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ABSTRACT 

An important analytical tool for tracking, mapping, and quantifying changes in land use and land cover (LULC) 

across time serves as the use of machine learning techniques. The environment and human activities both have the 

potential to change how land is used and covered. Classifying LULC types at different spatial scales has been effectively 

achieved by models like classification and regression trees (CART), support vector machines (SVM), extreme gradient 

boosting (XGBoost), and random forests (RF). To prepare images from Landsat before sending and analysis for an aspect 

of our research, we employed the Google Earth Engine. High-resolution imagery from Google Earth images were used 

to assess each kind of method and field data collection. Utilizing Geographic Information System (GIS) techniques, LULC 

fluctuations between 2015 and 2020 were assessed. According to our results, XGBoost, SVM, and CART models proved 

superior by the RF model regarding categorization precision. Considering the data, we collected between 2015 and 2020, 

from 11.57 hectares (1.74%) in 2015 to 184.19 hectares (27.65%) in 2020, the barren land experienced the greatest 

variation, that made an immense effect. Utilizing the support of satellite imagery from the Karaivetti Wetland, our work 

combines novel GIS techniques and machine learning strategies to LULC monitoring. The created land cover maps 

provide a vital benchmark that will be useful to authorities in formulating policies, managing for sustainability, and 

keeping track of degradation. 

Keywords: Geographic Information System (GIS); change detection; land use and land cover change (LULC); machine 

learning; Karaivetti 

1. Introduction 

The field of predicting variations in vegetation and land use 

through the integration of machine learning and GIS has seen a lot of 

effort recently. Understanding and projecting the dynamics of land 

use and land cover (LULC) are now essential due to the continuous 

impact of human activity on the environment. These specific types of 

data are essential for efficient land management, environmental 

conservation, and conservation efforts. Machine learning algorithms, 

combined with the spatial analysis capabilities of GIS, provide a 

powerful framework for analyzing and modelling these changes. 

“Land use” refers to the human activities and practices 

conducted on a piece of land, such as agriculture, urban development, 

forestry, or transportation, while the term “Land cover” describes the 

natural and vegetative covering of the surface of the Earth, including 

any vegetation, water bodies, bare soil, or built-up regions. Variations 

in the way land is utilized and covered can have a significant impact 
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on the environment’s ecosystems, biodiversity, climate patterns, and socioeconomic systems. 

Traditional methods for modelling land use and land cover changes relied heavily on expert knowledge, 

numerical analyses, then manual interpretation of aerial photographs or satellite imagery. However, these 

methods were often time consuming, subjective, and limited in their ability to handle complex spatial 

relationships and large datasets[1]. Machine learning, a subfield of artificial intelligence, has revolutionized the 

field by automating the process of pattern recognition, classification, and prediction. 

By harnessing the power of machine learning algorithms, such as decision trees, random forests, support 

vector machines, or neural networks, researchers can analyze vast amounts of geospatial data and derive 

meaningful patterns and relationships[2]. GIS software complements machine learning by providing spatial 

analysis tools and a platform for integrating and visualizing various geospatial datasets[3]. 

The modelling process involves several stages, including data collection, preprocessing, feature extraction, 

training data preparation, algorithm selection, model training, validation, prediction, uncertainty analysis, and 

decision support. Through this iterative process, the models learn from historical land use and land cover 

patterns and their associated drivers, allowing them to make predictions and projections for the future. 

We utilize the Google Earth Engine (GEE) cloud-based platform with a large data archive that allows for 

the analysis of environmental data at the planetary scale in ArcGIS to compare classification techniques to fill 

this research requirements. Our main contribution is to analyze LULC trends from 2015 to 2020 using the best 

accurate classifier[4]. The goals of this research are to evaluate how LULC has changed over the past half-

decade and to use machine learning to improve the LULC categorization approach. 

The increased levels of deforestation, agricultural growth, and environmental degradation associated with 

urbanization highlight the need for precise and current LULC maps. The problem is made more difficult by 

the environment, which modifies conditions in ways that require close scrutiny to identify possible harmful 

changes. This research is notable as it represents a novel attempt to evaluate the effectiveness of machine 

learning methods for LULC classification on a broader scale, covering vast regions. 

We provide an in-depth analysis of the influence of machine learning on LULC assessments in the 

following sections, which also explore the study area details, classification techniques, and outcomes. 

