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ABSTRACT 

Text recognition represents a significant research domain within the field of computer vision. Specifically, scene 

text recognition (STR), which involves the identification of text within real-world scenes, presents a distinctive set of 

challenges. These challenges encompass the need for text to capture attention immediately, the potential for text 

distortion, and the influence of various factors like occlusion, noise, and obstructions during the image capture process. 

All of these elements significantly complicate the task of recognizing text within scenes. In this paper, we introduce 

STRTrans, a modified Transformer network designed to enhance the performance of STR. This enhancement addresses 

the shortcomings observed in the existing model, characterized by lower accuracy and difficulties in recognizing 

irregular text. The modification of the encoder structure involves the implementation of two consecutive layers of the 

self-attention (SA) mechanism and the reduction of the point-wise feed-forward layer. This modification aims to enable 

the network to interpret the semantic arrangement better. Our approach underwent experimental validation using three 

publicly available datasets and was benchmarked against other advanced methods. The experimental results consistently 

demonstrate the robust performance of our approach across all three benchmark tests, achieving recognition accuracies 

of 90.60%, 86.20%, and 86.90% in the IC15, SVT-P, and CUTE datasets, respectively. Moreover, the improved model 

comprehensively surpasses the existing approaches. 
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1. Introduction 

Textual information holds significant value in computer vision-

based applications such as product retrieval, key information 

extraction, ID card scans, autonomous driving, and travel translators. 

Extracting textual information is a critical and foundational aspect of 

scene text recognition. STR’s sequence-to-sequence (S2S) approach 

offers superior results in recognizing grayscale fonts. Due to 

technological advancements, scene text presents itself in various font 

styles, colours, and layouts, with blur, noise, and complex 

backgrounds. Consequently, given the current landscape, extracting 

Scene Text (ST) has become complex[1]. ST can be categorized as 

either regular or irregular. In the case of regular ST, the character 

sequence is extracted directly from straight-text images, making the 

process straightforward and categorized as image-based sequence 

recognition. However, this approach does not yield satisfactory 

results with complex and erratic fonts and varying styles. Hence, 

attention-based and connectionist temporal classification techniques 

are preferred for extracting complex ST. On the other hand, Irregular 
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ST possesses an unconventional typeface with unclear and curved shapes, making identification challenging. 

Current methods for irregular ST recognition involve rectification, multi-direction encoding, and attention-

based algorithms[2]. 

Convolutional Neural Networks (CNNs) can capture spatial hierarchies of features, making them 

excellent at pattern and image recognition[3]. They employ parameter sharing and spatial invariance to 

identify patterns in any location within an image. During training, CNNs automatically pick up on pertinent 

features with the help of methods like data augmentation and regularization. They are a strong option for 

image identification jobs due to their high scalability and efficiency benefits from pre-trained models and 

parallelization. A CNN can be employed for ST extraction, wherein individual characters are recognized and 

detected in a traditional CNN paradigm. However, the performance of the CNN tends to degrade when 

characters are intertwined or embedded within others. As a result, contemporary approaches favour end-to-

end ST recognition, as the accuracy of detection hinges on the character detector.  

A Recurrent Neural Network (RNN) is integrated with the CNN model to enhance accuracy and 

recognition capabilities. RNNs excel in capturing long-term dependencies in context, but they are not suited 

for parallel processing and require more time for sequential information analysis. The classification of 

irregular text recognition encompasses multi-direction encoding, rectification, character-level intensive 

supervision, data-guided approaches, and 2D perspective-based recognition. Conventional data augmentation 

strategies fail to achieve high accuracy due to the significant distortions present in irregular ST. 

Consequently, including multiple training samples is necessary to account for these distortions effectively[4]. 

The remainder of this article is organized as follows: Section 2 delves into existing works related to ST 

extraction and recognition, along with their respective advantages and disadvantages. Section 3 discusses the 

requisite system architecture and equations, detailing the proposed model. Section 4 presents the 

experimental results of the suggested method and includes a comparative analysis with existing works. 

Finally, Section 5 concludes the proposed work and outlines potential avenues for future improvements. 

2. Related works 

In this section, we delve into the existing work related to scene text extraction and recognition, 

exploring their merits and limitations. 

