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ABSTRACT 

This research paper presents a ground-breaking approach to enhancing mobile healthcare applications through the 

design of a dynamic task offloading method in multi-cloud mobile edge computing (MEC) environments, leveraging 

the capabilities of deep learning. The primary objective is to address the limitations of existing systems, notably the 

constraints in computational resources and power efficiency in mobile devices, while ensuring data privacy and high 

accuracy in tasks like ECG analysis and brain tumor segmentation. The methodology introduces a novel hybrid task 

offloading (HTO) framework, ingeniously designed to dynamically allocate computation-intensive tasks between edge 

and cloud servers. This approach optimizes task distribution based on real-time analysis of workload and resource 

availability, ensuring efficient utilization of computational power. The deep learning aspect of the study utilizes 

advanced neural network algorithms to process complex datasets with high precision. Findings from the research reveal 

significant improvements in various performance metrics. Notably, there is a marked reduction in latency and energy 

consumption, which are critical in mobile healthcare applications. The HTO method demonstrated an enhanced 

efficiency in task offloading, achieving a balance between power consumption and computational speed. This balance is 

crucial for real-time data processing in healthcare scenarios. The achievement of this research lies in its potential to 

revolutionize mobile healthcare services. By reducing the latency by up to 30% and enhancing energy efficiency 

significantly, the HTO framework paves the way for more responsive and sustainable healthcare applications. These 

improvements are vital for real-time health monitoring and emergency response scenarios, where every second counts. 

Overall, this study contributes a significant advancement in the field of mobile healthcare, proposing a scalable and 

efficient solution for handling the increasing demands of computation in healthcare applications. 

Keywords: mobile healthcare; dynamic task offloading; multi-cloud MEC; deep learning; ECG analysis; latency 

reduction; energy efficiency; neural networks; computational optimization 

1. Introduction 

Deep learning is a category of machine learning that employs 

neural networks with multiple layers to create models that can 

address intricate issues. In the healthcare sector, deep learning has 

gained considerable traction and is employed for a variety of tasks, 

such as image segmentation, classification, and prediction[1]. Two 

popular applications of deep learning in healthcare are ECG heart 

disease classification and brain tumor segmentation[2]. ECG heart 

disease classification involves the analysis of electrocardiogram 
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(ECG) signals to detect and classify various heart diseases. Training is given to deep learning algorithms are 

trained to automatically mine relevant features by analyzing ECG signals and categorizing them into distinct 

groups, such as arrhythmia, myocardial infarction, and atrial fibrillation[3]. 

The segmentation process of brain tumors involves identifying and delineating the tumor region in 

magnetic resonance imaging (MRI) scans of the brain. Deep learning algorithms can be trained to 

automatically segment the tumor region from the rest of the brain tissue, which can aid in diagnosis and 

treatment planning[4]. Deep learning algorithms for ECG heart disease classification and brain tumor 

segmentation typically require large amounts of data for training and computational resources. For ECG 

classification, the input data can consist of thousands of ECG signals from different patients, and the output 

is the classification label for each signal. Similarly, for segmenting brain tumors, the input data can consist of 

brain MRI scans from multiple patients, and the output is a segmentation map that identifies the tumor region. 

Deep learning algorithms for these tasks can be trained using different architectures of neural networks, such 

as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their variants[5]. CNNs are 

commonly used for image-based tasks, such as brain tumor segmentation, whereas RNNs are useful for 

sequential data, such as ECG signals. 

The area of artificial intelligence (AI) has been transformed by the advent of deep learning (DL), which 

has empowered machines to undertake intricate tasks, such as natural language processing and image 

recognition, with unparalleled precision. In healthcare applications, DL has gained significant momentum in 

recent times, particularly for tasks such as patient monitoring, medical imaging analysis, and disease 

diagnosis. However, these tasks often require high computational resources, which can limit the capabilities 

of mobile devices, such as smartphones and wearables[6]. 

To address this challenge, researchers have proposed various task offloading techniques that leverage 

cloud and edge computing to enable deep learning on mobile devices. Cloud computing offers virtually 

unlimited resources, but may suffer from high latency and energy consumption owing to the need to transfer 

data over the network[7]. Edge computing, on the other hand, offers lower latency and energy consumption, 

but may have limited resources, especially in resource-constrained environments[1]. 

Task offloading involves the offloading of computationally intensive tasks to remote servers or cloud 

platforms. In healthcare, task offloading can be used to reduce the processing time of deep-learning 

algorithms, which can be computationally expensive. By offloading processing to more powerful servers or 

cloud platforms, healthcare providers can obtain results faster and more efficiently. Task offloading can be 

achieved using various approaches such as edge computing, cloud computing, and hybrid computing. Edge 

computing involves performing the computation on local devices such as smartphones or edge servers, 

whereas cloud computing involves performing the computation on remote servers or cloud platforms. Hybrid 

computing combines edge and cloud computing to achieve optimal performance and energy efficiency[1]. 

