable 108.30% RMSE reduction against the widely-used ARIMA. 



 

4 

Deep learning approaches to audio signal outlier detection via Recurrent Neural Network (RNN) were 

explored by Arronte Alvarez and Gómez[26]. Further, Gökdemr and Çalhan[27] experimented with MQTT 

message security, probing for duplications, intrusions and alterations using labeled datasets and algorithms 

such as SVM, Naive Bayes and LSTM. LSTM emerged superior in terms of accuracy and reduced loss. 

A review of existing literature reveals ARIMA, Convolutional Autoencoder (CAE), Support Vector 

Machine (SVM), K-Nearest Neighbor (KNN), Prophet and LSTM as predominant anomaly prediction 

algorithms for univariate time series data. However, some of these are incapable of long-term predictions. A 

summarized evaluation (Table 1) of these algorithms underscores their limitations: heavy dependence on 

historical data, inability to accurately detect sensor malfunctions, over-reliance on training datasets and neglect 

of sensor aging factors. 

Table 1. Summary of literature on anomaly prediction. 

Algorithm Methodology Inference 

CAE[28] Improves accuracy by focusing on data out layers. Restricted to time intervals. 

LSTM[29] Three Long Short-Term Memory configurations to 

capture future states. 

Deviations in bivariate data sequence. 

LSTM[30] LSTM-model with additional gates for lengthy time 

series data. 

Detection of outliers is deviated. 

Prophet[31] Temperature forecasting using Facebook’s Prophet 

Forecasting Model. 

Lack of flexibility and limited support for multiple 

seasonality. 

KNN[32] A nonparametric, lazy method for predicting future 

target. 

Distant evaluation yields mistaken predictions. 

SVM[33] Estimating spare part consumption utilizing univariate 

sales data. 

Only works with univariate time series data. 

Prophet[34] Climate observations through outlier detection Not tested in real-time data 

3. Sensor anomaly detection using Markov-LSTM architecture 

IoT devices have garnered considerable attention in monitoring applications due to their advantages, 

including cost-effectiveness and real-time data provision. When integrating IoT-enabled UAVs in landfill gas 

monitoring, these UAVs are equipped with sensors designed to detect and measure gas concentrations at 

varying locations across the landfill. This offers a comprehensive view of gas distribution, highlighting 

potential hazards. Additionally, the proposed study includes provisions to monitor parameters like temperature 

and humidity—factors that can notably influence gas production and dispersion within the landfill. Such data 

analytics enable operators to refine the landfill’s design and operational strategies, aiming to curtail gas 

emissions and avert environmental contamination. However, the success of these actions heavily hinges on the 

accuracy and reliability of the sensor data relayed to the processing end. Any discrepancies in the received 

data can jeopardize the entire data-driven system, leading to potential malfunctions. 

For data-driven environmental systems, sensor anomalies can be adeptly identified by juxtaposing current 

data with historical records, a strategy rooted in anomaly detection techniques[35]. This methodology 

encompasses real-time data acquisition from sensors, including but not limited to microwave RADAR and 

MQ-4 sensors. Subsequently, a processor equipped with an anomaly detection algorithm interprets this data. 

To enhance anomaly detection in the current study, the sensor’s historical data and data from neighboring 

sensors is factored in. The conceptual framework of this architecture is depicted in Figure 2.  
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Figure 1. Overview of the proposed architecture. 

The procured, timestamped real-time sensor data undergoes refinement via a data averaging algorithm, 

which purges extraneous noise. This streamlined data then feeds into a probabilistic model. The Markov model 

assesses the sensor’s operational status—whether it is fully functional, intermittently faulty, or completely 

malfunctioning—as transitions hinge exclusively on the present state[36]. This Markovian state, alongside the 

sensor values, serves as input for the LSTM model to pinpoint anomalies[37]. A comprehensive overview of 

this model’s functionality, coupled with the relevant algorithm, is presented in subsection 3.5. 