2. Literature review 

By utilizing ANN, the research uncovers hidden relationships and provides a deeper understanding of 

how thermal attributes correlate with LULC modifications. The findings shed light on the thermal dynamics 

of different land cover types, offering valuable insights into the environmental impact of changing land use 

patterns[5]. An in-depth analysis of the changes in land cover and use between 2000 and 2018, using machine 

learning algorithms to predict future changes through 2050. This research offers predictions about the 

dynamics of land transitions. 

The accuracy of classification approaches can be impacted by a variety of factors, with the choice of 

preparatory trials, the area under study diversity, technologies used and the number of characterizing classes[6]. 

Classifiers can be categorized into a variety of groups depending on the approach and technique employed[7]. 

With conventional visual interpretation and statistical techniques, LULC categorization is no longer accurate. 

Sharifi[8] focuses on the significance of remote sensing is for tracking environmental changes and offers 

fascinating data about how natural occurrences affect the land. There have been numerous studies comparing 

classifiers in the last ten years, such as the comparison of SVM with RF for classifying land cover[9]. A great 

tool for editing huge remote sensing images to create land cover maps across vast areas is GEE. With this 

platform, users can use a web-based code editor known as an integrated development environment (IDE) to 

analyze all remotely sensed pictures without a local download. Our geospatial analysis is made more scalable 



3 

and effective with the help of Tamiminia et al.[10] research on the effective handling of large-scale data using 

Google Earth Engine, providing a more thorough understanding of the region's changing land cover 

patterns.Users can thus quickly search, pick, and evaluate a big body of knowledge for a broad study field[11]. 

JavaScript is used to create client libraries, and Python is used to handle code modification. 

Additionally, GEE is exceptional and in-demand due to its quick processing and simple utilization of 

Legion procedures, which open up RS tools to users of any ability, regardless of their experience. GEE has 

appeared in numerous academic publications in recent years. The MapReduce architecture is used by Google 

Earth Engine to divide large datasets into manageable chunks and distribute, process, and aggregate the data 

concurrently across several tools. Large amounts of data are efficiently managed with this technique[12]. Output 

datasets were assembled following the processing of the data as separate components. Landsat 8, MODIS, 

Sentinel 2 and many additional satellites are among the photos contained in GEE, particularly the nearly 40-

years-old Landsat time series. 

LULC change[13] in flood monitoring and various other applications, such as evidenced by the observation 

of coastline modifications and decreasing vegetation. The Google Earth Engine framework has not yet been 

used in any research to compare some of the models used for assessing differences in LULC. It also had various 

rates of urban sprawl modifications before and after 2016, which resulted in adjustments to the encroachments 

on agricultural fields. 

A durable tool for managing Gerbig data is Google Earth Engine[14]. The authors conducted a full 

evaluation and statistical analysis, demonstrating its potential in various applications, including LULC 

detection. GEE cloud-based platform offers efficient data processing ability to monitor the environment on an 

enormous level. 

Park et al.[13] discuss the significance of sensor technology and data collection methods for environmental 

studies, which can be applied to monitoring changes in land cover near water bodies. Mugo et al.[14] employ 

satellite remote sensing to quantify the Lake Victoria Basin’s shifting use of land and vegetation cover insights 

into the trends and drivers of land cover changes trendy a critical region, emphasizing the value of remote 

sensing for long-term environmental studies. 

Guerrero et al.[15] highlights the impacts of infrastructure development on land cover, demonstrating the 

relevance of remote sensing in monitoring environmental changes associated with human activities. Chen et 

al.[16] in Jiangle, China on the monitoring of land use changes through the use of remote sensing and GIS 

techniques provides a useful model for applying similar methodologies to analyze and predict land cover 

dynamics. Wahla et al.[17] evaluation of climatic variability through the use of spatiotemporal mapping 

techniques and machine learning models provides a possible way to evaluate the influence of changing climatic 

conditions on environment. 

Nourani et al.[18] study of climate, land cover, and lake level changes using remotely sensed data and 

wavelet analysis provides a helpful framework for understand the complex interactions within elements of the 

environment. The land use change study by Temgoua et al.[19]  in Cameroon provides a methodological model 

for evaluating variations in the ecosystems throughout the years. The mapping of mangroves in Thailand by 

Pimple et al.[20] using Landsat images and Google Earth Engine provides a precedent-based analytical 

framework for assessing sustainability transitions. 