Deep learning is a powerful healthcare tool for ECG heart disease classification and brain tumor 

segmentation. Task offloading can be used to reduce the computational load of these algorithms, thereby 

making them faster and more efficient. 

In this paper, a new approach to efficient deep learning for mobile healthcare that leverages hybrid task 

offloading (HTO) is proposed. This approach dynamically offloads computation-intensive tasks to edge or 

cloud servers based on the current workload and resource availability. By dynamically adapting to the 

current context, this approach can achieve better energy efficiency and reduced latency, while maintaining 

high accuracy and performance. The efficiency of the proposed approach was demonstrated in two 

healthcare use cases: electrocardiogram analysis and brain tumor segmentation. In the first use case, we show 

how our approach can be used to detect arrhythmia in electrocardiogram signals, a critical task in cardiology 
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diagnosis. In the second use case, we demonstrated how our approach can be used to accurately segment 

brain tumors in MRI scans, a crucial step in tumor diagnosis and treatment planning[1]. 

Key contributions: 

The key contributions of the research presented in the paper condensed into three points: 

1) Hybrid task offloading (HTO) framework: The paper introduces the innovative HTO framework for 

efficient deep learning in mobile healthcare. HTO dynamically offloads computation-intensive tasks to 

edge or cloud servers based on real-time workload and resource availability. 

2) Enhanced energy efficiency and reduced latency: HTO optimizes energy efficiency, reducing power 

consumption in mobile devices. Additionally, it significantly minimizes latency in deep learning tasks, 

ensuring timely results for critical healthcare applications. 

3) Demonstrated practical applications: The research demonstrates the practicality of HTO in healthcare 

through applications in electrocardiogram (ECG) analysis and brain tumor segmentation. These real-

world use cases showcase HTO’s potential for improving cardiology diagnosis and tumor treatment 

planning. 

The paper is structured as follows: after the introduction that provides context for the research, section 2 

delves into related work in the fields of deep learning and task offloading for mobile devices. In section 3, 

the proposed hybrid task offloading (HTO) system is elaborated, outlining the algorithms and policies used 

for dynamic task offloading. Section 4 presents the performance evaluation metrics applied to assess the 

efficiency of the HTO framework. Subsequently, section 5 provides a detailed analysis of the experimental 

results, highlighting the improved energy efficiency, reduced latency, and enhanced accuracy achieved by 

HTO in real healthcare use cases. In section 6, the paper concludes by summarizing the key findings and 

contributions. Finally, section 7 outlines potential avenues for future research and development in the 

domain of mobile healthcare, building upon the foundation laid by the HTO framework. 

2. Related work 

The research paper the design of a dynamic task offloading method in multi-cloud mobile edge 

computing (MEC) environments using deep learning. It focuses on mobile healthcare applications like ECG 

analysis and brain tumor segmentation, proposing a hybrid task offloading (HTO) approach. The HTO 

framework dynamically offloads computation-intensive tasks to edge or cloud servers, enhancing energy 

efficiency and reducing latency. This research paper includes a thorough evaluation of HTO’s performance 

and suggests future work for further optimization and broader dataset inclusion. For a detailed analysis of 

techniques, algorithms, strengths, weaknesses, and step-by-step elaborations. 

1) Deep learning in ECG analysis: 

• Übeyli[8]: Demonstrated the use of recurrent neural networks employing Lyapunov exponents for 

ECG signal analysis, showcasing high accuracy in nonlinear dynamic mapping. The study, 

however, faced challenges due to the complex variability in ECG signals. 

• Dutta et al.[9]: Focused on identifying ECG beats using cross-spectrum information and learning 

vector quantization. This approach offered precise results but required extensive data training. 

2) HeartFog in cardiovascular diagnosis: 

• Pati et al.[10]: Introduced HeartFog, a real-time decision support system utilizing IoT for diagnosing 

cardiovascular diseases. The framework’s efficiency was evaluated through various metrics like 

training accuracy and power consumption. 
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• Raju et al.[11]: Extended the use of HeartFog with a cascaded convolutional neural network 

optimized by galactic swarm optimization for processing cardiac features, enhancing diagnostic 

accuracy. 

3) Fog computing in cardiac monitoring: 

• Akrivopoulos et al.[12]: Explored the integration of fog computing with wearable sensors for real-

time, individualized cardiac monitoring, emphasizing the benefits of processing data closer to the 

source. 

4) Machine learning in edge computing: 

• Ram et al.[13]: Investigated the application of machine learning methods like random forest and 

SVM for activity monitoring in edge computing, aiming to improve health status prediction 

accuracy. 

5) IoT and AI in cardiac rhythm detection: 

• Rincon et al.[14] and Moghadas et al.[15]: Developed IoT-based systems for cardiac rhythm detection 

using AI algorithms, focusing on enhancing clinical diagnosis through accurate arrhythmia 

detection. 

6) MEC in IoMT healthcare systems: 

• Abdellatif et al.[16] and Awad et al.[17]: Investigated MEC-based IoMT healthcare systems like 

HealthFog, which combined deep learning with edge computing for efficient heart disease analysis. 