3.1. IoT sensor module 

This research employs two distinct sensors, leveraging metal oxide and microwave technologies, arranged 

in tandem to gauge methane concentrations. The MQ-4 sensor, renowned for its proficiency in open-

environment methane detection, is selected as the primary sensor. Its operational mechanism involves gauging 

alterations in the electrical conductivity of its electrodes upon methane exposure. According to its 

specifications, this sensor mandates a 24-h pre-heating phase and exhibits a sensing range spanning from 200 

ppm to 10,000 ppm. However, external factors like humidity and temperature can compromise its accuracy 

and sensitivity[38,39]. To circumvent these limitations, a secondary sensor is positioned adjacent to the MQ-4. 

This secondary sensor, an X-band 10.525 GHz bistatic microwave RADAR, boasts a coverage range of 2–16 

meters. The RADAR’s output undergoes amplification via an instrumentation amplifier (AD-620). Post 

amplification, any noise is eliminated by the processing unit and the resultant signal is translated into an 

equivalent methane concentration, factoring in the ambient temperature and humidity[40]. These state-of-the-

art sensors are meticulously integrated into a custom-engineered Printed Circuit Board (PCB), as illustrated in 

Figure 3. 
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Figure 2. Top and bottom view of the custom-PCB. 

3.2. Finite state machine (FSM) based on Bathtub curve 

The life cycle of a sensor can be succinctly divided into three stages: the infant stage, the useful stage and 

the obsolete stage. As illustrated in Figure 4, the time interval 0 ≤ 𝑡 < 𝑇𝑖 represents the infant stage. During 

this phase, premature failures commonly occur due to undetected defects and design oversights. The 

interval 𝑇𝑖 ≤ 𝑡 < 𝑇𝑢 delineates the useful stage, where the sensor operates with minimal failures. Finally, the 

time frame 𝑡 ≥ 𝑇𝑢 indicates the obsolete stage, wherein the sensor experiences heightened failure rates due to 

aging and related wear[39]. The sensor’s infant, useful and degradation rates are represented by the parameters 

𝜆𝑡, 𝜇𝑡  𝑎𝑛𝑑 𝜙𝑡 respectively, as defined in Equation (1): 

𝜆(𝑡) = {
𝜆𝑡; 
𝜇𝑡;
𝜙𝑡;

0 ≤ 𝑡 < 𝑇𝑖

 𝑇𝑖 ≤ 𝑡 < 𝑇𝑢

𝑡 ≥ 𝑇𝑢

 (1) 

 
Figure 3. Bathtub curve of a sensor. 

IoT sensors, especially those employed in data-driven environmental monitoring, can succumb to sensor-

poisoning, a result of contaminants such as dust and cross-reactive chemicals. As the transition between states 

is dictated solely by the current state and is agnostic to historical data, the sensor’s operational state is evaluated 

using a Markovian probabilistic model. The FSM, visualized in Figure 5, outlines the various functional states 

of the methane sensing system within the IoT framework, factoring in both bathtub curve and Markovian state 

transition conditions.  
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Figure 4. Markovian transition architecture. 

3.3. Markovian architecture  

Markovian models serve as robust tools for probabilistic modeling. Their foundational tenet is that the 

future state solely depends on the current state, regardless of the system’s historical trajectory. This inherent 

memoryless property renders Markovian models especially apt for IoT systems, as sensor values primarily 

hinge on current data without past influence[41]. In this research, the Pearson correlation coefficient (PCC), 

combined with the bathtub curve value, functions as a switching mechanism between Markovian states. The 

bathtub curve value is manually designated, while the PCC value is deduced from the relationship between the 

MQ-4 and RADAR-derived methane concentrations, as expressed in Equation (2): 

𝑃𝐶𝐶 =
(𝑛 ∑ 𝑥𝑦) − ∑(𝑥) ∑(𝑦)

√(𝑛 ∑(𝑥2) − (∑ 𝑥)
2

)(𝑛 ∑(𝑦2) − (∑ 𝑦)
2

 

 
(2) 

Three operational states have been identified: the working state (“W”), intermittently faulty state (“I”) 

and the faulty state (“F”). The potential Markovian state transitions are described in Equation (3), with the 

corresponding state transition probabilities captured in Equation (4): 

S = {W, I, F} (3) 

