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ABSTRACT

Text recognition represents a significant research domain within the field of computer vision. Specifically, scene
text recognition (STR), which involves the identification of text within real-world scenes, presents a distinctive set of
challenges. These challenges encompass the need for text to capture attention immediately, the potential for text
distortion, and the influence of various factors like occlusion, noise, and obstructions during the image capture process.
All of these elements significantly complicate the task of recognizing text within scenes. In this paper, we introduce
STRTrans, a modified Transformer network designed to enhance the performance of STR. This enhancement addresses
the shortcomings observed in the existing model, characterized by lower accuracy and difficulties in recognizing
irregular text. The modification of the encoder structure involves the implementation of two consecutive layers of the
self-attention (SA) mechanism and the reduction of the point-wise feed-forward layer. This modification aims to enable
the network to interpret the semantic arrangement better. Our approach underwent experimental validation using three
publicly available datasets and was benchmarked against other advanced methods. The experimental results consistently
demonstrate the robust performance of our approach across all three benchmark tests, achieving recognition accuracies
of 90.60%, 86.20%, and 86.90% in the 1C15, SVT-P, and CUTE datasets, respectively. Moreover, the improved model
comprehensively surpasses the existing approaches.
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1. Introduction

Textual information holds significant value in computer vision-
based applications such as product retrieval, key information
extraction, 1D card scans, autonomous driving, and travel translators.
Extracting textual information is a critical and foundational aspect of
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scene text recognition. STR’s sequence-to-sequence (S2S) approach
offers superior results in recognizing grayscale fonts. Due to
technological advancements, scene text presents itself in various font
styles, colours, and layouts, with blur, noise, and complex
backgrounds. Consequently, given the current landscape, extracting
Scene Text (ST) has become complex!!l. ST can be categorized as
either regular or irregular. In the case of regular ST, the character
sequence is extracted directly from straight-text images, making the
process straightforward and categorized as image-based sequence
recognition. However, this approach does not yield satisfactory
results with complex and erratic fonts and varying styles. Hence,
attention-based and connectionist temporal classification techniques
are preferred for extracting complex ST. On the other hand, Irregular
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ST possesses an unconventional typeface with unclear and curved shapes, making identification challenging.
Current methods for irregular ST recognition involve rectification, multi-direction encoding, and attention-
based algorithms!?.

Convolutional Neural Networks (CNNs) can capture spatial hierarchies of features, making them
excellent at pattern and image recognition®. They employ parameter sharing and spatial invariance to
identify patterns in any location within an image. During training, CNNs automatically pick up on pertinent
features with the help of methods like data augmentation and regularization. They are a strong option for
image identification jobs due to their high scalability and efficiency benefits from pre-trained models and
parallelization. A CNN can be employed for ST extraction, wherein individual characters are recognized and
detected in a traditional CNN paradigm. However, the performance of the CNN tends to degrade when
characters are intertwined or embedded within others. As a result, contemporary approaches favour end-to-
end ST recognition, as the accuracy of detection hinges on the character detector.

A Recurrent Neural Network (RNN) is integrated with the CNN model to enhance accuracy and
recognition capabilities. RNNs excel in capturing long-term dependencies in context, but they are not suited
for parallel processing and require more time for sequential information analysis. The classification of
irregular text recognition encompasses multi-direction encoding, rectification, character-level intensive
supervision, data-guided approaches, and 2D perspective-based recognition. Conventional data augmentation
strategies fail to achieve high accuracy due to the significant distortions present in irregular ST.
Consequently, including multiple training samples is necessary to account for these distortions effectively.

The remainder of this article is organized as follows: Section 2 delves into existing works related to ST
extraction and recognition, along with their respective advantages and disadvantages. Section 3 discusses the
requisite system architecture and equations, detailing the proposed model. Section 4 presents the
experimental results of the suggested method and includes a comparative analysis with existing works.
Finally, Section 5 concludes the proposed work and outlines potential avenues for future improvements.

2. Related works

In this section, we delve into the existing work related to scene text extraction and recognition,
exploring their merits and limitations.