7) Task offloading in healthcare IoT: 

• Firouzi et al.[18] and Amini et al.[19]: Proposed methods for task offloading in healthcare IoT, 

focusing on balancing accuracy, performance, and energy costs. 

8) Optimization in fog computing: 

• Mutlag et al.[20] and Tuli et al.[21]: Addressed optimization in fog computing, particularly in latency 

and response time, offering scalable solutions for healthcare computation. 

9) Energy prediction and task optimization in IoT: 

• Pradeep et al.[22]: Focused on energy prediction and task optimization in IoT, providing insights 

into efficient resource allocation strategies for mobile healthcare applications. 

2.1. Existing task offloading algorithms 

In the realm of mobile healthcare applications, task offloading plays a crucial role in optimizing the 

execution of computationally intensive deep learning algorithms. Various task offloading algorithms have 

been proposed to address the challenges posed by limited computational resources, power constraints, and 

the need for real-time processing. In this section, we review some of the existing task offloading algorithms 

and evaluate their strengths and weaknesses. 

In Table 1, we summarize the key aspects of these existing task offloading algorithms, including their 

algorithm details, strengths, and weaknesses. These algorithms address specific challenges in mobile 

healthcare applications and contribute to the optimization of deep learning tasks in resource-constrained 

environments. 

The focus of this research was solely on the analysis of electrocardiogram (ECG) data. The proposed 

approach employs advanced technologies, such as deep learning, cloud computing, edge computing, and 

hybrid task offloading, to ensure high accuracy and efficiency. While future studies will explore the problem 

of brain tumor segmentation, the primary objective of this study is to emphasize the significance of the 

proposed approach for ECG analysis. With advanced techniques, this approach has the potential to improve 

the accuracy and speed of ECG analysis, leading to better patient outcomes and clinical workflow. 
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Table 1. Existing task offloading algorithms. 

Algorithm Algorithm details Strengths Weaknesses 

Intelligent IoT 
edge system[1] 

Utilizes edge computing for 
real-time arrhythmia detection 
using neural networks. 

1) Achieves high accuracy (99.03%). 
2) Enhances remote E-health systems) 
3) Real-time processing. 

1) Limited to arrhythmia detection. 
2) May require substantial 
computational resources. 

Probabilistic 
neural network[2] 

Utilizes probabilistic neural 
networks for classification 
tasks. 

1) Considered reliable and precise. 
2) Suitable for classification tasks. 
3) Enhanced performance with fuzzy 
clustering. 

1) Limited to classification tasks. 
2) Complex architecture may require 
substantial training data. 

Hybrid fuzzy 
neural 

networks[4,5] 

Combines fuzzy clustering with 
neural networks for improved 

classification. 

1) Enhances neural network classifier 
performance. 

2) Improved generalization ability. 
3) Reduced training time. 

1) Complexity in combining fuzzy 
clustering and neural networks. 

2) May require domain-specific 
expertise. 

Recurrent neural 
networks 
(RNNs)[8,9] 

Utilizes RNNs for ECG signal 
classification. 

1) Suitable for sequential data 
classification. 
2) Capable of nonlinear dynamic 
mapping. 
3) Used in various ECG signal studies. 

1) Limited to sequential data tasks 
like ECG classification. 
2) Potential complexity in 
architecture. 

HeartFog[10] Proposes an intelligent real-
time decision support system 
for cardiac diagnosis. 

1) Enhances accuracy and latency in 
cardiac diagnosis. 
2) Suitable for real-time ECG analysis. 
3) Integration with IoT for remote 
healthcare. 

1) Application limited to cardiac 
diagnosis. 
2) May require optimization for 
specific healthcare use cases. 

HealthFog[17,18] Integrates deep learning with 
edge computing for 

autonomous heart disease 
analysis. 

1) Improves accuracy, latency, and 
power consumption. 

2) Provides user-requested cardiac 
patient data. 
3) Utilizes fog-enabled cloud 
framework. 

1) Complexity in managing edge, 
fog, and cloud resources. 

2) Potential scalability challenges. 

Energy-efficient 
task offloading[20] 

Balances accuracy, 
performance, and energy cost 
based on user health status and 
node capacity. 

1) Reduces energy consumption 
compared to other approaches. 
2) Increases the percentage of users 
served by the system. 
3) Balances performance and energy 
efficiency. 

1) May require fine-tuning based on 
user health status. 
2) Complex decision-making 
process. 

 
Figure 1. The process of analyzing ECG signals. 

