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ABSTRACT 

Apple orchards are of significant importance in the global agricultural sector, but they are vulnerable to a range of 

diseases that have the potential to cause diminished crop productivity and financial hardships. This manuscript 

investigates the utilization of machine learning methodologies, such as Logistic Regression, Neural Networks, and 

Random Forest, to classify three prevalent apple diseases: Blotch, Normal, and Rot Scab. The performance of these 

models is assessed using several assessment criteria, and confusion matrices are presented to aid in the prompt and precise 

detection of these diseases. This supports the implementation of efficient disease control strategies in apple orchards. By 

utilizing these ML models for the detection and treatment of diseases, not only augment agricultural productivity but also 

make a valuable contribution to sustainable agricultural practices by diminishing the necessity for excessive pesticide 

application. The experimental results indicates that Logistic Regression reflects the best performance as compared to 

other machine learning models taken into consideration using the different parameters. it obtained 90.6% of AUC and 

65.7% of classification accuracy as compared to NN and Random Forest, which has achieved, 89.3%, 65.1%, 80.9% and 

52.2.%, respectively. 

Keywords: apple disease classification; machine learning; sustainable agriculture; environment-friendly practices; 

developing countries; food security 

1. Introduction 

The apple cultivation industry holds significant importance in the 

global agricultural sector, since it contributes significantly to food 

production and economic sustainability[1]. However, apple orchards 

have persistent issues associated with a variety of illnesses that can 

greatly reduce both the quantity and quality of the crop. Fungal 

pathogens are responsible for the occurrence of prevalent maladies 

such as Blotch, Normal, and Rot Scab among crops[2]. These conditions 

have garnered substantial attention from agricultural specialists and 

cultivators. Blotch, characterized by the manifestation of black lesions 

on leaves and fruit, is mostly ascribed to the fungal disease Venturia 

inaequalis[3]. On the other hand, it should be noted that Rot Scab is 

accountable for the formation of brown scab-like lesions on apples, 

since it is derived from the fungus Venturia pirina[4]. Conversely, 
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apples categorized as “Normal” exhibit no discernible indications of illness. The prompt and accurate 

identification of these illnesses plays a crucial role in enabling effective disease management approaches in 

apple orchards[5]. The rapid application of efficient detection technologies facilitates timely intervention, hence 

reducing the spread of diseases and minimising agricultural productivity losses[6]. Throughout the course of 

history, the primary approach to disease identification has largely focused upon the visual inspection performed 

by trained specialists. The aforementioned approach has been distinguished by its propensity for requiring a 

significant amount of time and its inherent subjectivity. 

In contemporary times, significant progress has been made in the domains of machine learning and image 

analysis, offering a potentially feasible alternative. This study examines the application of machine learning 

techniques, including Logistic Regression, Neural Networks, and Random Forest, in the classification of apple 

diseases through the analysis of high-resolution pictures[7]. Figure 1 illustrates the method of categorizing 

apple diseases. The flowchart shown illustrates the comprehensive procedure for classifying Apple Diseases. 

This procedure encompasses various stages, namely data collection, annotation, preprocessing, model 

selection, training, evaluation, and deployment[8]. The procedure described above offers a structured approach 

for the methodology employed in the investigation, which aims to properly classify apple diseases. This 

research endeavor has significant implications for the improvement of orchard management practices and the 

advancement of sustainable apple production[9]. The study project aims to provide valuable insights for farmers 

and academics, resulting in benefits for the agricultural industry and consumers worldwide.  

 

Figure 1. Apple disease classification process. 

The research is based on previous research conducted in the domain of disease identification and 

categorization. Sharma et al.[10] discuss the contemporary and future intelligent computationally techniques for 

multimedia data such as images. Shrivastava and Pradhan
[11] explore the rice leaf disease using different ML 

and DL models. Gupta et al.[12] illustrate the stack ensemble approach to classify the post-COVID-19 

complications. However, this paper sets itself apart through several significant aspects. Initially, it is important 

to note that the manuscript coverage transcends the limitations imposed by a certain crop or disease category. 