Zhang et al.®! introduced the scale-aware hierarchical attention network (SaHAN) for STR. This
approach leverages the pyramidal structure inherent to deep CNNs, maintaining multi-scale properties for
adjustable receptive fields. The hierarchical attention decoder is applied twice to multi-scale characteristics,
providing the most granular data for prediction. The SaHAN approach requires only images and their
corresponding training text labels. While it effectively addresses character scale-variation issues, it does not
tackle other challenges. Mu et al.”®! proposed random blur data augmentation for STR. This procedure
employs Random Blur Regions (RBR) and Random Blur Units (RBU). RBR generates potentially confusing
samples during training, leading to lower recognition accuracy due to ambiguous training samples. To
mitigate this issue, the number of subunits is divided into RBUs, which enhances model training and
improves sample readability. RBUs perform exceptionally well when there is sufficient, but not excessive,
training data.

Qiao et al.l'" introduced the parallel, iterative, and mimicking network (PIMNet) for STR. PIMNet
balances accuracy and efficiency, achieving faster text prediction through parallel attention mechanisms
compared to sequential attention. Furthermore, iterative prediction enhances prediction accuracy. In
imitation learning, this approach employs two decoders—analogous to a parallel decoder and an
autoregressive decoder—to enhance hidden layer performance. PIMNet supports the complete training cycle



without prerequisite training for the end-to-end process, outperforming more complex techniques within a
typical framework.

Phan et al.!®! proposed extracting perspective-distorted text in natural scenes using the bag of keywords.
The pre-training phase involves the use of scale-invariant feature transform descriptors. Lexicon terms use
word recognizers, but support for arbitrary orientation is limited. Liu et al.”! employed the spatial attention
residue network (STAR-Net) for STR. This approach corrects distortions in natural images using a spatial
transformer, enhancing feature extraction while maintaining minimal distortion. Residue convolutional
blocks extract the text’s discriminative properties, facilitating fine-grained recognition. Combining STAR-
Net and residue convolutional blocks creates an end-to-end trainable network for effective STR. Selvam et
al.'% discussed deep learning strategies for detecting and identifying supermarket products, including retail
product detection, product text detection, and product text recognition. They utilized the YOLOvV5 object
detection algorithm, ResNet50, and FPN to increase text detection and recognition accuracy for regular and
irregular text scenarios.

Lee et al.”™ employed recursive recurrent nets with attention modeling for OCR in the wild. This
approach involves image feature extraction using recursive CNNs and incorporates RNNs in character-level
language models to avoid using n-grams. The end-to-end training procedure substitutes the soft-orientation
approach for conventional back-propagation, benefiting both constrained and unconstrained scenarios.
Risnumawan et al.l*! proposed text detection for natural scene images, utilizing properties such as mutual
direction symmetry, magnitude symmetry, and gradient vector symmetry to identify text pixel possibilities.
The SIFT method is used for pixel-perfect text. The nearest neighbour criteria are employed during the
ellipse-growing procedure to extract text components while separating non-text elements based on text
direction and spatial analysis. Yu et al.*¥ harnessed Semantic Reasoning Networks (SRN) for accurate STR,
considering both semantic data and visual textures. SRN is introduced to address the limitations of RNNSs,
with the Global Semantic Resonating Module (GSRM) collecting global semantic context. This technique
effectively recognizes long texts in regular, irregular, and non-Latin languages.

Xia et al.* proposed a STR approach based on a two-stage attention and multi-branch feature fusion
module. A two-stage attention technique reminiscent of a transformer-based encoder-decoder structure is
used to capture text in STR effectively. This method involves initially extracting text from an image and then
determining its location, thereby increasing prediction accuracy. The multi-branch feature function is
employed to enhance accuracy by incorporating more features. Wu et al.'™ introduced STR’s two-level
rectification attention network (TRAN) involving text rectification and recognition levels. The attention
recognition network identifies texts in rectified images after correction at the pixel and geometry levels by
the two-level rectification network. The channel and kernel-wise attention units are applied to improve
feature extraction accuracy. This work adopts early stop training to ensure a smooth convergence process.
Dai et al.*® employed a scale-adaptive orientation attention network for STR, incorporating a sequence
recognition network for character-level receptive attention. The dynamic log-polar Transformer is used to
learn the log-polar origin for performing arbitrary rotations.