Zhang et al.[5] introduced the scale-aware hierarchical attention network (SaHAN) for STR. This 

approach leverages the pyramidal structure inherent to deep CNNs, maintaining multi-scale properties for 

adjustable receptive fields. The hierarchical attention decoder is applied twice to multi-scale characteristics, 

providing the most granular data for prediction. The SaHAN approach requires only images and their 

corresponding training text labels. While it effectively addresses character scale-variation issues, it does not 

tackle other challenges. Mu et al.[6] proposed random blur data augmentation for STR. This procedure 

employs Random Blur Regions (RBR) and Random Blur Units (RBU). RBR generates potentially confusing 

samples during training, leading to lower recognition accuracy due to ambiguous training samples. To 

mitigate this issue, the number of subunits is divided into RBUs, which enhances model training and 

improves sample readability. RBUs perform exceptionally well when there is sufficient, but not excessive, 

training data. 

Qiao et al.[7] introduced the parallel, iterative, and mimicking network (PIMNet) for STR. PIMNet 

balances accuracy and efficiency, achieving faster text prediction through parallel attention mechanisms 

compared to sequential attention. Furthermore, iterative prediction enhances prediction accuracy. In 

imitation learning, this approach employs two decoders—analogous to a parallel decoder and an 

autoregressive decoder—to enhance hidden layer performance. PIMNet supports the complete training cycle 
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without prerequisite training for the end-to-end process, outperforming more complex techniques within a 

typical framework. 

Phan et al.[8] proposed extracting perspective-distorted text in natural scenes using the bag of keywords. 

The pre-training phase involves the use of scale-invariant feature transform descriptors. Lexicon terms use 

word recognizers, but support for arbitrary orientation is limited. Liu et al.[9] employed the spatial attention 

residue network (STAR-Net) for STR. This approach corrects distortions in natural images using a spatial 

transformer, enhancing feature extraction while maintaining minimal distortion. Residue convolutional 

blocks extract the text’s discriminative properties, facilitating fine-grained recognition. Combining STAR-

Net and residue convolutional blocks creates an end-to-end trainable network for effective STR. Selvam et 

al.[10] discussed deep learning strategies for detecting and identifying supermarket products, including retail 

product detection, product text detection, and product text recognition. They utilized the YOLOv5 object 

detection algorithm, ResNet50, and FPN to increase text detection and recognition accuracy for regular and 

irregular text scenarios.  

Lee et al.[11] employed recursive recurrent nets with attention modeling for OCR in the wild. This 

approach involves image feature extraction using recursive CNNs and incorporates RNNs in character-level 

language models to avoid using n-grams. The end-to-end training procedure substitutes the soft-orientation 

approach for conventional back-propagation, benefiting both constrained and unconstrained scenarios. 

Risnumawan et al.[12] proposed text detection for natural scene images, utilizing properties such as mutual 

direction symmetry, magnitude symmetry, and gradient vector symmetry to identify text pixel possibilities. 

The SIFT method is used for pixel-perfect text. The nearest neighbour criteria are employed during the 

ellipse-growing procedure to extract text components while separating non-text elements based on text 

direction and spatial analysis. Yu et al.[13] harnessed Semantic Reasoning Networks (SRN) for accurate STR, 

considering both semantic data and visual textures. SRN is introduced to address the limitations of RNNs, 

with the Global Semantic Resonating Module (GSRM) collecting global semantic context. This technique 

effectively recognizes long texts in regular, irregular, and non-Latin languages.  

Xia et al.[14] proposed a STR approach based on a two-stage attention and multi-branch feature fusion 

module. A two-stage attention technique reminiscent of a transformer-based encoder-decoder structure is 

used to capture text in STR effectively. This method involves initially extracting text from an image and then 

determining its location, thereby increasing prediction accuracy. The multi-branch feature function is 

employed to enhance accuracy by incorporating more features. Wu et al.[15] introduced STR’s two-level 

rectification attention network (TRAN) involving text rectification and recognition levels. The attention 

recognition network identifies texts in rectified images after correction at the pixel and geometry levels by 

the two-level rectification network. The channel and kernel-wise attention units are applied to improve 

feature extraction accuracy. This work adopts early stop training to ensure a smooth convergence process. 