This work encompasses a range of agricultural diseases, with a specific emphasis on apple diseases such as 

Blotch, Normal, and Rot Scab. This expanded viewpoint enables a complete examination of disease detection 

methodologies that can be implemented across a wide range of crops. Secondly, it incorporates recent research 

and upcoming technologies that have not been addressed fully in earlier surveys. Moreover, this research 

expands beyond conventional methods of apple disease identification. The utilization of knowledge derived 

from contemporary research in the field of agricultural pathology is evident in this work, as exemplified by the 

incorporation of findings from studies, Aggarwal et al.[13] discuss the federated transfer learning techniques 

employed to classify the rice-leaf disease. Aggarwal et al.[14] illustrate the use of federated learning for 

classification of rice-leaf using the non-independent and identically distributed images. Additionally, this work 
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incorporates insights from Sethy et al.[15] which discusses the pre-trained deep neural network and features 

selection machine learning models for the classification of rice leaf. The goal is to offer a holistic viewpoint 

on the utilization of traditional machine learning algorithms for the identification of apple diseases by 

integrating interdisciplinary results. This approach surpasses the limitations of conventional methodologies. 

This would offer readers valuable perspectives on the most recent advancements and patterns in disease 

diagnosis.  

The motivation behind exclusive focus on “Apple” is rooted in its significant presence within the 

worldwide agriculture industry and the high incidence of diseases observed in apple orchards. The particularity 

of this characteristic allows for a thorough analysis of disease detection methods pertaining to a widely grown 

and economically important fruit, with the possibility of extending its relevance to other areas within the field 

of agriculture. The paper is organized as: Section 1 highlights the introduction; Section 2 illustrates the data 

sets and preprocessing of the data; Section 3 discusses the previous and current literature; Section 4 evaluates 

the experimental results obtained; Section 5 concludes and presents the scope of future work. 

2. Data collection and preprocessing 

The research involved the diligent collection of a complete dataset of high-resolution photographs of 

apples displaying different levels of three specific conditions:  

2.1. Blotch apple 

Blotch, caused by the fungal pathogen Venturia inaequalis, is a prevalent disease that affects apple trees. 

Apples affected by the condition known as Blotch may display a spectrum of symptoms, with the intensity of 

the ailment ranging from minor to significant. Certain apples may have minor, dispersed black lesions on their 

external surface, whilst others may display larger, more widespread lesions. Figure 2 presents a visual 

representation of apples exhibiting varying degrees of Blotch severity, illustrating the diverse manifestations 

of the disease. 

 
Figure 2. Blotch apple images. 

2.2. Rot Scab apple 

Rot Scab, a prevalent apple disease, is attributed to the fungal pathogen Venturia pirina[16]. Similar to 

Blotch, the severity of Rot Scab can demonstrate fluctuation.  

Apples afflicted with Rot Scab may display observable manifestations, characterized by the presence of 

brown scab-like lesions on their external surface. Figure 3 displays a graphical depiction of the varying degrees 
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of Rot Scab observed on different apple specimens, hence showcasing the diverse symptoms of this disease. 

 
Figure 3. Rot/scab apple images. 

2.3. Normal apple 

In contrast to apples that are afflicted with diseases such as Blotch and Rot Scab, “Normal” apples are 

ones that do not manifest any symptoms of disease. The apples in question are widely regarded as being 

nutritious and devoid of any discernible imperfections. Figure 4 typically comprises depictions of apples that 

exhibit a state of immaculacy, devoid of any signs of disease. 

 
Figure 4. Normal apple images. 

The application of a standardized area diagram is a widely used technique in the discipline of plant 

pathology to assess the magnitude of disease severity on plants or fruits. The present methodology presents a 

systematic framework for assessing the extent to which a particular disease affects the overall surface area. 

The aim of this specific situation is to produce standardized area diagrams in order to assess the severity of 

two apple diseases, specifically sooty blotch and flyspeck.  