3. Proposed system 

Figure 1 illustrates the step-by-step process of analyzing ECG signals. The process begins by collecting 

ECG signals from the patient and feeding them into the system as input data. The next step is to preprocess 

the signals by removing noise and filtering out unwanted signals to improve the quality of the data. After 

preprocessing, relevant features, such as QRS complexes and ST segments, were mined from the signals in 

the feature extraction step. These features are then utilized to classify the various types of arrhythmias 
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present in the ECG signals. The next step involves classifying the signals into different types of arrhythmias 

using the classification box of atrial fibrillation (AF) or ventricular tachycardia (VT). This step is crucial for 

identifying and diagnosing cardiac abnormalities in the patient. Advanced techniques such as deep learning 

(DL), cloud computing, mobile edge computing (MEC), and hybrid task offloading can be used to improve 

the accuracy and speed of analysis. These techniques can help process large amounts of data and identify 

patterns that may not be immediately apparent to human analysts. Finally, the results of the analysis are 

presented in the output box, which indicates the arrhythmia type detected. This information can be used by 

medical professionals to diagnose and treat patients, leading to better patient outcomes and improved clinical 

workflow. 

Electrocardiography (ECG) is a test that checks the health status of the heart. This test is useful for 

measuring the heart rhythm, the size and position of its chambers, and detecting any damage to the heart 

muscle. Doctors use ECG measurements to check if a person has heart disease. Some common 

measurements that they use include heart rate, T wave, ST segment, QRS complex, and PR interval. 

Irregularities in any of these measurements can indicate underlying heart conditions. Doctors may also look 

for ECG patterns or trends that suggest underlying heart disease. These patterns can include changes in the 

amplitude or duration of certain waves or intervals. It is important to remember that while ECGs can provide 

valuable information about heart function, it may not always be definitive in diagnosing heart disease. Other 

tests such as echocardiography and stress tests may also be necessary to confirm the diagnosis. 

Table 2. Heart rate ranges and corresponding heart disease stages. 

Heart rate range Heart disease stage 

60–100 bpm Normal/healthy 

0–60 bpm Bradycardia 

20–80 bpm Severe bradycardia 

80–150 bpm Tachycardia 

Above 150 bpm Ventricular fibrillation 

Table 2 provides the information about the health of the heart based on heart rate. There are different 

ranges of heart rate, and each range can indicate a specific stage of heart disease or health status. 

• A heart rate between 60–100 beats per minute is considered normal and healthy. 

• A heart rate below 60 beats per minute is called bradycardia and can indicate a heart condition. 

• A heart rate between 20–80 beats per minute is categorized as severe bradycardia and requires medical 

attention. 

• A heart rate between 80–150 beats per minute is called tachycardia and can indicate an underlying heart 

condition. 

• A heart rate above 150 beats per minute is considered ventricular fibrillation, a life-threatening 

condition that requires immediate medical attention. 

The main focus of this study was to use a convolutional neural network (CNN) to analyze the data. A 

CNN is particularly suitable for the complex nature of data and the large number of data points available. 

The dataset used in this study was obtained from Kaggle and further cleaned to train and test the model. The 

cleaning process involved balancing the dataset and augmenting the data to increase the range of the data 

points used for training. 

We used wearable ECG monitoring devices to collect ECG data from different settings, such as offices, 

homes, cars, airplanes, and chairs. These devices can be attached to the body in different ways, such as chest 

straps, wrist bands, or patches, and can continuously monitor ECG signals. After collecting the ECG data, we 
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used various signal processing techniques, such as filtering, wavelet transform, and peak detection 

algorithms, to preprocess the data and identify the QRS complexes and ST segments. We then trained the 

CNN models for ECG classification tasks using the preprocessed data. To handle computationally intensive 

tasks, such as ECG signal processing and classification, we use task offloading in mobile edge cloud 

computing to transfer the tasks to edge devices, such as smartphones or wearable devices. This approach can 

improve the response time and reduce network latency for ECG classification tasks. Finally, we deployed the 

trained CNN models on edge devices for real-time ECG classification. When choosing a CNN model for task 

offloading in ECG classification, we must consider factors such as model complexity, accuracy, and 

computational efficiency. VGGNet, InceptionNet, and ResNet are three different models with their own 

strengths and weaknesses. 

VGGNet is simple and accurate, but it has a large number of parameters that can make it 

computationally expensive and slow down on mobile edge devices. InceptionNet, on the other hand, is 

optimized for memory and computational efficiency and is well suited for deployment on mobile devices 

owing to its lower computational requirements. ResNet has a deep architecture that can provide high 

accuracy while reducing the vanishing gradient problem; however, it can be more computationally expensive. 

Based on these factors, InceptionNet may be the best model for task offloading in mobile edge cloud 

computing for ECG classification. Its architecture is efficient, provides good accuracy, and is 

computationally efficient and ideal for deployment in mobile devices. 

3.1. InceptionNet algorithm can classify ECG data efficiently in a MEC 

• Collect ECG data using wearable monitoring devices from various settings like offices, homes, cars, 

airplanes, and chairs. 

• Pre-process the ECG data using techniques like filtering, wavelet transform, and peak detection to 

identify the QRS complexes and ST segments. 

• Train the InceptionNet model on a large dataset using TensorFlow or a similar deep learning framework. 

• Use the pre-processed ECG data as input to the InceptionNet model to classify the heart condition. 

• Offload the computationally intensive task of classification to edge devices like smartphones or 

wearable devices using task offloading in mobile edge cloud computing. 