Dai et al.[16] employed a scale-adaptive orientation attention network for STR, incorporating a sequence 

recognition network for character-level receptive attention. The dynamic log-polar Transformer is used to 

learn the log-polar origin for performing arbitrary rotations. 

Luan et al.[17] introduced a streamlined transformer network to mitigate attention drift and reduce 

computational overhead. Their modifications to the Vision Transformer network included the integration of a 

positional-enhancement block, dynamically fusing positional information with visual data, ultimately leading 

to enhanced recognition accuracy. In contrast, Selvam et al.[18] employed a standard transformer network to 

identify regular and irregular text within low-resolution word images. Their approach involved the 

introduction of an improved SA mechanism known as the threshold-based attention mechanism. This 

mechanism effectively eliminated less significant elements from the attention matrix. While these methods 

demonstrated improved recognition outcomes for low-resolution images, their efficacy in handling intricate 

or embellished word images remained limited. 
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Kwon et al.[19] introduced the ensemble method “textfooler” for conducting a black-box attack on 

unfamiliar models generated by the ensemble adversarial. This method replaces specific crucial keywords, 

words, or phrases to manipulate their meanings. The WordCNN, WordLSTM, and BERT models were 

integrated into the approach to enhance its effectiveness and success rate[20]. However, achieving a 100% 

success rate remains challenging, and the method does not accommodate heterogeneous architectures. 

Xue et al.[21] proposed the “Image-to-Character-to-Word” technique for STR. This method involves two 

interconnected tasks: image-to-character, which relies on visual features to detect characters, and character-

to-word, which decodes characters to identify text. Unlike the conventional encoder-decoder architecture, 

this approach directly learns from the image data, reducing the impact of image noise. However, it faces 

limitations in recognizing scene text due to occlusions and ultra-low resolution. 

Vision transformers play a crucial role in enhancing the performance of image-based tasks. Yan et al.[22] 

proposed an adaptive n-gram transformer for multi-scale STR, automatically selecting the image patch as a 

significant component for extracting features from multi-scale scene texts. The existing visual model focuses 

solely on text characters without incorporating linguistic information, resulting in a lower model recognition 

success rate. Yang et al. [23] introduced the display-semantic Transformer to address this issue. This model 

can extract semantic information from images, facilitating STR. 

From the literature review, previous research has demonstrated that the existing approaches have 

achieved more remarkable performance in recognizing regular scene text. However, these techniques 

encounter difficulties in recognizing irregular scene text. The existing approaches overlook the usage of text 

recognition modules, leading to performance degradation. Additionally, these techniques perform well on 

high-resolution word images, but their performance is unsatisfactory on low-resolution word images. 

3. The proposed model 

The Transformer concept, introduced by Vaswani et al.[24], emerged as a remedy for addressing the 

limitations inherent in Recurrent Neural Networks (RNNs) and encoder-decoder architectures. Their pivotal 

contribution involved a substantial redesign of the architecture. They achieved this by substituting RNNs 

with attention mechanisms within the Sequence-to-Sequence (S2S) encoder-decoder framework[18]. 

Incorporating attention mechanisms empowers the model to uphold long-term memory, meticulously 

attending to every token created throughout the entire sequence’s history. This architectural framework 

consists of an amalgamation of feed-forward layers (FFL), normalization layers, and residual connections, all 

thoughtfully stacked on top of each other. Several multi-head attention layers further complement these 

elements. For a visual representation, please refer to Figure 1, which illustrates the proposed STR network. 

3.1. Image transformation using TPS++ 

TPS++[25] comprises two pivotal components: Multi-scale Feature Aggregation (MSFA) and Attention-

Incorporated Parameter Estimation (AIPE). Distinguished from existing rectification methods, TPS++ boasts 

unique attributes. Firstly, it optimizes sharing the visual feature extractor, fostering a seamlessly integrated 

framework. This innovation effectively manages parameters and speeds up inference while preserving its 

adaptability. Secondly, it introduces an attention mechanism to TPS, amplifying its capacity for adaptable, 

content-aware corrections. These advancements collectively elevate rectification quality and streamline 

recognition. Moreover, TPS++ inherits vital qualities, being end-to-end trainable with STR, eliminating the 

need for supplemental annotations beyond text labels. 