The objective of this research is to investigate how a standardized area diagram may be used to assess the 

severity of sooty blotch and flyspeck infections on apple fruit. Using a typical area diagram in the lateral 

perspective, the severity of the sooty blotch and flyspeck infections in apple fruit was estimated. The image is 

made up of a collection of reference photos showing various levels of disease severity, from 0% (which 

indicates the absence of the disease) to 100% (which represents total covering). Observers compare the 

physical surface of the fruit with a series of reference images in order to assess the level of harm that each 
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illness has caused to the lateral surface of the fruit. This methodology offers a numerical assessment of the 

severity of the illness within this particular context. When assessing the severity of sooty blotch and flyspeck 

diseases in apple fruit from a top perspective, a standardized area diagram is used (see Figure 5). The 

illustration provided in this context includes visual cues that serve as references and demonstrate different 

stages of disease coverage. In order to estimate the part of the fruit’s upper surface area that is affected by each 

ailment, observers do a visual assessment by comparing the physical appearance of the fruit’s upper surface to 

specified benchmarks. This methodology enables a thorough evaluation of the severity of the disease from an 

alternative standpoint. Area diagrams, which adhere to established standards, are valuable tools for researchers 

and agricultural specialists to precisely measure the severity of sooty blotch and flyspeck infections on apple 

fruits. The implementation of standardized procedures enables the constant evaluation of disease severity, 

hence enhancing disease management practices within apple orchards. The objective was to curate a dataset 

that encompasses the entire range of disease severity by gathering photos of apples at different phases of 

disease progression, as well as disease-free apples. The utilization of this methodology facilitated the 

acquisition of correct discernment and classification of various disease stages and healthy apples by our 

machine learning models. Additionally, it offered a more accurate depiction of the difficulties encountered in 

actual apple orchards, where the intensity of diseases might exhibit significant variation across individual trees. 

The procedure of acquiring the information played a crucial part in the training and evaluation of our machine 

learning models for disease classification. 

 

Figure 5. Sooty blotch and flyspeck severity in two fruit views: (a) lateral view, (b) top view. 

3. Literature review 

This paper employed a thorough methodology to address the classification of four prevalent apple 

diseases, namely Blotch, Normal, Rot and Scab. In order to achieve this objective, three independent machine 

learning algorithms[17] and techniques[18] are used: Logistic regression Neural Network and Random forest, 

each possessing its own unique strengths and traits. 

3.1. Logistic regression 

Logistic regression is a commonly employed and foundational classification technique renowned for its 

straightforwardness and interpretive capabilities. Notwithstanding its straightforwardness, this approach can 

yield unexpectedly favorable outcomes, especially in cases when the data can be easily separated into distinct 

categories or when the number of characteristics is relatively limited. Within the scope of our investigation, 

the utilization of Logistic Regression was employed as the foundational model, offering a direct and 

comprehensible resolution to the task of classifying apple diseases[19,20]. The present model utilizes the logistic 

function in order to assess the likelihood associated with an apple being classified under a specific illness 
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category. Logistic Regression is a suitable method for binary and multiclass classifications due to its ability to 

determine the appropriate coefficients for the features involved in the task. 

3.2. Neural networks 

Neural networks, specifically convolutional neural networks (CNNs), have significantly transformed the 

field of image classification. Convolutional neural networks (CNNs) demonstrate exceptional proficiency in 

capturing complex patterns and hierarchical structures of features inside images, rendering them the preferred 

option for tasks pertaining to image analysis. The current study employed convolutional neural networks 

(CNNs) to automatically extract and obtain relevant visual information. The utilization of transfer learning 

was implemented to harness the capabilities of pre-trained convolutional neural network (CNN) architectures. 

The previously mentioned structures were then modified and enhanced using the dataset primarily pertaining 

to diseases that impact apple harvests. The application of this methodology enables the model to effectively 

discern intricate disease patterns, borders, and textures observed in images of apples. Consequently, it emerges 

as a potent instrument for classifying disorders. 

3.3. Random Forest 

The Random Forest methodology is widely recognised in the domain of machine learning owing to its 

robustness and capacity to effectively handle datasets characterized by a high number of dimensions. The 

system consists of a collection of decision trees, wherein each tree is trained on a randomly selected subset of 

both the dataset and the features. The utilization of Random Forest[21], a technique that combines predictions 

from many decision trees, is implemented in order to mitigate overfitting and enhance the model’s capacity 

for generalization. In our investigation, the Random Forest technique was employed, which involved the 

generation of a forest consisting of a collection of decision trees. The grouping of trees together determines 

the classification of illness for each apple. Although Random Forest may not possess the same level of intricacy 

as deep learning models such as Convolutional Neural Networks (CNNs), its capacity to effectively manage 

intricate and nonlinear associations within the data renders it a viable model worth investigating. The objective 

of this study was to conduct a detailed analysis on the efficacy of three distinct machine learning algorithms 

in the categorization of apple illnesses. The study examined various methodologies for attaining precise disease 

identification in apple orchards, leveraging the straightforwardness of Logistic Regression, the image analysis 

skills inherent in Convolutional Neural Networks (CNN), and the resilience of Random Forest. Hence, this 

research study provides a significant contribution towards the development of effective techniques for disease 

management. 