Luan et al.' introduced a streamlined transformer network to mitigate attention drift and reduce
computational overhead. Their modifications to the Vision Transformer network included the integration of a
positional-enhancement block, dynamically fusing positional information with visual data, ultimately leading
to enhanced recognition accuracy. In contrast, Selvam et al.™® employed a standard transformer network to
identify regular and irregular text within low-resolution word images. Their approach involved the
introduction of an improved SA mechanism known as the threshold-based attention mechanism. This
mechanism effectively eliminated less significant elements from the attention matrix. While these methods
demonstrated improved recognition outcomes for low-resolution images, their efficacy in handling intricate
or embellished word images remained limited.



Kwon et al.l'¥ introduced the ensemble method “textfooler” for conducting a black-box attack on
unfamiliar models generated by the ensemble adversarial. This method replaces specific crucial keywords,
words, or phrases to manipulate their meanings. The WordCNN, WordLSTM, and BERT models were
integrated into the approach to enhance its effectiveness and success rate!®. However, achieving a 100%
success rate remains challenging, and the method does not accommodate heterogeneous architectures.

Xue et al.? proposed the “Image-to-Character-to-Word” technique for STR. This method involves two
interconnected tasks: image-to-character, which relies on visual features to detect characters, and character-
to-word, which decodes characters to identify text. Unlike the conventional encoder-decoder architecture,
this approach directly learns from the image data, reducing the impact of image noise. However, it faces
limitations in recognizing scene text due to occlusions and ultra-low resolution.

Vision transformers play a crucial role in enhancing the performance of image-based tasks. Yan et al.[??
proposed an adaptive n-gram transformer for multi-scale STR, automatically selecting the image patch as a
significant component for extracting features from multi-scale scene texts. The existing visual model focuses
solely on text characters without incorporating linguistic information, resulting in a lower model recognition
success rate. Yang et al. ?® introduced the display-semantic Transformer to address this issue. This model
can extract semantic information from images, facilitating STR.

From the literature review, previous research has demonstrated that the existing approaches have
achieved more remarkable performance in recognizing regular scene text. However, these techniques
encounter difficulties in recognizing irregular scene text. The existing approaches overlook the usage of text
recognition modules, leading to performance degradation. Additionally, these techniques perform well on
high-resolution word images, but their performance is unsatisfactory on low-resolution word images.

3. The proposed model

The Transformer concept, introduced by Vaswani et al.?), emerged as a remedy for addressing the
limitations inherent in Recurrent Neural Networks (RNNs) and encoder-decoder architectures. Their pivotal
contribution involved a substantial redesign of the architecture. They achieved this by substituting RNNs
with attention mechanisms within the Sequence-to-Sequence (S2S) encoder-decoder framework!®!,
Incorporating attention mechanisms empowers the model to uphold long-term memory, meticulously
attending to every token created throughout the entire sequence’s history. This architectural framework
consists of an amalgamation of feed-forward layers (FFL), normalization layers, and residual connections, all
thoughtfully stacked on top of each other. Several multi-head attention layers further complement these
elements. For a visual representation, please refer to Figure 1, which illustrates the proposed STR network.

3.1. Image transformation using TPS++

TPS++2%1 comprises two pivotal components: Multi-scale Feature Aggregation (MSFA) and Attention-
Incorporated Parameter Estimation (AIPE). Distinguished from existing rectification methods, TPS++ boasts
unique attributes. Firstly, it optimizes sharing the visual feature extractor, fostering a seamlessly integrated
framework. This innovation effectively manages parameters and speeds up inference while preserving its
adaptability. Secondly, it introduces an attention mechanism to TPS, amplifying its capacity for adaptable,
content-aware corrections. These advancements collectively elevate rectification quality and streamline
recognition. Moreover, TPS++ inherits vital qualities, being end-to-end trainable with STR, eliminating the
need for supplemental annotations beyond text labels.