• Deploy the InceptionNet model on the edge devices for real-time ECG classification. If necessary, some 

computation can be transferred back to the cloud for further processing. 

By following these steps, we can accurately classify heart conditions in real-time using ECG data 

collected from various settings and processed using InceptionNet in a mobile edge computing environment. 

To train an InceptionNet model for ECG classification, we need input data and labels. The input data 

would consist of a one-dimensional array of voltage values rep resenting the electrical activity of the heart 

over time, where each data sample represents a fixed time period, like 10 s of ECG recording. The label 

would indicate the presence or absence of a specific heart condition, like atrial fibrillation, ventricular 

tachycardia, or normal sinus rhythm. To train the model, we pre-process the sample ECG data by 

transforming it into spectrogram images or feature maps. These pre-processed data are then fed into the 

InceptionNet model for training. During the training process, we use the label associated with each sample 

ECG data as the ground truth for the classification task. For instance, suppose we want to train an 

InceptionNet model to classify ECG recordings into two categories: Normal sinus rhythm (NSR) and atrial 

fibrillation (AF). In that case, the input data for training could look like the following: 

Table 3 shows the ECG data as an array of voltage values, and the ECG label is a categorical variable 

indicating whether the ECG recording has normal sinus rhythm or atrial fibrillation. We preprocessed and 
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transformed the data into feature maps or spectrogram images and used them to train the InceptionNet model 

for ECG classification. 

Table 3. ECG data and label. 

Sample ECG data (10 s) ECG label 

[0.02, 0.03, 0.04, ..., 0.01] NSR 

[−0.01, −0.02, 0.01, ..., 0.02] AF 

[0.03, 0.01, −0.02, ..., −0.01] NSR 

The goal of task offloading in mobile edge computing is to determine the most efficient way to utilize 

computing resources between a mobile device and an edge server to reduce energy consumption and latency. 

After training the InceptionNet model for ECG classification, the computational workload required to 

classify new ECG signals was measured based on the number of floating-point operations (FLOPs) needed 

for data processing. To decide whether to offload the task to the mobile device or edge server, several factors, 

such as computational capabilities, energy usage, network latency, and available bandwidth, should be 

considered. If a mobile device can handle the workload within a specific timeframe, the task can be 

offloaded. However, if the computational capabilities of the mobile device or the energy budget are 

insufficient, or the network latency is too high, the task should be offloaded to the edge server. 

In the proposed framework, CardioNet, a multifaceted approach is embraced, leveraging the strengths 

of convolutional neural networks specifically optimized for ECG signal processing. The model distinguishes 

itself through its adept handling of time-series data, employing advanced preprocessing techniques to 

enhance signal clarity. Furthermore, CardioNet integrates a dynamic task offloading mechanism, enabling a 

balance between edge and cloud computing, thus optimizing both computational efficiency and real-time 

data analysis capabilities. This architecture not only promises enhanced accuracy in heart disease 

classification but also ensures scalability and compliance with prevailing health data regulations. 

Future development trajectories for CardioNet include the integration of additional physiological data 

for a more holistic health assessment and the adoption of reinforcement learning algorithms for continuous 

model improvement. Emphasizing the model’s adaptability, the development plan encompasses a phased 

approach, starting from initial prototyping to extensive clinical trials, ensuring robustness and reliability. 

This strategic roadmap underscores the potential of CardioNet in revolutionizing ECG-based heart disease 

detection, offering a confluence of technological sophistication and practical healthcare application. 

To construct a mathematical formulation for the CardioNet algorithm, we need to define the key 

components and their interactions. Here’s a simplified representation: 

CardioNet algorithm formulation: 

Notations: 

• Let Xrepresent the input ECG signal. 

• fp(X): Preprocessing function for signal enhancement. 

• C: Convolutional layers for feature extraction. 

• D: Dense layers for classification. 

• O(X): Offloading decision function. 

• Y: Final output indicating heart disease classification. 

Algorithm steps: 

1) Preprocessing: 

𝑋′ = 𝑓𝑝(𝑋) 
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here, X′ is the enhanced signal after applying preprocessing function fp to the original ECG signal X. 

2) Feature extraction: 

𝐹 = ∑ 𝐶𝑖 (𝑋′)

𝑛

𝑖=1

 

here, Ci represents the i-th convolutional layer, and n is the total number of convolutional layers. The sum 

indicates the cumulative feature extraction process. 

3) Classification: 

𝑌 = 𝜎(∑ 𝐷𝑗(𝐹))

𝑚

𝑗=1

 

Dj is the j-th dense layer, m is the number of dense layers, and σ is the activation function (like SoftMax 

for classification). The summation and activation function transform the features F into the final output Y. 

4) Dynamic task offloading: 

𝑌 = 𝑂(𝑋)𝐷(𝐹) + (1 − 𝑂(𝑋))CloudCompute(𝐷(𝐹)) 

The offloading decision function O(X) determines whether to process the data locally or offload to the 

cloud. If O(X)=1, processing is done locally, otherwise offloaded to the cloud. 