4. Experimental results 

The assessment of the performance of each model entailed the application of diverse metrics to ascertain 

its ability to differentiate between the distinct disease categories, as illustrated in Table 1. The assessment 

results indicate that Logistic Regression demonstrated superior performance when compared to the other 

models. The aforementioned findings are substantiated by the metrics acquired, which consist of an Area Under 

the Curve (AUC) value of 0.906, a Classification Accuracy (CA) value of 0.657, and an F1 Score of 0.642. 

The model was found to have an accuracy value of 0.632 and a recall value of 0.657, respectively. Based on 

these findings, it appears that the categorization abilities of the model are very precise. The Matthews 

Correlation Coefficient (MCC) received a score of 0.585, which indicates that it is effective in effectively 

resolving imbalanced data and is efficient in doing so. The findings indicate that the performance of Neural 

Networks was equivalent to that of Logistic Regression, as demonstrated by an Area Under the Curve (AUC) 

value of 0.893, a Classification Accuracy (CA) value of 0.651, and an F1 Score of 0.641. Additionally, the 

results demonstrate that the accuracy of Neural Networks was higher than that of Logistic Regression. The 

figures for Precision and Recall, in that order, were 0.632 and 0.651 respectively. In addition, the Matthews 
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Correlation Coefficient, also known as the MCC, was calculated and found to have a value of 0.579. The 

findings of this inquiry suggest that a high level of accuracy can be achieved when classification tasks are 

carried out. In contrast, the Random Forest model demonstrated somewhat lower performance metrics, as seen 

by an Area Under the Curve (AUC) value of 0.809, a Classification Accuracy (CA) value of 0.522, and an F1 

Score of 0.494. These metrics measure how well the model is able to classify the data. The system’s Precision 

and Recall values were 0.478 and 0.522, respectively, while its Matthews Correlation Coefficient (MCC) was 

observed to be the lowest at 0.416. The results presented in this study highlight the remarkable effectiveness 

of Logistic Regression and Neural Networks in accurately classifying apple illnesses, hence confirming their 

importance as excellent tools for disease management in apple orchards. This research uses Adams optimizer 

for refining model parameters and elevating classification performance. The usage of this technique is pivotal 

in attaining the reported outcomes.  

Table 1. Model performance metrics. 

Model AUC CA F1 Score Precision Recall MCC 

Logistic Regression 0.906 0.657 0.642 0.632 0.657 0.585 

Neural Networks 0.893 0.651 0.641 0.632 0.651 0.579 

Random Forest 0.809 0.522 0.494 0.478 0.522 0.416 

5. Discussion 

5.1. Confusion matrices: Logistic regression (LR) 

Within the context of the confusion matrix shown in Figure 6, the rows in the dataset correspond to the 

distinct illness groups, namely Blotch, Normal, Rot and Scab. The columns in the Logistic Regression model 

represent the disease types that have been predicted. The numerical values within the individual cells of the 

table correspond to the frequency of samples that have been classified into specific categories according to the 

predictions made by the model. 

 

Figure 6. Confusion matrices: logistic regression (LR). 

5.2. Neural network confusion matrix 

The confusion matrix depicted in Figure 7 represents the dataset's rows, which are associated with distinct 

sickness groups, specifically Blotch, Normal, Rot, and Scab. The columns within the Neural Network model 

correspond to the disease categories that have been forecasted. The elements contained within the matrix 

denote the numerical representation of the samples that have been classified and grouped into their appropriate 

classes. The confusion matrix offers a comprehensive analysis of the classification performance of the model 

for each individual class. This analysis aids in the identification of classes that are more prone to confusion by 
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the model, hence offering valuable insights into the model's strengths and limitations. 

 

Figure 7. Confusion Matrices: Neural Network (NN). 