𝑃 =

       𝑊   𝐼        𝐹
𝑊
𝐼
𝐹

{
𝑃𝑊𝐼 𝑃𝑊𝐼 𝑃𝑊𝐹

𝑃𝐼𝑊 𝑃𝐼𝐼 𝑃𝐼𝐹

𝑃𝐹𝑊 𝑃𝐹𝐼 𝑃𝐹𝐹

} (4) 

Within a Markovian chain, the probability of selecting a transition condition after n steps is determined 

by Equation (5). The likelihood of moving from one state (point-a to point-b) after a single step is conveyed 

in Equation (6): 

𝑃𝑎𝑏 = 𝑃(𝑃𝑛 = 𝑏|𝑃0 = 𝑎) (5) 

𝑃𝑎𝑏 = 𝑃(𝑃1 = 𝑏|𝑃0 = 𝑎) (6) 

Equations (5) and (6) delineate the time-homogeneous probability of node transition within the system, 

guiding the selection of the subsequent state. For a Markov chain characterized by time-homogeneous 

properties and an “s” saturation state, the probability is ascertained by Equation (7): 

𝑃𝑟(𝑃𝑛 = 𝑏) = ∑(𝑃𝑟𝑏𝑃𝑟(𝑃𝑛−1 = 𝑟) (7) 

Equation (8) represents the “r” steps generalized probability, 

𝑃𝑟(𝑃𝑛 = 𝑏) = ∑(𝑃𝑟𝑏𝑃𝑟(𝑃0 = 𝑟) (8) 

Upon determining the transition, the subsequent sensor state is computed. This value is then amalgamated 
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with the original sensor values to form the LSTM network’s input data.  

3.4. LSTM architecture 

Long Short-Term Memory (LSTM) networks, a variety of recurrent neural networks (RNNs), are 

uniquely equipped to mitigate the gradient vanishing and exploding issues that plague traditional RNNs. For 

the task of univariate sensor sequence prediction, this research leverages a many-to-one LSTM architecture, 

which is essentially an RNN fortified with memory units. The memory capability of the LSTM architecture is 

endowed by its gate-controlled mechanism, which judiciously governs information retention. Two primary 

activation functions, “tanh” and “sig”, are utilized. The tanh function yields values in the range of −1 to 1, 

while “sig” bounds values between 0 and 1 based on the sigmoid function, thereby enhancing the model’s 

propensity to remember or forget information[42]. Figure 6 visualizes these present and previous states as ℎ𝑡 

and ℎ𝑡−1 respectively. 

 
Figure 5. Proposed LSTM Architecture to predict outlier and future target values. 

The LSTM unit cell’s working can be categorized into three stages. In the first stage, the forget gate 

decides to retain or discard the input value. The hidden state ht-1 and the input state xt are both subjected to 

the sigmoid function, which results value, between 0 and 1. The calculation steps of the forget gate are 

described in Equation (9), where, 𝑓𝑡 represents the forget gate, 𝜎 represents the sigmoid function, 𝑊𝑓 and 

𝑏𝑓 represents the weight and bias vector of forget gate, ℎ𝑡−1 represents the output at time t − 1 and 𝑥𝑡 is the 

input vector at time t.  

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡
′] + 𝑏𝑓) (9) 

In stage two, the input gate applies the second sigmoid function to current state 𝑥𝑡 and the previous 

hidden state ℎ𝑡−1 to produce values between 0 and 1. Contrary, the “tanh” function produce result between 

−1 and 1 for the same set of inputs[43]. The calculated sigmoid and tanh function outputs are multiplied[44]. The 

calculation steps involved in stage two are described by Equations (10) and (11), where, it represents input 

gate, 𝑐𝑡
′ represents updated current state, 𝑊𝑖 and 𝑏𝑖 represents the weight and bias vector of input gate and 

𝑊𝑐 and 𝑏𝑐 represents the updated weights and biases respectively. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡
′] + 𝑏𝑖) (10) 

𝑐𝑡
′ = 𝑡𝑎𝑛ℎ (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡

′] + 𝑏𝑐) (11) 

In stage three, the 𝑓𝑡 is multiplied with previous cell-state 𝐶𝑡−1 and 𝐶𝑡
′ is multiplied with it to produce 

new cell state Ct, which is described in Equation (12). 