3.1.1. Multi-Scale Feature Aggregation (MSFA) 

Prior text rectification methods, as exemplified by Shi et al.[26] and Shi et al.[27], typically served as a 

preliminary step in STR. However, they imposed a significant computational burden due to the need for 



5 

dual-feature extraction. TPS++ addresses this challenge by integrating its feature backbone with the 

recognizer. A key component, MSFA, processes feature maps from the initial three backbone blocks, 

resizing and combining them.  

 
Figure 1. Pipeline of the proposed STRTrans network. 

The first and second block features are downsized by 4×, they all maintain 64 standardized feature 

channels. The encoder-decoder feature extractor employs a streamlined approach, featuring both contracting 

and symmetric expansive paths with three convolution layers[28]. 

Additionally, channel spatial joint attention enhances crucial features. These operations fine-tune multi-

scale visual features for rectification. Encoded (𝐹𝑒) and decoded (𝐹𝑑) features maintain matching channel 

counts, with (𝐹𝑑) preserving the scaled input feature’s spatial resolution. This division of feature extraction 

into two components is instrumental in TPS++’s effectiveness. The first emphasizes general visual features, 

while the second, MSFA, focuses on rectification optimization by leveraging location-related cues from 

shallower blocks, facilitating control points regression and attention modelling. Notably, the second 

component introduces minimal computational overhead. 
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3.1.2. Attention-Incorporated Parameter Estimation (AIPE) 

AIPE, positioned after MSFA, enables control point regression and precise content-based attention 

score estimation. This process is accomplished through a gated attention mechanism, which predicts 

attention scores tailored to textual content. 

In a departure from the traditional method of placing control points along image borders, AIPE 

uniformly disperses them across the feature map in a grid-like pattern. This strategy optimizes control point 

distribution, concentrating them within the textual foreground, thus enhancing their relevance while reducing 

their presence in less important border regions. The number of control points matches the spatial resolution 

of (𝐹𝑒) and is then transformed into a feature sequence. Two linear layers are applied to predict x and y 

offsets for each control point, successfully regressing control points. 

In the attention score estimation process, AIPE analyses the relationship between (𝐹𝑒) and (𝐹𝑑) using 

the dynamic gated-attention block. Here, attention scores dynamically capture the interplay between control 

points and text. The resulting feature undergoes reshaping and is combined with (𝐹𝑒)  through matrix 

multiplication. Scaling with a factor of 1/√𝐷  and a Tanh activation function constrain attention scores 

within the range of (−1, 1). 

3.2. Positional Encoding (PE) 

Language modelling sequences consist of a fixed token order. While RNNs automatically encode token 

positions during operation, attention mechanisms do not consider word placement. In contrast, attention-

based models can handle encoded words without adherence to order, potentially introducing randomization. 

Unlike recurrent networks, multi-head attention networks don’t naturally leverage word order in input 

sequences[29]. An approach to address this is encoding each word based on its position in the current 

sequence. After embedding each word using a matrix, PE captures word positions using the following 

Equations (1) and (2): 

𝑃𝐸(𝑝𝑤 , 2 ∗ 𝑝𝑒) = 𝑠𝑖𝑛 (
𝑝𝑤

100002∗𝑝𝑒
𝑑𝑚𝑜𝑑𝑒𝑙

) (1) 

𝑃𝐸(𝑝𝑤 , 2 ∗ 𝑝𝑒) = 𝑐𝑜𝑠 (
𝑝𝑤

100002∗𝑝𝑒
𝑑𝑚𝑜𝑑𝑒𝑙

) (2) 

The PE matrix incorporates the sine variable in even positions and the cosine variable in odd positions. 

dmodel represents the embedding dimension, pw indicates the position within the sequence (ranging from 0 

to n-1), and pe signifies the position within the embedding dimension (ranging from 0 to dmodel). 

The position encoding employs a linear transformation layer and a normalization layer. These layers 

enable the model to leverage positional information effectively, enhancing text recognition accuracy. 

Additionally, the design of the position branch integrates the concept of a residual connection, facilitating 

improved utilization of preceding information and further enhancing the branch’s performance. 