3.1.1. Multi-Scale Feature Aggregation (MSFA)

Prior text rectification methods, as exemplified by Shi et al.®® and Shi et al.?"), typically served as a
preliminary step in STR. However, they imposed a significant computational burden due to the need for
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dual-feature extraction. TPS++ addresses this challenge by integrating its feature backbone with the
recognizer. A key component, MSFA, processes feature maps from the initial three backbone blocks,
resizing and combining them.
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Figure 1. Pipeline of the proposed STRTrans network.

The first and second block features are downsized by 4 they all maintain 64 standardized feature
channels. The encoder-decoder feature extractor employs a streamlined approach, featuring both contracting
and symmetric expansive paths with three convolution layers?®!,

Additionally, channel spatial joint attention enhances crucial features. These operations fine-tune multi-
scale visual features for rectification. Encoded (F,) and decoded (F,) features maintain matching channel
counts, with (F;) preserving the scaled input feature’s spatial resolution. This division of feature extraction
into two components is instrumental in TPS++’s effectiveness. The first emphasizes general visual features,
while the second, MSFA, focuses on rectification optimization by leveraging location-related cues from
shallower blocks, facilitating control points regression and attention modelling. Notably, the second
component introduces minimal computational overhead.



3.1.2. Attention-Incorporated Parameter Estimation (AIPE)

AIPE, positioned after MSFA, enables control point regression and precise content-based attention
score estimation. This process is accomplished through a gated attention mechanism, which predicts
attention scores tailored to textual content.

In a departure from the traditional method of placing control points along image borders, AIPE
uniformly disperses them across the feature map in a grid-like pattern. This strategy optimizes control point
distribution, concentrating them within the textual foreground, thus enhancing their relevance while reducing
their presence in less important border regions. The number of control points matches the spatial resolution
of (F,) and is then transformed into a feature sequence. Two linear layers are applied to predict x and y
offsets for each control point, successfully regressing control points.

In the attention score estimation process, AIPE analyses the relationship between (F,) and (F;) using
the dynamic gated-attention block. Here, attention scores dynamically capture the interplay between control
points and text. The resulting feature undergoes reshaping and is combined with (F,) through matrix
multiplication. Scaling with a factor of 1/VD and a Tanh activation function constrain attention scores
within the range of (-1, 1).

3.2. Positional Encoding (PE)

Language modelling sequences consist of a fixed token order. While RNNs automatically encode token
positions during operation, attention mechanisms do not consider word placement. In contrast, attention-
based models can handle encoded words without adherence to order, potentially introducing randomization.
Unlike recurrent networks, multi-head attention networks don’t naturally leverage word order in input
sequences®. An approach to address this is encoding each word based on its position in the current
sequence. After embedding each word using a matrix, PE captures word positions using the following
Equations (1) and (2):

Pw
100002*Pe (1)
dmodel

PE(p,,,2 * p,) = sin

Pw
100002%*Pe @)
dmodel
The PE matrix incorporates the sine variable in even positions and the cosine variable in odd positions.
dmogel represents the embedding dimension, p,, indicates the position within the sequence (ranging from 0
to n-1), and p, signifies the position within the embedding dimension (ranging from 0 to d,04e1)-

PE(p,,,2 *p,) = cos

The position encoding employs a linear transformation layer and a normalization layer. These layers
enable the model to leverage positional information effectively, enhancing text recognition accuracy.
Additionally, the design of the position branch integrates the concept of a residual connection, facilitating
improved utilization of preceding information and further enhancing the branch’s performance.