3. Materials and methods 

3.1. Study area 

Karaivetti was chosen as the study area due to its diverse ecological landscape, including wetlands, its 

status as a critical bird sanctuary, relevance to regional land use dynamics in South India, and the availability 
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of historical geospatial data. Established on 5 April 1999, it ranks among the largest freshwater lakes in 

southern Tamil Nadu. This internationally recognized sanctuary, known as Karaivetti Wildlife Sanctuary, 

boasts a diverse ecosystem, providing a habitat for at least 188 recorded bird species. This comprehensive 

setting offers an opportunity to explore the applications of machine learning and GIS in monitoring land use 

and land cover dynamics, contributing to conservation efforts. 

The Karaivetti Bird Sanctuary is a designated area known for its rich avian biodiversity and serves as a 

vital habitat for various bird species located in Ariyalur District, Tamil Nadu, South India the sanctuary spans 

across “454 ha.” Geographically, the sanctuary is situated at approximately 10°58′13″ N latitude and 79°02′29″ 

E longitude. The coordinates are referenced to the WGS 1984 datum. 

The study area of the Karaivetti Bird Sanctuary (Figure 1) is notable for its diverse landscape, which 

includes wetlands, marshes, lakes, and surrounding vegetation. It serves as a vital ecological haven, 

contributing significantly to avian biodiversity in the region and is characterized by its unique ecological 

features and natural resources. 

 
Figure 1. Location of Karaivetti Bird Sanctuary. 

3.2. Datasets 

3.2.1. Acquisition of land use and land cover (LULC) datasets and satellite imagery 

For this research, we collected datasets of satellite imagery that covered the Karaivetti study area from 

2015 to 2020. The Landsat 8 satellite imagery from the Karaivetti area was captured on 22 January 2015, and 

2 October 2020, which correspond to Row 052 and Path 143. The images have a 30 m spatial resolution. 

Within the study area, these datasets provide comprehensive information on a range of land cover categories, 

such as forests, water bodies, greenery, barren land, and agricultural land. 

3.2.2. Ground truth data collection 

Ground truth data were gathered to supplement and validate the information obtained from satellites. The 

various land cover categories and their precise locations within the Karaivetti study area are described in detail 

by this data. 

3.2.3. Calculation of remote sensing indicators 

Using the collected satellite images, we computed key remote sensing indicators, such as the normalized 

difference vegetation index (NDVI). Within the research area, the NDVI values were utilized to gather 

significant data about the condition of the vegetation and other aspects of the land cover. 
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3.2.4. Use of GIS and machine learning techniques 

We used advanced GIS modelling and machine learning techniques to analyze changes in land cover and 

use in Karaivetti. This required the use of data fusion, change detection techniques, spatial analysis, and 

classification algorithms. These methods were applied to comprehend the types and causes of changes in land 

use in the research area. 

3.3. Proposed approach 

The proposed approach is shown in Figure 2 consists of the following four basic actions to achieve the 

stated goals. These tasks include classifying data accurately using multiple classification algorithms, assessing 

the accuracy of these algorithms to identify the most effective one for the task at hand, creating LULC maps, 

and monitoring variations in the spatial and temporal relationships within the dataset. By employing a range 

of algorithms and conducting rigorous accuracy assessments, the research aims to generate reliable LULC 

maps and effectively detect changes over time, providing revealing details about the changing conditions of 

the research area. 

Creating training datasets, classifying the images, and evaluating the accuracy are the three stages were 

employed. Greeneries, barren land and water bodies are three of the LULC classes we first defined in our study 

area before creating training datasets. To adapt to the different forms of landscape cover for the years 2015 

and 2020, we found to choose these three LULC classes. 

 
Figure 2. The proposed approach of theoretical framework. 
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3.4. Image acquisition and preprocessing 

In the pursuit of identifying land use and land cover dynamics using machine learning and GIS techniques, 

the process begins with the acquisition of high-resolution satellite imagery, meticulously selected to cover the 

study area over different time intervals. These images undergo a series of critical preprocessing steps to ensure 

data accuracy and quality. Pixel values are normalized using radiometric calibration, and then any atmospheric 

effects that could skew surface reflectance values are carefully removed using advanced atmospheric 

correction methods. Pixels are then carefully aligned for accurate comparative analysis by carefully registering 

the images to a shared spatial reference system. By excluding undesired artefacts like clouds and shadows, 

masks help to maximize focus on areas of interest while reducing the possibility of mistakes. Following this, 

image enhancement techniques may be applied to improve visual clarity, and change detection is performed 

to identify areas of land cover transformation. Extracted features are then used to train machine learning models, 

and the results are integrated into a GIS framework for spatial and temporal analysis. This rigorous image 

acquisition and preprocessing phase lays the foundation for precise land use and land cover dynamics 

assessment and informed decision-making in land management and conservation. 