3.3. Multi-Head Self-Attention Mechanism (MHSA) 

The MHSA layer consists of numerous attention heads, each computing attention across its input 

elements: Value (V), Key (K) and Query (Q), subjecting them to linear transformations. This process equips 

the model to focus simultaneously on diverse representational sub-spaces, fostering richer representations 

than a single-pass attention mechanism. Unique linear transformations are applied to V, K, and Q components 

for each attention head, promoting the learning of diverse representations. With N, parallel attention layers, 
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heads, queries, keys, and values are projected via separate dense layers with hidden sizes q, k, and v . 

Subsequently, another dense layer processes the concatenated results of these N heads. Figure 2 depicts the 

pipeline of the MHSA mechanism. The SA head output follows Equations (3)–(8) for the lst Transformer 

layer. 

 
Figure 2. Multi Head Self-Attention Mechanism. 

𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑤]𝑇, 𝑞𝑖 = 𝑊𝑞𝑥𝑖 + 𝑏𝑞 (3) 

𝐾 = [𝑘1 , 𝑘2, … , 𝑘𝑤]𝑇, 𝑘𝑖 = 𝑊𝑘𝑥𝑖 + 𝑏𝑘 (4) 

𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑤]𝑇, 𝑣𝑖 = 𝑊𝑣𝑥𝑖 + 𝑏𝑣 (5) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 × 𝐾𝑇

√𝑑𝑘

) 𝑉 (6) 

𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 (7) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾  , 𝑉𝑊𝑖

𝑉) (8) 

The variables b, Wq, Wk, and Wv correspond to the bias and weight matrices related to query, key, and value, 

respectively. The scaling factor 
1

√dk
, which reflects the dimensions of queries and keys, is employed to 

prevent a minimal gradient within the softmax function. 

3.4. The modified encoder block 

In the standard Transformer design, as depicted in Figure 3, each encoder block consists of a SA 

mechanism and a FFL, performing diverse roles, including residual calculation and normalization. The FFL 

functions as a densely connected middle layer, extracting essential information from the word image and 

fostering active learning among neurons. However, our investigation yielded a significant insight. When we 

introduced the FFL for non-linear conversion early in the training process, it posed challenges for the text 

recognition model in capturing authentic, hidden representations within the corpus.  

The root of this issue lies in the FFL’s use of the Relu activation function, which led to the conversion 

of all negative values to 0. While the authentic intent was to facilitate system convergence, it inadvertently 

impeded progress during the initial training phases. To address this concern, we conducted various 

experiments exploring fusions of SA mechanisms and FFL within the encoder. Our objective was to identify 

combinations that would not hinder the text recognition model’s training progress while facilitating 

convergence. Our findings revealed that three SA mechanisms are adequate. Furthermore, introducing the 

SA mechanism earlier in the model, with a more significant stacking than the number of FFL, significantly 

reduced the language model’s perplexity. 
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Figure 3. (a) Encoder block of the conventional Transformer; (b) Encoder block of the modified Transformer. 

Table 1 illustrates the diverse combinations of SA mechanisms and FFL that regulate the model. The 

symbol “s” signifies an SA mechanism within the table, while “f” denotes an FFL. The sequence of these 

symbols reflects the specific order in which the layers are arranged. Consequently, the notation “sa-ff+sa-

ff+sa-ff+sa-ff+sa-ff+sa-ff” represents the fundamental configuration of the conventional Transformer 

network, serving as the baseline for comparison. 

Table 1. Different configurations of FFL and SA mechanisms in the modified encoder block. 

Modified encoder block Avg. recognition score (%) 

sa-ff+sa-ff+sa-ff+sa-ff+sa-ff+sa-ff (Baseline) 70.22 

sa+sa-ff+sa+sa-ff+sa+sa-ff 76.54 

sa+sa-ff+sa-ff (STRTrans) 87.92 

sa+sa-ff+sa-ff+sa-ff 82.36 

sa+sa-ff+sa+sa-ff 80.45 

Each layer of the Transformer network is comprised of a SA sublayer, followed by a feed-forward 

sublayer. These sublayers work to modify a sequence of vectors denoted as M0, using Equations (9)–(13): 

𝑀1 = 𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑀0) + 𝑀0 (9) 

𝑀2 = 𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑀1) + 𝑀1 (10) 

𝑀3 = 𝐹𝐹𝑁 (𝑀2) + 𝑀2 (11) 

𝑀4 = 𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑀3) + 𝑀3 (12) 