𝐶𝑡 = (𝑓𝑡 ⊙ 𝐶𝑡−1) + (𝑖𝑡 ⊙ 𝐶𝑡
′) (12) 
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The output gate utilizes the updated cell state 𝐶𝑡 to identify output ℎ𝑡. The necessary values for this are 

acquired by applying the sigmoid function to the current state 𝑥𝑡 and the previous hidden state ℎ𝑡−1. The 

“tanh” function generated values are then used with the sigmoid function values to choose the output. The 

calculations involved in third stage are described by Equations (13) and (14), where, 𝑜𝑡 represents the output 

gate, ℎ𝑡 represents the updated output and 𝑊𝑜 and 𝑏𝑜 represent the weight bias vector of the output gate. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡
′] + 𝑏𝑜) (13) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡) (14) 

Equation (15) describes the mapping from 𝑥𝑡 to ℎ𝑡at time t. To improve prediction accuracy, the Markov 

approach is used as input to the LSTM along with the sensor values. 

ℎ𝑡 = 𝑓(ℎ𝑡 − 1) (15) 

In scenarios where Unmanned Aerial Vehicles (UAVs) employ microwave RADAR or MQ-4 sensors to 

detect methane inherent sensor limitations come into play. The microwave RADAR, being analog and relying 

on reflected signal strength, is prone to false readings. Conversely, MQ-4 sensors can be compromised by dust 

and temperature fluctuations and might also respond to gases other than the target. Therefore, amalgamating 

readings from both sensors, enhanced by an anomaly detection algorithm, yields superior results compared to 

relying on individual sensors or a combined setup without anomaly detection. The harvested sensor data is 

then relayed to a cloud-based data system utilizing the IEEE 802.11.4 protocol and MQTT methodology. 

3.5. Markov-LSTM integration methodology 

The objective of the proposed method is to formulate a ML based model that efficiently operates within 

a resource-limited environment to eliminate anomalous sensor values. The model leverages the capabilities of 

the LSTM network to discern patterns within time-series sensor data across various operational states. This 

ability of the LSTM network to grasp context enables it to differentiate between standard variations in sensor 

data due to transitional states and genuine anomalies warranting intervention. 

To categorize the operational states of the sensor, a Markov model is employed. Notably, factors like the 

aging effect of the sensors and deviations within sensor readings are harnessed as transition functions for the 

Markovian chain. 

The operation of the proposed model can be elucidated in the subsequent steps, with Algorithm 1 

providing the model’s pseudocode: 

Step #1: Initial Data Collection and Cleaning 

• Accumulate real-time sensor data. 

• Use data averaging algorithms to cleanse the data. 

• Register environmental factors such as temperature, humidity and pressure that can influence sensor 

measurements. 

Step #2: State Prediction Using Markov Model 

• Ascertain the initial state of the sensor (e.g., Working, Intermittently Faulty, or Faulty) via the Markov 

model, considering current and historical data. Designate this as “Sensor_State”. 

• Employ Equations (1) through (8) to derive a probability matrix “P”, as denoted in Equation (4) and infer 

the potential subsequent states of the sensor. 

Step #3: Feature Vector Preparation 

• Create a feature vector for the LSTM. This vector amalgamates genuine sensor readings (termed 

“Sensor_Values”) with the prevailing sensor state (“Sensor_State”). Feature Vector = [Sensor_Values, 

Sensor_State]. 
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Step #4: Data Transformation for LSTM Input 

• Repackage the feature vectors into sequences which serve as LSTM input. 

• The span of each sequence hinges on the configuration of the LSTM and the contemplated time steps. 

Step #5: Anomaly Detection using LSTM 

• Employ the LSTM model to prognosticate anomalies, informed by the sequences forged in the antecedent 

step. 

• Referencing Equation (15), update ℎ𝑡  based on ℎ𝑡−1 and 𝑥𝑡 , where 𝑥𝑡  stands for the feature vector 

[𝑆𝑒𝑛𝑠𝑜𝑟_𝑉𝑎𝑙𝑢𝑒𝑠, 𝑆𝑒𝑛𝑠𝑜𝑟_𝑆𝑡𝑎𝑡𝑒]. 

Step #6: Anomaly Handling 

• In situations where the LSTM model spots an anomaly, a notification is triggered, or rectifying measures 

are initiated. 