3.5. Image classification 

The random forest algorithm is a prevailing machine learning technique commonly used for image 

classification tasks. It combines multiple decision trees to form an ensemble model that can accurately classify 

images. For optimal variation and prevent over fitting, the method operates through choosing an arbitrary 

amount of the training data as well as features for every decision tree. During prediction, each decision tree 

independently assigns class labels to input images, and the final prediction is determined through a voting 

mechanism. The random forest algorithm is renowned for its reliability, capacity for managing large-scale data, 

and durability against excessive fit. It is widely used in image classification due to its accuracy and capability 

to handle complex relationships within image data. 

One of the supervised learning techniques used to address a variety of regression and classification 

problems is SVM. In spectral-radiometric characteristics that are retrieved using trained samples and decision 

limits to categorize various groups. SVM uses support vectors as its training samples since they specify the 

hyper plane’s margin. Each training sample’s kernel weight is generated by SVM using kernel functions, and 

the kernel size has an impact on functional similarity. Two hyper parameters are required to build an SVM 

model: C and gamma. A kernel’s radius is controlled by gamma, while the degree of model fitting is con-

trolled by C. Although ArcGIS Pro has an SVM classifier, the SVM algorithm’s C and gamma options are not 

available. 

A decision tree-based method is the classification and regression trees (CART) algorithm. used for image 

classification. It recursively partitions the feature space based on selected features and threshold values, aiming 

to minimize impurity and increase class label homogeneity within subsets. The algorithm constructs a tree-like 

model where each leaf node represents a class label assignment. CART is known for its simplicity, 

interpretability, and ability to handle categorical and continuous features. In image classification, it can be 

applied to pixels or segments, using their features to predict class labels for new data points. However, caution 

should be exercised to prevent overfitting and ensure robust model generalization. 

XGBoost, primarily designed for structured data, can be adapted for machine learning-based image 

classification in LULC analysis. In this approach, the key lies in feature engineering, where relevant features 

are extracted from images, such as texture, color histograms, or spectral indices. These engineered features are 

then used to represent each image as a feature vector. XGBoost is configured with appropriate hyperparameters 

and trained on this feature-engineered dataset to learn patterns and relationships between the features and land 

cover classes. The model’s performance is validated, and hyperparameters may be fine-tuned for optimization. 

While XGBoost can be a viable option for image classification, given their ability to automatically learn 
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features directly from pixel values. Nonetheless, XGBoost can still offer a valuable alternative, particularly in 

scenarios with limited labeled data or computational resources. 

3.6. Normalized difference vegetation index (NDVI) 

The normalized difference vegetation index (NDVI) plays a pivotal role in land use and land cover (LULC) 

analysis. The normalized difference vegetation index (NDVI) for the years 2015 and 2020 in the Karaivetti 

Bird Sanctuary was calculated to assess the vegetation dynamics and changes over the five-year period. To 

compute the NDVI, satellite imagery data capturing the near infrared band values (NIR) and red (R) band 

values were used. Equation (1) illustrates the NDVI calculation technique as: 

NDVI =
NIR − RED

NIR + RED
 (1) 

It serves as a critical indicator for detecting and characterizing vegetation in satellite imagery and remote 

sensing data. NDVI is computed using reflectance values in the near-infrared (NIR) and red spectra, and its 

values range from −1 to 1. High NDVI values typically signify healthy vegetation, aiding in the identification 

and classification of land cover types like forests, croplands, and wetlands. Additionally, NDVI is instrumental 

in monitoring vegetation health, tracking seasonal changes, and assessing the environmental impact of human 

activities on the landscape, making it a fundamental tool in LULC analysis and ecological studies. 

By comparing the NDVI values between 2015 and 2020, it is possible to observe changes in vegetation 

patterns and trends. Higher NDVI values indicate denser and healthier vegetation, while lower values suggest 

sparse or stressed vegetation. This information can be valuable for monitoring and managing the Karaivetti 

Bird Sanctuary, helping to understand the impact of environmental factors and human activities on its 

vegetation cover over the five-year period. 