3.3. Multi-Head Self-Attention Mechanism (MHSA)

The MHSA layer consists of numerous attention heads, each computing attention across its input
elements: Value (V), Key (K) and Query (Q), subjecting them to linear transformations. This process equips
the model to focus simultaneously on diverse representational sub-spaces, fostering richer representations
than a single-pass attention mechanism. Unique linear transformations are applied to V, K, and Q components
for each attention head, promoting the learning of diverse representations. With N, parallel attention layers,
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heads, queries, keys, and values are projected via separate dense layers with hidden sizes q, k, and v.
Subsequently, another dense layer processes the concatenated results of these N heads. Figure 2 depicts the
pipeline of the MHSA mechanism. The SA head output follows Equations (3)—(8) for the I Transformer
layer.

Concat

!

Attenti : 5 .
Heads | Attention (1) | [ Attention (2) | Attention (n)

Q,K,V)

Figure 2. Multi Head Self-Attention Mechanism.

Q=1491,qz2 - qwl", @ =Wx; +bq (3)

K = [ky, kg oo, k1T, ki = Wyx; + by, 4)

V=[v,vy ., 0],  vi=Wux; +b, (5)
QxKT

Attention(Q,K,V) = softmax( \/d_k )V (6)

MHAttention(Q,K,V) = Concat(head,, ..., head,)W° (7)

head; = Attention(QI/ViQ,KWiK R4S 8)

The variables b, Wy, Wy, and W, correspond to the bias and weight matrices related to query, key, and value,

respectively. The scaling factor%, which reflects the dimensions of queries and keys, is employed to
k

prevent a minimal gradient within the softmax function.

3.4. The modified encoder block

In the standard Transformer design, as depicted in Figure 3, each encoder block consists of a SA
mechanism and a FFL, performing diverse roles, including residual calculation and normalization. The FFL
functions as a densely connected middle layer, extracting essential information from the word image and
fostering active learning among neurons. However, our investigation yielded a significant insight. When we
introduced the FFL for non-linear conversion early in the training process, it posed challenges for the text
recognition model in capturing authentic, hidden representations within the corpus.

The root of this issue lies in the FFL’s use of the Relu activation function, which led to the conversion
of all negative values to 0. While the authentic intent was to facilitate system convergence, it inadvertently
impeded progress during the initial training phases. To address this concern, we conducted various
experiments exploring fusions of SA mechanisms and FFL within the encoder. Our objective was to identify
combinations that would not hinder the text recognition model’s training progress while facilitating
convergence. Our findings revealed that three SA mechanisms are adequate. Furthermore, introducing the
SA mechanism earlier in the model, with a more significant stacking than the number of FFL, significantly
reduced the language model’s perplexity.
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Figure 3. (a) Encoder block of the conventional Transformer; (b) Encoder block of the modified Transformer.

Table 1 illustrates the diverse combinations of SA mechanisms and FFL that regulate the model. The

(1P
S

symbol signifies an SA mechanism within the table, while “f” denotes an FFL. The sequence of these
symbols reflects the specific order in which the layers are arranged. Consequently, the notation “sa-ff+sa-
ff+sa-ff+sa-ff+sa-ff+sa-ff” represents the fundamental configuration of the conventional Transformer

network, serving as the baseline for comparison.

Table 1. Different configurations of FFL and SA mechanisms in the modified encoder block.

Modified encoder block Avg. recognition score (%)
sa-ff+sa-ff+sa-ff+sa-ff+sa-ff+sa-ff (Baseline) 70.22
sa+sa-ff+sa+sa-ff+sa+sa-ff 76.54
sa+sa-ff+sa-ff (STRTrans) 87.92
sa+sa-ff+sa-ff+sa-ff 82.36
sa+sa-ff+sa+sa-ff 80.45

Each layer of the Transformer network is comprised of a SA sublayer, followed by a feed-forward
sublayer. These sublayers work to modify a sequence of vectors denoted as M, using Equations (9)—(13):

M, = Self — Attention (M,) + M, 9
M, = Self — Attention (M,) + M, (10)
M; = FFN (M,) + M, (11)
M, = Self — Attention (M3) + M, (12)
Ms = FFN (M,) + M, (13)

After a series of experiments, we discovered that three SA mechanisms proved to be adequate. It
appears that the encoder encounters the learning plateau phenomenon once more. Ultimately, we opted for
the “satsa-ff+sa-ff” as our proposed model due to its lower count of model parameters. We also discovered
that if the SA mechanism is stacked beyond the number of FFL, the language model’s perplexity can
significantly decrease.