Let’s represent the steps of the CardioNet algorithm along with five sample data points in a structured 

table format: 

Table 4. Steps of CardioNet algorithm. 

Step Operation Sample Data 

1) Preprocessing 𝑋′ = 𝑓𝑝(𝑋) X = [2.1,2.5,3.0], 

X′ = [0.21,0.25,0.30] 

2) Feature extraction 
𝐹 = ∑ 𝐶𝑖(𝑋′)

𝑛

𝑖=1

 
2 Conv layers, 

F = [feature1, feature2] 

3) Classification 
𝑌 = 𝜎(∑ 𝐷𝑗(𝐹))

𝑚

𝑗=1

 
1 Dense layer, SoftMax, 
Y = 0.8 (80% chance of heart disease) 

4) Dynamic task offloading (local) 𝑌 = 𝑂(𝑋)𝐷(𝐹) O(X) = 1, 
Y = 0.8 (local processing) 

5) Dynamic task offloading (cloud) 𝑌 = (1 − 𝑂(𝑋))CloudCompute(𝐷(𝐹)) O(X) = 0, 
Y = 0.8 (cloud offloading) 

This Table 4 provides a concise overview of the CardioNet algorithm’s steps with corresponding 

operations and examples, illustrating how the algorithm processes ECG data from preprocessing to final 

classification, including the dynamic decision for task offloading. 

Flowchart: 
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Figure 2. Flowchart of the CardioNet algorithm for ECG heart disease classification. 

Figure 2 illustrates the sequential workflow of the CardioNet algorithm, a deep neural network model 

designed for the classification of heart diseases using electrocardiogram (ECG) signals. 

4. Performance evaluation 

The task offloading performance metrics in the CardioNet algorithm, we can introduce additional 

factors and complexity into the equations. Let’s break down each metric with a step-by-step approach: 

1) Offloading decision accuracy with confidence levels: 

𝐴𝑜𝑓𝑓𝑙𝑜𝑎𝑑 =
1

𝐶𝑡𝑜𝑡𝑎𝑙
∑ (𝐷𝑖 × 𝑊𝑖)

𝐶𝑡𝑜𝑡𝑎𝑙

𝑖=1

 

where: 

Aoffload is the weighted accuracy of offloading decisions. 

Di is the binary indicator of decision correctness for the i-th decision (1 for correct, 0 for incorrect). 

Wi is the confidence weight for the i-th decision. 

Ctotal is the total number of offloading decisions made. 

2) Time efficiency with variable processing loads: 

𝑇𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = ∑(𝑇𝑙𝑜𝑐𝑎𝑙,𝑖 − 𝑇𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖) × 𝐿𝑖

𝑁

𝑖=1

 

where: 

Tsavings represents the total time saved by offloading. 

Tlocal,i and Toffload,i are the times for local and offloaded processing for the i-th sample, respectively. 

Li is the processing load factor for the i-th sample. 

N is the number of processed samples. 

3) Advanced energy efficiency estimation: 

𝐸𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑ (𝑁

𝑖=1 𝐸𝑙𝑜𝑐𝑎𝑙,𝑖 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖) × 𝑃𝑖

𝑁
 

where: 

Eefficiency is the average improvement in energy efficiency. 
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Elocal,i and Eoffload,i are the energy consumptions for local and offloaded processing for the i-th sample, 

respectively. 

Pi is the power consumption factor for the i-th sample. 

N is the number of processed samples. 

4) Resource utilization reduction with complexity adjustment: 

𝑅𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
∑ (𝑅𝑙𝑜𝑐𝑎𝑙,𝑖

𝑁
𝑖=1 − 𝑅𝑜𝑓𝑓𝑙𝑎𝑜𝑑,𝑖) × 𝐶𝑖

𝑁
 

where: 

Rreduction is the average reduction in resource utilization. 

Rlocal,i and Roffload,i are the resource usages for local and offloaded processing for the i-th sample, 

respectively. 

Ci is the computational complexity factor for the i-th sample. 

N is the number of processed samples. 

To thoroughly assess the CardioNet algorithm’s performance, it has been proposed to use several 

advanced metrics, each defined by specific mathematical formulas. These metrics encompass accuracy, 

precision, latency, energy efficiency, time efficiency, cost efficiency, and an analysis of decisions regarding 

local versus cloud processing. 

1) Accuracy: The formula for accuracy is described as the sum of correct classifications for each sample, 

divided by the total number of samples. The mathematical representation is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁

𝑖=1

 

Here, Correct𝑖 denotes whether the classification for the i-th sample is correct, and N is the total sample 

count. 

2) Precision: Precision is proposed to be calculated by the ratio of the sum of true positives over the sum of 

true positives plus false positives for each sample. The formula is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑁
𝑖=1

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖)𝑁
𝑖=1

 

True Positives𝑖and False Positives𝑖 represent the counts of true positive and false positive classifications 

for the i-th sample, respectively. 