5.3. Random Forest confusion matrix 

The Confusion Matrix shown in Figure 8 provides an evaluation of the Random Forest model’s efficacy 

in accurately classifying various apple illnesses. The illness categories (Blotch, Normal, and Rot Scab) are 

shown by the rows, while the anticipated classifications by the model are represented by the columns. The 

numerical values within the matrix represent the frequency of samples that belong to specific categories. 

 
Figure 8. Confusion matrices: Random Forest (RF). 

The Confusion Matrix offers significant insights into the performance of the model, namely in terms of 

accurately categorizing different disease types and the occurrences of misclassification. 

5.4. ROC curve—Test/train (Blotch, Rot, Scub, Normal) apple classification 

The Receiver Operating Characteristic (ROC) curves in Figures 9 and 10 illustrate the discriminatory 

performance of the Blotch, normal Rot, and scab apple test and train model in distinguishing between samples 

of Blotch, normal Rot, and scab apples. In Figure 9a–d, the graph illustrates the relationship between the true 

positive rate, also known as sensitivity, and the false positive rate, which is the complement of specificity, 

when the classification threshold undergoes variation. A greater value of the area under the receiver operating 

characteristic curve (AUC) signifies enhanced discriminatory ability. In the present scenario, the AUC value 

for blotch, rot, scab, and normal classification indicates that the model demonstrates robust performance in 

distinguishing blotch-affected apples from healthy ones. The capacity to effectively discriminate is of utmost 
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importance in the timely management of diseases in apple orchards. The lift curve is a visual tool employed in 

predictive modeling and classification tasks to evaluate the performance of a model relative to random chance. 

The evaluation process aids in assessing the efficacy of a model in effectively discerning between good and 

negative consequences. 

 
(a) ROC curve—Blotch apple. 

 
(b) ROC curve—Rot apple. 

 
(c) ROC curve—Scab apple.  

(d) ROC curve—Rot apple. 

Figure 9. ROC Curve—Test/Blotch, Rot, Scub, normal apple classification. 

 
(a) ROC curve—Blotch apple. 

 
(b) ROC curve—Normal apple. 
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(c) ROC curve—Rot apple. 

 
(d) ROC curve—Scab apple. 

Figure 10. ROC curve—train/Blotch, Rot, Scub, normal apple classification. 

5.5. Performance curve: Lift curve—Test/Train (Blotch, Rot, Scub, Normal) apple 

The lift curve provides a visual representation of the model’s performance Figure 11a–d and Figure 

12a–d, illustrating the ratio of the model’s performance to that of random chance at various thresholds. A lift 

curve characterized by a pronounced upward slope signifies a robust model, whereas a flat curve implies that 

the model’s performance is no more effective than random chance. The utilization of this curve holds 

significant importance in comprehending the model’s capacity to effectively prioritize and differentiate 

positive cases. This, in turn, aids decision-making processes and facilitates the allocation of resources across 

diverse domains, including but not limited to marketing and fraud detection. 

 
(a) ROC curve—Blotch apple. 

 
(b) ROC curve—Blotch apple. 

 
(c) ROC curve—Blotch apple. 

 
(d) ROC curve—Blotch apple. 

Figure 11. Performance curve: lift curve (Test/Blotch, Rot, Scub, Normal apple classification). 
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(a) ROC curve—Blotch apple. 

 
(b) ROC curve—Normal apple. 

 
(c) ROC curve—Rot apple. 

 
(d) ROC curve—Scab apple. 

Figure 12. Performance curve: lift curve (Train/Blotch, Rot, Scub, Normal apple classification). 

5.6. Cumulative gains 

The Cumulative Gains technique is a visual aid employed in the paper of data and predictive modeling to 

evaluate the effectiveness of models, specifically in the context of binary classification tasks. Figure 13a–d 

and Figure 14a–d demonstrate the superior predictive performance of a model in comparison to random 

chance. By graphing the cumulative proportion of positive outcomes versus the cumulative percentage of total 

samples, one can assess the model’s capacity to effectively prioritize or rank positive examples. This 

information possesses significant value in the context of decision-making, particularly in scenarios such as 

marketing campaigns, where the identification of prospects with high potential is of utmost importance. 