𝑀5 = 𝐹𝐹𝑁 (𝑀4) + 𝑀4 (13) 

After a series of experiments, we discovered that three SA mechanisms proved to be adequate. It 

appears that the encoder encounters the learning plateau phenomenon once more. Ultimately, we opted for 

the “sa+sa-ff+sa-ff” as our proposed model due to its lower count of model parameters. We also discovered 

that if the SA mechanism is stacked beyond the number of FFL, the language model’s perplexity can 

significantly decrease. 
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3.4. Decoder block 

The decoder inputs query, key, and value parameters from the initial SA mechanism, following the sub-

word embedding operation and the ground truth. A masked MHSA was incorporated to halt the network 

from anticipating the valid, future training sequence. 

The masked MHSA was applied by multiplying it with a negative infinity value, assuming that the input 

sequence of the decoder follows the pattern: d, d + 1, d + 2, . . . , d + n. During the training step t , every 

sequence other than the input sequence d , such as d + 1, d + 2, . . . , d + n , was also multiplied by the 

negative infinity value. This process was repeated during the subsequent training steps, such as t + 1, where 

the sequence d + 2, . . . , d + n, excluding d and d + 1, was similarly affected. This iteration continued until 

the final training step, t + n, marking the conclusion of the mask MHSA implementation. 

The decoder’s subsequent SA mechanism computed the correlation between the output from the 

encoder and the output from the primary SA mechanism in the decoder. The parameter Q was used to 

aggregate and standardize the input of the first SA mechanism in the decoder and the residual outcome from 

the first SA mechanism. Furthermore, the K and V parameters represent the encoder’s output. 

The “Encoder-Decoder Attention” layer in the decoder section functions similarly to the MHSA 

mechanism. However, it generates its Q matrix from the underlying layer while utilizing the K and V matrix 

from the output of the encoder stack. The Linear layer, a primary fully connected neural network, projects 

the vector derived from the stack of decoders into a significantly larger vector known as a logits vector. 

Subsequently, the softmax layer transforms these scores into probabilities, all of which are positive and 

collectively sum up to 1.0. The cell with the highest probability is selected, and the associated word is then 

generated as the output for the current time step. 

4. Experimental results and discussion 

This section provides a concise and precise description of the experimental results, their interpretation, 

as well as the experimental conclusions that can be drawn. 

4.1. Dataset details 

The STRTrans network was trained using two synthetic datasets, MJSynth[30] and SynthText[8]. 

Furthermore, the network underwent training and testing on three benchmark datasets, namely ICDAR2015 

(IC15)[31], SVT-Perspective (SVT-P)[32], and CUTE80[33]. Table 2 provides descriptions of three benchmark 

datasets. 

Table 2. Dataset Description. 

Dataset Total images Training images Testing images Image characteristics 

IC15 6,545 4,468 2,077 Irregular shapes (horizontal, oriented, curved); Captured 
by Google Glasses without precise positioning. 

SVP-P 645 516 129 Heavily distorted, noisy, blurred, low-resolution images; 
Captured from a side-view angle using Google Street 
View. 

CUTE80 80 64 16 Arbitrarily shaped letters; High-resolution images captured 
in naturalistic settings; Evaluates irregular STR. 

4.2. Implementation details 

In our SVTR approach, we utilize Zheng et al.’s[25] rectification module to standardize image text to 32 

× 64 dimensions, thereby correcting distortions. Our training employs the Adam optimizer with a weight 

decay of 0.05 to enhance model performance. We set an initial learning rate of 0.01 with a batch size of 16 to 

facilitate convergence. We employ data augmentation techniques to enhance model robustness, including 
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random rotations, perspective distortions, motion blurs, and Gaussian noise. Our alphabet encompasses all 

case-insensitive alphanumeric characters, and we limit the maximum prediction length to 25 characters. 

Word accuracy serves as the primary evaluation metric, and we use Tesla T4 GPUs on Google Colaboratory 

for efficient training within the PyTorch framework. Table 3 presents a summary of the parameters for the 

STRTrans. 

Table 3. STRTrans model’s parameters. 