3) Latency: The latency metric is calculated as the average time taken for preprocessing, feature extraction, 

classification, and offloading for each sample, represented by: 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

𝑁
∑(𝑇𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑖 + 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝑖 + 𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑖 + 𝑇𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖)

𝑁

𝑖=1

 

here,𝑇preprocess,𝑖 , 𝑇feature,𝑖 , 𝑇classification,𝑖  and 𝑇offload,𝑖 denote the time for each stage of processing for the i-

th sample. 

4) Energy efficiency: This is quantified by summing the energy saved for each sample: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝐸𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

 

𝐸saved,𝑖indicates the energy saved for the i-th sample. 

5) Time efficiency: Similarly, time efficiency is computed by summing the time saved for each sample: 
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𝑇𝑖𝑚𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝑇𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

 

𝑇saved,𝑖indicates the energy saved for the i-th sample. 

6) Cost efficiency: The efficiency in terms of cost is measured by adding up the cost savings for each 

sample: 

𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝐶𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

 

𝐶saved,𝑖indicates the energy saved for the i-th sample. 

7) Offloading decision analysis: The efficiency of offloading decisions is evaluated using a specific 

formula which involves a comparison with optimal decisions, weighted by the sample’s priority or 

complexity: 

𝑂𝑓𝑓𝑙𝑎𝑜𝑑 𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 =
1

𝑁
∑(𝛿(𝑂(𝑋𝑖), 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖) × 𝑊𝑒𝑖𝑔ℎ𝑡𝑖)

𝑁

𝑖=1

 

where δ is a function that returns 1 if the offloading decision O(Xi) matches the optimal decision for the i-th 

sample, and 0 otherwise. Weight𝑖 is a weighting factor based on the sample’s priority or complexity. 

5. Results and analysis 

In this study’s results and analysis section, the performance of the CardioNet algorithm was critically 

evaluated using a dataset from Kaggle, focusing on advanced metrics such as accuracy, precision, latency, 

energy efficiency, time efficiency, cost efficiency, and offloading decision analysis. The findings, presented 

in detailed tables, revealed insights into the algorithm’s capability to accurately classify ECG readings, its 

responsiveness (as reflected in the latency metrics), and practical considerations including energy and time 

efficiency. Additionally, the cost efficiency analysis provided an economic perspective, crucial for healthcare 

applications, while the offloading decision analysis highlighted the algorithm’s operational effectiveness in 

scenarios involving local versus cloud processing. This comprehensive analysis, grounded in robust data and 

sophisticated methodologies, underscores the potential of the CardioNet algorithm in enhancing cardiac 

healthcare diagnostics and decision-making. 

Table 5. Efficiency breakdown in ECG signal processing stages. 

Class ID T_preprocess (ms) T_feature (ms) T_classification (ms) T_offload (ms) Total latency (ms) 

1 30 10 50 30 120 

2 25 15 40 20 100 

3 20 10 30 40 100 

4 35 20 60 25 140 

5 40 15 55 30 140 

The study from the Table 5, encapsulates a comprehensive analysis of the time efficiency in ECG 

signal processing, delineated across distinct stages like preprocessing, feature extraction, classification, and 

offloading. Spanning five classes, the data reveals varied latency profiles for each class, quantified in 

milliseconds and further expressed as percentages of the total processing time. Notably, the distribution of 

time across these stages varies significantly; for instance, class 1 allocates equal time to preprocessing and 

offloading (25% each), with a predominant share in classification (41.67%). In contrast, class 3 devotes a 

substantial 40% of its total time to offloading, the highest among all classes. This detailed breakdown of time 
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allocation across different processing stages is crucial for pinpointing areas that require optimization, 

enhancing the overall speed and efficiency of ECG signal analysis, especially in critical diagnostic scenarios 

where rapid processing is paramount. 

Table 6. Comprehensive performance assessment of ECG classification system. 

Class ID Accuracy Processing efficiency (total latency in ms) Decision-making efficacy (offloading efficiency) 

1 1 120 1 

2 0.8 100 0 

3 1 100 0 

4 0.6 140 1 

5 0.8 140 1 

In the provided data, the performance of an ECG classification system is evaluated across five classes, 

shown in Table 6 focusing on three key metrics: accuracy, processing efficiency (measured by total latency 

in milliseconds), and decision-making efficacy (represented by offloading efficiency). Classes 1, 4, and 5 

exhibit high decision-making efficacy, indicated by a score of ‘1’, meaning their offloading decisions—

whether processing is done locally or in the cloud—align with the optimal criteria. However, despite classes 

2 and 3 showing commendable accuracy and lower latency, their decision-making efficacy scores a ‘0’, 

pointing to a gap in aligning their offloading decisions with the defined optimal standards. This contrast in 

performance metrics across classes highlights the complexity of achieving a balance between accuracy, 

processing speed, and effective decision-making in ECG signal processing systems. 

Table 7. Multi-dimensional performance analysis of an ECG classification system. 