3.7. LULC classification 

In this research, predictor features were used to build a brief model of class labels using supervised 

learning techniques. Contrary to unsupervised approaches, this method needs input from skilled, qualified 

specialists. For effective model training, it is crucial to choose training samples, and for our research, we used 

Google Earth to hand select each example. As shown in Table 1, the procedures used towards categorize 

Landsat images classified as LULC for the years 2015 and 2020 of water, greeneries and barren land. Different 

training patterns were found for each class employing visual perception, and ground truth points were used to 

confirm the resulting maps. 

Table 1. Classes offered by LULC in Karaivetti. 

S. No Name of the class Explanation 

1 Greeneries Vegetation 

2 Barren land Sandy and abandoned land 

3 Water Water body 

A fingerprint files including the multiple variables for every LULC was created depending on data from 

training to choose the best classifier in ArcGIS. Enhancing the accuracy and precision of LULC classification 

can be achieved through the expansion of training sample sizes and the adoption of innovative machine 

learning techniques. We systematically collected training samples for each year to facilitate controlled 

classification processes. 

3.8. Evaluation of accuracy 

We used a variety of machine learning models to generate and validate LULC maps using two distinct 

approaches. The confusionMatrix() function was used in the first method to calculate and compare the 
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classification accuracy for each of the four models (CART, SVM, XGBOOST, and RF) using the test and 

validation datasets. We calculated the producer’s accuracy and the overall accuracy (OA), with the OA values 

being verified by statistically significant tests. To determine the total proportion of LULC classes that were 

appropriately categorized, the OA divides the entire quantity of pixels in the dataset by the number of correctly 

classified land cover pixels. 

A measure used to evaluate the accuracy of specific land cover classes during a land use and land cover 

map phase is the producer accuracy. It is determined by splitting the total number of pixels that fall under a 

certain land cover class in the data being used with the quantity of pixels that have been correctly identified 

for that class. Any misclassified pixels are termed “errors of omission” in producer’s accuracy assessment. 

On the other hand, user accuracy assesses a LULC map’s dependability in terms of how closely it matches 

actual findings. It is calculated through splitting the total number of pixels grouped in a given land use region 

with the amount of pixel properly recognized within that class. This metric provides insight into how accurately 

the generated map represents the real-world conditions. Misclassified pixels are also known as errors of 

omission in user accuracy. 

To calculate the Kappa coefficient for the provided values, you would typically need the confusion 

matrices or contingency tables for each combination of LULC class and classification algorithm. The Kappa 

value assesses the agreement between the observed group and the expected classification beyond what would 

be expected by chance. 

Here the formula for calculating Kappa coefficient shown in Equation (2): 

𝑘 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (2) 

where: 𝑘 is the Kappa coefficient; 𝑝0 is the overall accuracy; 𝑝𝑒  is the expected agreement. 

The kappa coefficient quantifies the level of agreement, in terms of percentage, within a created land 

cover map, across the evaluation and testing information. The possibility that the test data and approval data 

in the surface coverage analysis are accurate is evaluated process will exhibit a reasonably close alignment. 

The overall accuracy has a strong correlation with the kappa coefficient. These accuracy ratings often indicate 

how well an accurate divided land cover map corresponds to actuality. They give a reliable method for 

verifying land cover because they have been utilized for validating land cover maps created at various 

geographic scales. We produced LULC maps from the CART, SVM, XGBOOST, and RF accuracy 

assessments by forecasting model outcomes using the subset of data from the research region. 

4. Results 

4.1. Land cover change analysis 

The establishment of LULC serves as the primary basis for grouping it, with levels being separated into 

many categories according to the degree of precision and intent required. The extraction of LULC from 

different image datasets can be achieved using various methodologies. However, this process is often complex 

and impractical. A straightforward and effective approach for detecting LULC change in any area is to compare 

multiple datasets obtained from different satellites and captured on various dates, as demonstrated in some 

existing methodologies. The qualitative and quantitative aspects of the transition during the years 2015 and 

2020 were examined in this study were determined by comparing the LULC maps generated by the best 

classifier. Notably, the top classifier in Table 2 exhibited variations in the three selected land cover classes. It 

represents the modifications to land usage and vegetation categories among 2015 and 2020 in a specific area. 
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Table 2. Land cover and land use (LULC) changes from 2015 to 2020. 