 
(a) Blotch apple. 

 
(b) Normal apple. 
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(c) Rot apple. 

 
(d) Scab apple. 

Figure 13. Cumulative gains (Test data/Blotch, Rot, Scub, Normal apple classification). 

 
(a) Blotch apple. 

 
(b) Normal apple. 

 
(c) Rot apple. 

 
(d) Scab apple. 

Figure 14. Cumulative gains (Train Data/ Blotch, Rot, Scub, Normal apple classification). 

5.7. Precision-recall 

During the precision-recall analysis conducted for the classification of apple diseases, specifically Blotch, 

Rot Scab, and Normal, the following observations were made shown in Figure 15a–d and Figure 16a–d. The 

precision and recall of the Blotch, Normal, Rot and Scab categories were found to be relatively balanced, 

suggesting that the models demonstrated a satisfactory capacity to accurately detect and classify occurrences 

of these diseases. The category labeled as “Normal” had similar levels of precision and recall, indicating 

successful categorization of apples that are in a healthy state. The findings of this paper highlight the overall 

effectiveness of the models in accurately differentiating between various disease classes and identifying 

healthy apples. This is crucial for effectively managing diseases in apple orchards. 
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(a) Blotch apple. 

 
(b) Normal apple. 

 
(c) Rot apple. 

 
(d) Scab apple. 

Figure 15. Precision-recall (Test Data/ Blotch, Rot, Scub, Normal apple classification). 

 
(a) Blotch apple. 

 
(b) Normal apple. 

 
(c) Rot apple. 

 
(d) Scab apple. 

Figure 16. Precision-recall (Train Data/ Blotch, Rot, Scub, Normal apple classification). 

5.8. Calibration plot (Sigmoid Calibration) 

A calibration plot, commonly known as a Sigmoid Calibration plot, Figure 17a–d and Figure 18a–d is 
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a visual depiction utilized for evaluating the efficacy of a binary classification algorithm. This aids in the 

visualization of the degree to which the expected probability corresponds with the observed outcomes. The x-

axis in this plot normally denotes the anticipated probability, while the y-axis represents the observed results, 

which are commonly binary, with 0 indicating negative outcomes and 1 indicating positive outcomes. The 

optimal calibration curve should have a linear pattern, demonstrating a precise correspondence between 

anticipated and actual probability. Deviances from the aforementioned diagonal line can potentially indicate 

discrepancies in the model’s calibration and offer valuable insights into the required modifications for 

enhanced performance. 

 
(a) Calibration: Normal apple. 

 
(b) Calibration: Normal apple. 

 
(c) Calibration: Normal apple. 

 
(d) Calibration: Normal apple. 

Figure 17. Calibration—Test/Blotch, Rot, Scub, Normal apple classification. 

 
(a) Calibration: Normal apple. 

 
(b) Calibration: Normal apple. 
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(c) Calibration: Normal apple. 

 
(d) Calibration: Normal apple. 

Figure 18. Calibration—Train/Blotch, Rot, Scub, Normal apple classification. 

6. Conclusion 

This research investigated the categorization of apple diseases by the utilization of Logistic Regression, 

Neural Networks, and Random Forest models. The Logistic Regression model had superior performance, as 

evidenced by its high Area Under the Curve (AUC), classification accuracy, and Matthews Correlation 

Coefficient. Neural networks are closely accompanied by competitive metrics. Although the Random Forest 

algorithm demonstrated promise, additional optimisation is required. Looking forward, the potential future 

avenues for this research appear to be promising. The incorporation of these models into real-time orchard 

monitoring systems will enhance the capacity for proactive disease management. Furthermore, the use of 

ensemble approaches to exploit the advantages of many algorithms holds the potential to significantly augment 

the accuracy of classification. Expanding the dataset to incorporate a wider diversity of disease kinds and 

species will boost model adaptability, supporting the development of comprehensive methods for apple disease 

management. Furthermore, the convergence of Internet of Things (IoT) and unmanned aerial vehicle (UAV) 

technologies for the purpose of data acquisition and analysis presents significant potential in enhancing disease 

detection and control measures inside apple orchards. The exploration of these prospective research directions 

presents promising opportunities for the progression of disease identification and the establishment of 

sustainable apple cultivation practices. 
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