3.4. Decoder block

The decoder inputs query, key, and value parameters from the initial SA mechanism, following the sub-
word embedding operation and the ground truth. A masked MHSA was incorporated to halt the network
from anticipating the valid, future training sequence.

The masked MHSA was applied by multiplying it with a negative infinity value, assuming that the input
sequence of the decoder follows the pattern:d,d +1,d + 2,...,d + n. During the training step t, every
sequence other than the input sequence d, such asd+1,d+ 2,...,d+n, was also multiplied by the
negative infinity value. This process was repeated during the subsequent training steps, such as t + 1, where
the sequence d + 2,...,d + n, excluding d and d + 1, was similarly affected. This iteration continued until
the final training step, t + n, marking the conclusion of the mask MHSA implementation.

The decoder’s subsequent SA mechanism computed the correlation between the output from the
encoder and the output from the primary SA mechanism in the decoder. The parameter Q was used to
aggregate and standardize the input of the first SA mechanism in the decoder and the residual outcome from
the first SA mechanism. Furthermore, the K and V parameters represent the encoder’s output.

The “Encoder-Decoder Attention” layer in the decoder section functions similarly to the MHSA
mechanism. However, it generates its Q matrix from the underlying layer while utilizing the K and V matrix
from the output of the encoder stack. The Linear layer, a primary fully connected neural network, projects
the vector derived from the stack of decoders into a significantly larger vector known as a logits vector.
Subsequently, the softmax layer transforms these scores into probabilities, all of which are positive and
collectively sum up to 1.0. The cell with the highest probability is selected, and the associated word is then
generated as the output for the current time step.

4. Experimental results and discussion

This section provides a concise and precise description of the experimental results, their interpretation,
as well as the experimental conclusions that can be drawn.

4.1. Dataset details

The STRTrans network was trained using two synthetic datasets, MJSynth® and SynthText®!.
Furthermore, the network underwent training and testing on three benchmark datasets, namely ICDAR2015
(1C15)BY, SVT-Perspective (SVT-P)P, and CUTES0ES. Table 2 provides descriptions of three benchmark
datasets.

Table 2. Dataset Description.

Dataset Total images  Trainingimages  Testing images Image characteristics

IC15 6,545 4,468 2,077 Irregular shapes (horizontal, oriented, curved); Captured
by Google Glasses without precise positioning.

SVP-P 645 516 129 Heavily distorted, noisy, blurred, low-resolution images;
Captured from a side-view angle using Google Street
View.

CUTES0 80 64 16 Arbitrarily shaped letters; High-resolution images captured

in naturalistic settings; Evaluates irregular STR.

4.2. Implementation details

In our SVTR approach, we utilize Zheng et al.’s®! rectification module to standardize image text to 32
x 64 dimensions, thereby correcting distortions. Our training employs the Adam optimizer with a weight
decay of 0.05 to enhance model performance. We set an initial learning rate of 0.01 with a batch size of 16 to
facilitate convergence. We employ data augmentation techniques to enhance model robustness, including
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random rotations, perspective distortions, motion blurs, and Gaussian noise. Our alphabet encompasses all
case-insensitive alphanumeric characters, and we limit the maximum prediction length to 25 characters.
Word accuracy serves as the primary evaluation metric, and we use Tesla T4 GPUs on Google Colaboratory
for efficient training within the PyTorch framework. Table 3 presents a summary of the parameters for the
STRTrans.

Table 3. STRTrans model’s parameters.