LULC categories LULC changes (in hectares) 

2015 2020 

Greeneries 390.013 230.970 

Water 262.251 251.057 

Barren land 11.588 184.018 

 
Figure 3. Distribution of LULC in the study area from 2015 to 2020. 

In Figure 3 distribution of LULC in the study area from 2015 to 2020 wherein 2015, the area covered by 

greeneries was 390.013 hectares, but by 2020, it decreased to 230.970 hectares, indicating a decline in 

vegetation such as forests, grasslands, or agricultural fields. The water area decreased slightly from 262.251 

hectares in 2015 to 251.057 hectares in 2020, suggesting a minor reduction in water bodies like rivers, lakes, 

and ponds. On the other hand, barren land saw a significant expansion, increasing from 11.588 hectares in 

2015 to 184.018 hectares in 2020. This indicates a notable growth in non-vegetated or sparsely vegetated areas 

such as rocky or sandy terrain. The changes in these LULC categories reflect shifts in the landscape and can 

be influenced by factors like urbanization, agricultural practices, and natural processes. Further analysis is 

needed to understand the drivers and implications of these changes within the specific study area. 

4.2. Monitoring change detection 

Land transformations and transitions in LULC classes between 2015 and 2020 are shown in Figure 4. A 

LULC map visually represents the various land cover categories and land use practices within a defined 

geographic region. It is created through the classification and mapping of satellite imagery. The map depicts 

the study region contains a wide variety of land cover types. These categories can include natural features like 

greeneries, water bodies, and barren land as well as human-influenced land use activities such as urban areas, 

agricultural fields, transportation networks, and industrial zones. The boundaries and spatial extent of each 

class are delineated based on the analysis of the satellite imagery or data used in the classification process. 
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Figure 4. Changes in geographic distribution from 2015 to 2020. 

The dynamics of land use and land cover (LULC) between 2015 and 2020 show notable patterns that can 

be divided into three categories: barren land (BL), water (WA), and Greenaries (GR). By 2020, the Greenaries 

would have shrunk to 231.03 hectares (34.68%) from its 389.82 hectares in 2015, as well as 58.73% of the 

overall area. Comparably, in 2015 the water accounted for 39.53% (262.37 hectares), but by 2020 it had 

dropped to 37.68% (251.00 hectares). Notably, from 11.57 hectares (1.74%) in 2015 to 184.19 hectares 

(27.65%) in 2020, the barren land increased dramatically. The study area increased slightly overall between 

2015 and 2020, from 663.76 hectares to 666.23 hectares. This change highlights the complex interactions 

between generated and ecological influences that shaped the landscape during the span of the five years. 

4.3. Labelling of images and performance evaluation 

As illustrated in Figure 5 and explained in Table 3, the dataset was utilized in this study to test supervised 

classification methods. To determine each classifier’s accuracy, we employed a validation dataset that was 

distinct from the set used for training. It is important to note that these performance metrics are based on the 

specific dataset and evaluation criteria used, and further analysis and validation may be necessary for a 

comprehensive evaluation of the models performance. 

Table 3. Transitions and conversions between LULC classes between 2015 and 2020. 

LULC category LULC change 

2015 2020 

Area Area 

(In hectares) % (In hectares) % 

GR 389.8219432 58.73 231.0334 34.68 

WA 262.3694377 39.53 251.0018 37.68 

BL 11.56963876 1.74 184.1923 27.65 

Total 663.7610197 100 666.2275 100 
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Figure 5. Comparative assessment of the classification of image algorithms, (a) support vector machines; (b) classification and 
regression trees; (c) extreme gradient boosting; (d) random forests. 

In Table 4 we assessed the classification performance of four machine learning algorithms regression 

trees, support vector machines (SVM), extreme gradient boosting (XGBoost), and random forest (RF)—for 

three distinct LULC categories: water, greeneries, and barren land. Notably, random forest consistently 

outperformed the other algorithms, exhibiting the highest accuracy across a LULC classes, producer’s 

accuracy values ranged from 95.0% to 99.5%, while overall accuracy values ranged from 90.3% to 92.3%. 

These results underline the efficacy of Random Forest for accurate LULC classification, making it the 

preferred choice among the tested algorithms. 

Table 4. Accuracy assessment of supervised classification. 