Step #7: Continuous Update Loop 

• The Markov model refreshes the “𝑆𝑒𝑛𝑠𝑜𝑟_𝑆𝑡𝑎𝑡𝑒”, gauging fresh readings against historical data. 

• Concurrently, the LSTM model is updated with new feature vectors, ensuring the continuous detection of 

anomalies. 

Algorithm 1 Proposed methane anomaly detection algorithm 

1: # Initialize 

2: Sensor_Data = []  

3: Sensor_State = None 

4: Feature_Vectors = [] 

5: LSTM_Model = initialize_LSTM() 

6:    while True:  

7:       # Data Collection 

8:       new_data = collect_data() 

9:       Sensor_Data.append(new_data) 

10:       clean_data = clean(Sensor_Data) 

11:       # State Prediction using Markov Model 

12:       Sensor_State = Markov_Model(clean_data) 

13:       # Feature Vector Preparation 

14:       Feature_Vector = [clean_data, Sensor_State] 

15:       Feature_Vectors.append(Feature_Vector) 

16:       # Prepare LSTM Sequence 

17:       LSTM_Sequence = prepare_sequence(Feature_Vectors) 

18:       # Anomaly Detection using LSTM 

19:       anomaly_flag = LSTM_Model.predict(LSTM_Sequence) 

20:       if anomaly_flag: 

21:          handle_anomaly() 

22:       # Update Loop 

23: Sensor_Data = Sensor_Data[-50:]  # Keep last 50 readings for efficiency 

24: Feature_Vectors = Feature_Vectors[-50:]  # Keep last 50 feature vectors 

4. Results and discussion  

ML algorithms are gaining traction in the realm of anomaly detection due to their enhanced accuracy. 

While initially deployed to detect malicious customer behavior, anomaly detection now finds utility in 

industrial scenarios as well. The Markov-LSTM-based anomaly detection system presented in this study 

underwent rigorous field testing with real-time data.  

4.1. Performance metrics of the proposed system 

The distinct architecture of RNNs incorporates a hidden state pivotal in shaping the output for each 

timestamp. Typically initialized to zero at 𝑡 = 0, this state is instrumental in prepping the RNN for training 

and testing. A specific function unfurls the network, yielding a sequence of three preceding data inputs relative 
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to the current input. Figure 7 delineates this mechanism, revealing a notable uptick in algorithmic accuracy 

within the initial 200 iterations. 

 
Figure 6. Real time sensor value-accuracy. 

The training loss juxtaposed against validation loss for live-sensor data is depicted in Figure 8. Further, 

Figure 9 contrasts the real-time methane values with predicted methane values, showcasing anomalies 

detected in real-time data. Impressively, the LSTM approach adeptly identifies and sidesteps anomalies 

stemming from external disturbances. 

 
Figure 7. Real time sensor value-training and validation loss. 

 
Figure 8. Real time sensor value-Anomaly detection. 
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For benchmarking purposes, the proposed model’s training accuracy and efficiency were set against 

renowned time-series prediction algorithms, namely ARIMA and Prophet. The comparative insights are 

graphically represented in Figure 10. 

 
Figure 9. Comparison between various methods for (a) Accuracy and (b) Efficiency. 

To minimize loss, the Root Mean-Square Logarithmic Error (RMSLE) was employed. This metric, 

formulated as in Equation (16), contrasts actual 𝑦 and forecasted 𝑦′ values. By leveraging the logarithmic 

function, the metric effectively nullifies minor disparities between the predicted and actual values. 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑙𝑜𝑔 (𝑦𝑖
′ + 1) − 𝑙𝑜𝑔 (𝑦𝑖 + 1)) (16) 

A comparative RMSLE analysis spanning ARIMA, Prophet and the proposed model underscores the 

latter’s supremacy, as corroborated by Figure 11. 

 
Figure 10. Comparison of RMSLE values between various methods. 

The Mean Absolute Error (MAE) for the time-series data, expressed in Equation (17), provides another 

lens of comparison. As Figure 12 suggests, the introduced algorithm eclipses the Prophet technique in terms 

of MAE. 
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𝑀𝐴𝐸 =
1

𝑛
− ∑  

𝑛

𝑖=1

|𝑦𝑖
′ − 𝑦𝑖| (17) 

 
Figure 11. Comparison of MAE values between various methods. 