Parameter STRTrans 

Optimizer Adam 

Learning rate 0.01 

# of Epochs 200 

Activation function Softmax 

Batch size 16 

Dataset split ratio (Training: Validation: Testing) 80:10:10 

Weight decay 0.05 

4.3. Results 

Figure 4 depicts the accuracy graph of the proposed approach, which reaches 90.6% on the IC15 

training dataset at the 40th epoch, with no further improvement observed until the 100th epoch. Additionally, 

it achieves an accuracy of 91.3% on the IC15 test dataset. In Figure 5, the accuracy graph of the proposed 

approach is shown. The corresponding loss valuers are 0.25 and 0.14 on the taining and validation IC15 

datasets. 

Figure 6 illustrates the sample results of the proposed methods on three benchmark datasets. The first 

image shows the input image, the second image shows the attention map and the final image shows the 

predicted text. 

 
Figure 4. Accuracy graph on IC15 dataset. 

 
Figure 5. Loss graph on IC5 dataset. 
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Figure 6. Visualization of a sample experimental result. 

4.4. Performance comparison 

The performance comparison between the STRTrans network and various existing approaches in scene 

text recognition highlights the remarkable capabilities of the STRTrans network, as shown in Table 4. 

Existing methods like RARE[26], Rosetta[33], STAR-Net[8], SEED[33], R2AM[11], and Text is Text[29] exhibit 

respectable accuracy percentages on datasets like IC15, SVT-P, and CUTE. However, they fall short in 

recognition accuracy compared to the proposed method. For instance, RARE[26] achieves accuracy 

percentages ranging from 70.40% to 76.20%, while Rosetta[33], STAR-Net[8], and SEED[33] demonstrate 

competitive but lower accuracy. R2AM[11] and Text is Text[29] record good results but are surpassed by the 

proposed method. 

Table 4. Performance comparison with existing approaches. 

Methods Irregular datasets (Accuracy %) 

IC15 SVT-P CUTE 

RARE[26] 74.50 76.20 70.40 

Rosetta[33] 71.20 73.80 69.20 

STAR-Net[8] 76.10 77.50 71.70 

SEED[33] 80.00 81.40 83.60 

R2AM[11] 68.90 72.10 64.90 

Text is Text[29] 76.90 84.40 86.30 

Selvam et al.[18] 88.20 90.60 91.30 

STRTrans 90.60 86.20 86.90 

In contrast, the STRTrans consistently outperforms these existing approaches, achieving exceptional 

recognition accuracy of 90.60% on IC15, 86.20% on SVT-P, and 86.90% on CUTE. Selvam et al.[18] 

implemented bi-directional embedding in the decoder section, resulting in an enhanced performance with an 

accuracy of 88.20% on IC15, 90.60% on SVT-P, and 91.30% on CUTE. In contrast, the proposed STRTrans 

outperforms Selvam et al.[18] in the IC15 dataset with an accuracy of 90.60% but also achieves the second-

highest accuracy of 86.20% on SVT-P and 86.90% on CUTE. 

This superior performance establishes the STRTrans network as a prominent choice for STR, striking a 

remarkable balance between accuracy and practicality. While each existing method has its merits, such as 
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addressing specific text recognition challenges, the proposed approach’s exceptional recognition accuracy 

solidifies its position as a leading solution in the field. 

5. Conclusion 

In our research, we have introduced STRTrans, an enhanced Transformer network specifically designed 

to push the boundaries of STR to new heights. Our crucial innovation revolves around streamlining the 

point-wise FFL operation—a critical step in bolstering the model’s grasp of semantic information. Our 

model has significantly enhanced its ability to understand input sequences and the corresponding semantic 

nuances during training by introducing supplementary SA mechanisms before this layer. We have subjected 

the STRTrans network to rigorous evaluation using three widely recognized public datasets. The results have 

revealed substantial advancements in accuracy when compared to the original Transformer network. 

Additionally, we have conducted comprehensive comparative analyses with other experimental methods, 

further affirming the robust performance of our improved network. This research underscores the immense 

potential of STRTrans in advancing the field of STR. It promises to enable more precise and efficient textual 

content recognition across diverse real-world scenarios, marking a significant step forward in this vital study 

area. Our forthcoming research aims to expand the proposed method into a comprehensive end-to-end STR 

pipeline. Additionally, we intend to investigate and mitigate potential adversarial attacks on text as part of 

our research agenda. 
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