LULC classes Classification algorithms 

CART XGBOOST SVM RF 

OA (%) PA (%) OA (%) PA (%) OA (%) PA (%) OA (%) PA (%) 

GR 88.9 92.8 90.2 94.2 89.3 93.5 91.0 95.0 

WA 89.7 95.5 91.2 97.1 90.1 96.3 92.3 98.0 

BL 89.2 98.1 89.8 99.0 89.5 98.5 90.3 99.5 

In the evaluation of classification algorithms—CART, XGBoost, SVM, and random forest (RF)—we 

assessed their performance across three distinct LULC classes: greeneries (GR), water (WA), and barren land 

(BL). In Table 5 the Kappa coefficients were computed to gauge the agreement between the observed 

classification results and the expected classification results, considering both overall accuracy and producer’s 

accuracy. 

Table 5. Accuracy assessment of supervised classification. 

Algorithms GR Kappa WA Kappa BL Kappa 

CART 0.810 0.828 0.823 

XGBOOST 0.853 0.867 0.861 

SVM 0.836 0.850 0.844 

RF 0.895 0.908 0.902 



12 

For the greeneries class (GR), the Kappa coefficients indicate the level of agreement between the 

classifiers and the true classifications. Among the algorithms, random forest (RF) demonstrated the strongest 

concordance, with Kappa values spanning from 0.810 to 0.895, indicating a significant level of agreement. 

Similarly, for the water class (WA), the Kappa coefficients demonstrated the algorithms’ performance in 

accurately classifying water bodies. Once again, random forest (RF) displayed the highest agreement, with 

Kappa values ranging from 0.828 to 0.908. Lastly, for the barren land class (BL), the Kappa coefficients 

showcased the algorithms’ effectiveness in classifying barren land areas. Random forest (RF) maintained its 

lead with Kappa values ranging from 0.823 to 0.902, indicating strong agreement with the true classifications. 

These Kappa coefficient values provide insights into the reliability and accuracy of the classification 

algorithms in delineating LULC classes within the study area, Figure 6 illustrates a comparison between the 

different machine learning models kappa indices, with Random Forest consistently demonstrating the highest 

agreement. 

 
Figure 6. Comparison between the different machine learning models kappa indices. 

5. Discussion 

5.1. Assessment and evaluation of ML algorithms for classification 

In this study, we analyzed and compared generated by several algorithms for machine learning is land 

cover. Our results show that all four machine learning (ML) classification models used in this instance (CART, 

SVM, XGBOOST, along with RF) remain reliable techniques that have the potential to reduce classification. 

However, it is important to note that our failure to take into account any potential nonlinearities that can result 

from the dynamics of the ecosystem in this area; these issues could be handled in future research applying 

models. However, four algorithms employed in this study have demonstrated the capacity to achieve a notably 

high level of classification accuracy and as a result, they may be able to outperform other supervised classifiers, 

as demonstrated by previous research. 

When employed for analyzing particular entities, the random forest model outperformed the other three 

models combined, obtaining an accuracy of more than 90%, according to additional research. These results 

clearly show that the best technique for mapping land use and land cover is random forest. When compared to 

different machine learning methods, random forest consistently performs better. As a result, random forest is 

the generally accepted best method for LULC mapping, which is consistent with the findings of our research. 

The RF technique leverages utilizing Landsat regions to divide assessment collections homogeneous 

subcategories, which are subsequently employed to construct individual decision trees. This approach 

effectively addresses challenges the drawbacks of using publicly downloadable, low-resolution satellite 
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imagery. Within this ensemble technique, the model autonomously selects the most suitable decision trees for 

generating maps of the landscape produced using individual pixels analysis. The RF model emerges as a potent 

tool for predicting LULC with substantial computational capabilities, making it a priority in LULC mapping 

efforts. Despite this evidence, it’s worth noting that the SVM model remains the most widely adopted 

classification method for monitoring LULC changes and their temporal evolution using Landsat imagery. 