In order to determine the determination coefficient (𝑅2), proportionate squares of the residuals to the total 

data are used and Figure 13 projects the 𝑅2 comparison between ARIMA, Prophet and proposed model. A 

comprehensive comparison between the ARIMA, Prophet and the proposed model is described in Table 2 and 

it is evident that the proposed approach outperforms the other time-series techniques. The proposed model has 

the highest accuracy at 92.57%, followed by Prophet at 83.81% and ARIMA at 65.79%. Again, the proposed 

model leads with 94.86%, followed by Prophet at 91.85% and ARIMA at 85.23%. The proposed model has 

the lowest RMSLE value, indicating better performance in terms of logarithmic error. The proposed model 

also has the lowest MAE, suggesting that its predictions are closest to the actual values. The proposed model 

has the highest 𝑅2 value, indicating that it explains the variance in the dependent variable most effectively. 

 
Figure 12. Comparison of 𝑅2 values between various methods. 
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Table 2. Testing-Performance evaluation between the proposed and Prophet algorithm. 

Algorithm Accuracy (%) Efficiency (%) RMSLE (%) MAE (%) 𝑹𝟐 (%) 

ARIMA 65.79 85.23 0.43 0.64 0.88 

Prophet 83.81 91.85 0.36 0.37 0.93 

Proposed Model 92.57 94.86 0.29 0.31 0.97 

4.2. Case study: SWLS-methane monitoring 

The proposed methodology for anomaly detection was employed in an Unmanned Aerial Vehicle (UAV)-

based environmental monitoring project over a Solid Waste Landfill Site (SWLS) to measure methane 

emissions. Figure 14 showcases the real-time deployment of sensors via UAV, which was flown over a 

municipal dump yard situated in Tamil Nadu, India. The primary objective of this mission was to monitor 

methane concentrations above the SWLS region. 

 
Figure 13. Real-time deployment of sensors over a SWLS. 

Before embarking on the experiment, a thorough survey of the region was undertaken using industrial-

grade equipment. The measurements recorded methane values ranging from 300 to 400 ppm. Both the 

microwave sensor and the MQ-4 sensor were securely positioned adjacent to each other on the UAV, as 

visualized in Figure 15. Real-time data acquisition via Google Sheets is portrayed in Figure 16. This data, 

which includes methane concentrations as well as temperature and humidity readings, is continuously updated 

through the NodeMCU system. 

 
Figure 14. Views of mounted sensor modules in an UAV. 
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Figure 15. Screenshot of Real-Time data collection in Google Sheet. 

5. Conclusions 

This research presents a proficient sensor anomaly detection methodology leveraging a Markov-LSTM 

architecture tailored for methane sensing. It underscores the burgeoning relevance of ML in anomaly detection, 

expanding its horizons from conventional uses, such as identifying malicious customer activities, to encompass 

industrial contexts. The Markov-LSTM model underwent rigorous testing with real-time data and was 

benchmarked against prominent time-series prediction methods like ARIMA and Prophet. The outcomes 

distinctly showcase the model’s superior performance across diverse evaluation criteria. Specifically, with an 

impressive accuracy of 92.57%, an efficiency rate of 94.86% and the lowest recorded values for RMSLE and 

MAE, the model’s supremacy is evident. Furthermore, its elevated 𝑅2  value signifies its commendable 

capability to elucidate the variance within the dependent variable. 

The practical utility of the model was further endorsed through a case study centered on monitoring 

METHANE emissions at a Solid Waste Landfill Site (SWLS) in Tamil Nadu, India. The real-time data 

collection, facilitated by UAV-based sensor deployment, accentuated the model’s tangible benefits in 

environmental monitoring scenarios. 

Thus, the Markov-LSTM anomaly detection framework not only epitomizes precision and efficiency but 

also stands as a steadfast, reliable solution for industrial endeavors, especially within the ambit of methane 

emission monitoring. This research, therefore, furnishes a meaningful augmentation to the domain, setting the 

stage for ensuing explorations and pragmatic deployments of machine learning techniques in sensor anomaly 

detection. 
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