Parameter STRTrans
Optimizer Adam
Learning rate 0.01

# of Epochs 200
Activation function Softmax
Batch size 16
Dataset split ratio (Training: Validation: Testing) 80:10:10
Weight decay 0.05

4.3. Results

Figure 4 depicts the accuracy graph of the proposed approach, which reaches 90.6% on the IC15
training dataset at the 40th epoch, with no further improvement observed until the 100th epoch. Additionally,
it achieves an accuracy of 91.3% on the IC15 test dataset. In Figure 5, the accuracy graph of the proposed
approach is shown. The corresponding loss valuers are 0.25 and 0.14 on the taining and validation 1C15
datasets.

Figure 6 illustrates the sample results of the proposed methods on three benchmark datasets. The first
image shows the input image, the second image shows the attention map and the final image shows the
predicted text.

Accuracy
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Figure 4. Accuracy graph on IC15 dataset.
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Figure 5. Loss graph on IC5 dataset.
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Figure 6. Visualization of a sample experimental result.

4.4. Performance comparison

The performance comparison between the STRTrans network and various existing approaches in scene
text recognition highlights the remarkable capabilities of the STRTrans network, as shown in Table 4.
Existing methods like RARE®!, Rosettal®, STAR-Net®l, SEEDBI, R2ZAMIY, and Text is Text2I exhibit
respectable accuracy percentages on datasets like 1C15, SVT-P, and CUTE. However, they fall short in
recognition accuracy compared to the proposed method. For instance, RARE®! achieves accuracy
percentages ranging from 70.40% to 76.20%, while Rosetta®], STAR-Nett, and SEED® demonstrate
competitive but lower accuracy. R2ZAMI and Text is Text®! record good results but are surpassed by the
proposed method.

Table 4. Performance comparison with existing approaches.

Methods Irregular datasets (Accuracy %)
IC15 SVT-P CUTE

RARERE] 74.50 76.20 70.40
Rosettal®! 71.20 73.80 69.20
STAR-Netl®] 76.10 77.50 71.70
SEED[33] 80.00 81.40 83.60
R2AMIH 68.90 72.10 64.90
Text is Text?] 76.90 84.40 86.30
Selvam et al.'8  88.20 90.60 91.30
STRTrans 90.60 86.20 86.90

In contrast, the STRTrans consistently outperforms these existing approaches, achieving exceptional
recognition accuracy of 90.60% on 1C15, 86.20% on SVT-P, and 86.90% on CUTE. Selvam et al.l*®!
implemented bi-directional embedding in the decoder section, resulting in an enhanced performance with an
accuracy of 88.20% on IC15, 90.60% on SVT-P, and 91.30% on CUTE. In contrast, the proposed STRTrans
outperforms Selvam et al.*® in the 1C15 dataset with an accuracy of 90.60% but also achieves the second-
highest accuracy of 86.20% on SVT-P and 86.90% on CUTE.

This superior performance establishes the STRTrans network as a prominent choice for STR, striking a
remarkable balance between accuracy and practicality. While each existing method has its merits, such as
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addressing specific text recognition challenges, the proposed approach’s exceptional recognition accuracy
solidifies its position as a leading solution in the field.

5. Conclusion

In our research, we have introduced STRTrans, an enhanced Transformer network specifically designed
to push the boundaries of STR to new heights. Our crucial innovation revolves around streamlining the
point-wise FFL operation—a critical step in bolstering the model’s grasp of semantic information. Our
model has significantly enhanced its ability to understand input sequences and the corresponding semantic
nuances during training by introducing supplementary SA mechanisms before this layer. We have subjected
the STRTrans network to rigorous evaluation using three widely recognized public datasets. The results have
revealed substantial advancements in accuracy when compared to the original Transformer network.
Additionally, we have conducted comprehensive comparative analyses with other experimental methods,
further affirming the robust performance of our improved network. This research underscores the immense
potential of STRTrans in advancing the field of STR. It promises to enable more precise and efficient textual
content recognition across diverse real-world scenarios, marking a significant step forward in this vital study
area. Our forthcoming research aims to expand the proposed method into a comprehensive end-to-end STR
pipeline. Additionally, we intend to investigate and mitigate potential adversarial attacks on text as part of
our research agenda.
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