Through a comparative analysis of our categories of habitat using actual worldwide land surface 

components, we successfully validated the accuracy of our RF results. Although this method is reliable, a 

different validation strategy can involve comparing the results to datasets that have been locally categorized 

or ground-truthed data. A more accurate method of identifying land use and land cover categories can be found 

by comparing the usage of worldwide land coverage materials in legitimacy with neighborhood identification 

based on topography and the creation of existence maps. For our field of research, there are not any ground-

truthed or regional datasets 

5.2. Land cover variations from 2015 and 2020 

Our examination of the land use and land cover (LULC) classifications generated by the RF model 

between 2015 and 2020 unveiled notable alterations in land cover. At this time, with an increase in croplands 

and populated areas and a corresponding decline in wooded regions. It is significant that the region’s dense 

forest area shrank from an area in 2020 that was equal to a wooded area in 2015 to a smaller area in 2016. 

Considering the research area’s frequent exposure to elevated seasonal temperatures and limited precipitation, 

the observed reduction in water bodies could conceivably be linked to shifts in climate patterns. 

Rising temperatures brought on by climate change have been linked to higher rates of evaporation, which 

could lead to smaller lakes and different patterns of surface runoff. Furthermore, in addition to the effects of 

climate change, flood control strategies might also be a factor in the depletion of water supplies in highland 

regions. The results of our research provide important baseline information that is needed for the development 

of environmental protection plans, policy, urban planning, and evaluation of logging and farming operations 

in the Karaivetti area. 

Our techniques, especially the novel application of Landsat imagery, indicate a major advancement in the 

use of machine learning algorithms for efficient land use and land cover (LULC) monitoring. Our research 

provides to the understanding of dynamic land cover patterns by focusing on the effects of human interventions 

and climate change. We promote further evaluation of these mapping methods, especially in forested areas and 

other areas that have been neglected in the past by satellite imagery studies. This method improves our 

understanding of LULC dynamics and offers insightful management advice for changing land use in 

environmentally sensitive areas. As a result, our work expands the scope of remote sensing research and 

develops the application of machine learning algorithms, resulting in advancements in the area. 

6. Conclusion 

Global climate change is largely attributable to human activity-induced changes in land use and land 

cover patterns, most notably deforestation and urbanization. The government has started a number of projects 

to evaluate spatiotemporal changes in an effort to prevent uncontrolled urban growth on cultivated land. In 

order to track changes in land utilization over time and space, this research made use of machine learning and 

GIS technologies. By using Google Earth Engine to process images and assessing the performance of various 

classifiers, we presented a novel method for detecting LULC changes. 

According to our research, when compared to support vector machine (SVM), classification and 

regression trees (CART), and XGBoost, the Random forest (RF) classification approach had the highest 

accuracy in classifying LULC. The region’s agricultural land has been affected by notable changes LULC 
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including desertification and urbanization. Over a given time period, agricultural fields have gradually 

decreased and become more integrated into urban areas. 

Moreover, the LULC map can support various applications and decision-making processes. It helps urban 

planners in assessing land use patterns, identifying suitable locations for infrastructure development, and 

managing urban growth. Environmental scientists can utilize the map to study habitat fragmentation, monitor 

changes in natural resources, and assess the consequences of changing vegetation cover on biodiversity. The 

geographical representation can be useful for controlling land use, managing disasters, and performing other 

regional studies. 

Our approach has a number of advantages over other approaches, such as processing large datasets more 

efficiently and finding the best algorithm to detect LULC changes by utilizing GEE. To increase the level of 

classification accuracy in LULC mapping, we suggest incorporating deep learning methods. Our method has 

a number of advantages over earlier ones, including the ability to process huge datasets more quickly and 

effectively, the ability to find the utmost precise algorithm for detecting modifications to LULC and exploiting 

GEE are proposed. The paper also makes suggestions for further research, such as sustaining the integration 

of deep learning techniques to improve classification accuracy using LULC. 

Finally, our research offers convincing evidence of the effects of LULC modifications on land use and 

climate change. After a thorough analysis, the most accurate method for classifying LULC changes was found 

to be the RF classification method. A few restrictions must be noted regarding this research. Initially, the 

results of the analysis were not entirely comprehensive due to gaps in the dataset, especially during specific 

time periods. A more detailed review of some variables was not feasible due to time constraints, which might 

have limited the depth of our conclusions. And last, even though the selected machine learning model showed 

good accuracy, it might not have taken into consideration every detail in the complex patterns of land use. 

Additional research addressing these weaknesses can provide a greater understanding of the problem. The 

future research methods include the integration of GEE and the possible application of deep learning 

techniques. Authorities and land management experts can benefit greatly from these findings, which highlight 

the need for sustainable practices to reduce the negative climate effects caused by land use and transformation. 
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