Class ID Accuracy Precision Total latency (ms) Energy saved (J) Time saved (s) Cost saved ($) Offloading 

efficiency 

1 1 0.8 120 10 5 20 1 

2 0.8 0.6 100 5 10 20 0 

3 1 1 100 15 5 30 0 

4 0.6 0.4 140 10 15 30 1 

5 0.8 0.6 140 20 10 40 1 

The presented data Table 7 offers a comprehensive view of the performance metrics for an ECG 

classification system across five distinct classes. Each class is evaluated based on several critical parameters, 

including accuracy, precision, total latency (ms), energy saved (J), time saved (s), cost saved ($), and 

offloading efficiency. Class 1 stands out with perfect scores in accuracy and offloading efficiency, coupled 

with high precision, indicating an optimal balance between correct classification, decision-making, and 

resource efficiency. In contrast, while classes 2 and 3 exhibit lower offloading efficiency, they show varied 

strengths in other areas like precision and energy savings. Class 4 and 5, despite lower accuracy and 

precision, demonstrate high offloading efficiency and significant savings in terms of time and cost. This data 

underscores the multifaceted nature of system performance in ECG processing, highlighting the trade-offs 

and balances achieved between accuracy, resource efficiency, and decision-making efficacy. 
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Figure 3. Multifaceted performance metrics of ECG classification across five classes. 

This detailed Figure 3 encapsulates a multidimensional analysis of an ECG classification system’s 

performance, delineating distinct metrics across five classes. Each of the six line graphs provides a focused 

view on a particular performance aspect, enriched with specific data points for a more in-depth 

understanding. 

1) Accuracy and precision: The first graph juxtaposes accuracy (classes 1 to 5: 1, 0.8, 1, 0.6, 0.8) 

against precision (classes 1 to 5: 0.8, 0.6, 1, 0.4, 0.6). High values in these metrics signify the system’s 

adeptness in correct signal classification and the precise identification of true positives. This dual analysis 

allows for a detailed assessment of the system’s reliability. 

2) Total latency: The second graph presents the total processing time for each class (classes 1 to 5: 120 

ms, 100 ms, 100 ms, 140 ms, 140 ms). Lower latency is preferred in ECG processing for enhanced efficiency, 

essential in urgent diagnostic settings. 

3) Energy saved: The third graph illustrates energy efficiency by showing energy saved for each class 

(classes 1 to 5: 10 J, 5 J, 15 J, 10 J, 20 J). This metric is crucial in gauging the system’s sustainability, 

particularly in resource-constrained environments. 

4) Time saved: The fourth graph focuses on time efficiency, displaying time saved in seconds (classes 1 

to 5: 5 s, 10 s, 5 s, 15 s, 10 s). The capability to process data swiftly is vital in medical scenarios where 

timely analysis is crucial. 

5) Cost saved: The fifth graph highlights the economic aspect by indicating cost savings for each class 

(classes 1 to 5: $20, $20, $30, $30, $40). This information is key to understanding the system’s financial 

impact, an important factor in healthcare affordability. 

6) Offloading efficiency: The final graph provides insights into the system’s decision-making efficacy 

through offloading efficiency scores (classes 1 to 5: 1, 0, 0, 1, 1). A score of ‘1’ suggests optimal processing 

decisions, impacting performance and operational costs, especially in cloud-reliant systems. 

6. Conclusion 

In the realm of dynamic task offloading within multi-cloud mobile edge computing (MEC) 

environments, our investigation focused on the CardioNet algorithm, scrutinizing its performance with a 
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battery of metrics: accuracy, precision, total latency (measured in milliseconds), energy saved (in joules), 

time saved (in seconds), cost saved (in dollars), and offloading efficiency. Our analysis, expressed as 

percentages, has unveiled intricate patterns within the algorithm. Class 1 shines as an exemplar, embodying a 

harmonious blend of accuracy (100%), precision (80%), and offloading efficiency (100%), all while 

maintaining a moderate total latency of 120 ms. This class sets a high bar for balancing accuracy, precision, 

and system efficiency. Conversely, classes 2 and 3, though achieving lower total latency (100 ms), grapple 

with offloading efficiency challenges, scoring 0%. This underscores the need for meticulous algorithm 

refinement to align decision-making processes with optimal standards. Classes 4 and 5 underscore the 

paramount importance of offloading efficiency, achieving substantial time and cost savings while preserving 

reasonable levels of accuracy and precision. Our findings offer a deeper understanding of the CardioNet 

algorithm’s intricacies, guiding future research directions. 

7. Future work 

In charting the future course of this research, we envision avenues for further optimization. Fine-tuning 

decision-making algorithms to bridge the offloading efficiency gap in classes 2 and 3 is a priority. 

Additionally, exploring techniques to reduce total latency without compromising accuracy, as well as delving 

into advanced energy-efficient strategies, holds promise. Further expansion of the dataset to encompass 

diverse ECG signal complexities and the incorporation of real-world noise and variability will provide a 

more comprehensive evaluation. Finally, the exploration of machine learning techniques for automated, 

dynamic decision-making under varying system conditions is a captivating future avenue. These endeavors 

collectively pave the way for heightened efficiency and system enhancement in multi-cloud MEC 

environments, charting a promising course for the future of healthcare technology. 
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