
Journal of Autonomous Intelligence (2024) Volume 7 Issue 5

doi: 10.32629/jai.v7i5.1367

1

Original Research Article

Design of dynamic task offloading method in multi cloud MEC

environments using deep learning
Sandhya Tatekalva1,*, Yamuna Ravuri2, Sirish Kumar Maddipatla3, Usha Rani Macigi4

1 Department of Computer Science, Sri Venkateswara University College of Commerce Management & Computer

Science, Sri Venkateswara University, Tirupati 517502, India
2 Department of Computer Science and Engineering, Vemu Institute of Technology, Chittoor 517112, India

3 Department of Computer Applications, School of Computing, Mohan Babu University, Tirupati 517102, India
4 Department of Computer Science, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati 517502,

India

* Corresponding author: Sandhya Tatekalva, dr.sandhyasatish@gmail.com

ABSTRACT

This research paper presents a ground-breaking approach to enhancing mobile healthcare applications through the

design of a dynamic task offloading method in multi-cloud mobile edge computing (MEC) environments, leveraging

the capabilities of deep learning. The primary objective is to address the limitations of existing systems, notably the

constraints in computational resources and power efficiency in mobile devices, while ensuring data privacy and high

accuracy in tasks like ECG analysis and brain tumor segmentation. The methodology introduces a novel hybrid task

offloading (HTO) framework, ingeniously designed to dynamically allocate computation-intensive tasks between edge

and cloud servers. This approach optimizes task distribution based on real-time analysis of workload and resource

availability, ensuring efficient utilization of computational power. The deep learning aspect of the study utilizes

advanced neural network algorithms to process complex datasets with high precision. Findings from the research reveal

significant improvements in various performance metrics. Notably, there is a marked reduction in latency and energy

consumption, which are critical in mobile healthcare applications. The HTO method demonstrated an enhanced

efficiency in task offloading, achieving a balance between power consumption and computational speed. This balance is

crucial for real-time data processing in healthcare scenarios. The achievement of this research lies in its potential to

revolutionize mobile healthcare services. By reducing the latency by up to 30% and enhancing energy efficiency

significantly, the HTO framework paves the way for more responsive and sustainable healthcare applications. These

improvements are vital for real-time health monitoring and emergency response scenarios, where every second counts.

Overall, this study contributes a significant advancement in the field of mobile healthcare, proposing a scalable and

efficient solution for handling the increasing demands of computation in healthcare applications.

Keywords: mobile healthcare; dynamic task offloading; multi-cloud MEC; deep learning; ECG analysis; latency

reduction; energy efficiency; neural networks; computational optimization

1. Introduction

Deep learning is a category of machine learning that employs

neural networks with multiple layers to create models that can

address intricate issues. In the healthcare sector, deep learning has

gained considerable traction and is employed for a variety of tasks,

such as image segmentation, classification, and prediction[1]. Two

popular applications of deep learning in healthcare are ECG heart

disease classification and brain tumor segmentation[2]. ECG heart

disease classification involves the analysis of electrocardiogram

ARTICLE INFO

Received: 17 October 2023

Accepted: 10 January 2024

Available online: 18 April 2024

COPYRIGHT

Copyright © 2024 by author(s).

Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/

2

(ECG) signals to detect and classify various heart diseases. Training is given to deep learning algorithms are

trained to automatically mine relevant features by analyzing ECG signals and categorizing them into distinct

groups, such as arrhythmia, myocardial infarction, and atrial fibrillation[3].

The segmentation process of brain tumors involves identifying and delineating the tumor region in

magnetic resonance imaging (MRI) scans of the brain. Deep learning algorithms can be trained to

automatically segment the tumor region from the rest of the brain tissue, which can aid in diagnosis and

treatment planning[4]. Deep learning algorithms for ECG heart disease classification and brain tumor

segmentation typically require large amounts of data for training and computational resources. For ECG

classification, the input data can consist of thousands of ECG signals from different patients, and the output

is the classification label for each signal. Similarly, for segmenting brain tumors, the input data can consist of

brain MRI scans from multiple patients, and the output is a segmentation map that identifies the tumor region.

Deep learning algorithms for these tasks can be trained using different architectures of neural networks, such

as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their variants[5]. CNNs are

commonly used for image-based tasks, such as brain tumor segmentation, whereas RNNs are useful for

sequential data, such as ECG signals.

The area of artificial intelligence (AI) has been transformed by the advent of deep learning (DL), which

has empowered machines to undertake intricate tasks, such as natural language processing and image

recognition, with unparalleled precision. In healthcare applications, DL has gained significant momentum in

recent times, particularly for tasks such as patient monitoring, medical imaging analysis, and disease

diagnosis. However, these tasks often require high computational resources, which can limit the capabilities

of mobile devices, such as smartphones and wearables[6].

To address this challenge, researchers have proposed various task offloading techniques that leverage

cloud and edge computing to enable deep learning on mobile devices. Cloud computing offers virtually

unlimited resources, but may suffer from high latency and energy consumption owing to the need to transfer

data over the network[7]. Edge computing, on the other hand, offers lower latency and energy consumption,

but may have limited resources, especially in resource-constrained environments[1].

Task offloading involves the offloading of computationally intensive tasks to remote servers or cloud

platforms. In healthcare, task offloading can be used to reduce the processing time of deep-learning

algorithms, which can be computationally expensive. By offloading processing to more powerful servers or

cloud platforms, healthcare providers can obtain results faster and more efficiently. Task offloading can be

achieved using various approaches such as edge computing, cloud computing, and hybrid computing. Edge

computing involves performing the computation on local devices such as smartphones or edge servers,

whereas cloud computing involves performing the computation on remote servers or cloud platforms. Hybrid

computing combines edge and cloud computing to achieve optimal performance and energy efficiency[1].

Deep learning is a powerful healthcare tool for ECG heart disease classification and brain tumor

segmentation. Task offloading can be used to reduce the computational load of these algorithms, thereby

making them faster and more efficient.

In this paper, a new approach to efficient deep learning for mobile healthcare that leverages hybrid task

offloading (HTO) is proposed. This approach dynamically offloads computation-intensive tasks to edge or

cloud servers based on the current workload and resource availability. By dynamically adapting to the

current context, this approach can achieve better energy efficiency and reduced latency, while maintaining

high accuracy and performance. The efficiency of the proposed approach was demonstrated in two

healthcare use cases: electrocardiogram analysis and brain tumor segmentation. In the first use case, we show

how our approach can be used to detect arrhythmia in electrocardiogram signals, a critical task in cardiology

3

diagnosis. In the second use case, we demonstrated how our approach can be used to accurately segment

brain tumors in MRI scans, a crucial step in tumor diagnosis and treatment planning[1].

Key contributions:

The key contributions of the research presented in the paper condensed into three points:

1) Hybrid task offloading (HTO) framework: The paper introduces the innovative HTO framework for

efficient deep learning in mobile healthcare. HTO dynamically offloads computation-intensive tasks to

edge or cloud servers based on real-time workload and resource availability.

2) Enhanced energy efficiency and reduced latency: HTO optimizes energy efficiency, reducing power

consumption in mobile devices. Additionally, it significantly minimizes latency in deep learning tasks,

ensuring timely results for critical healthcare applications.

3) Demonstrated practical applications: The research demonstrates the practicality of HTO in healthcare

through applications in electrocardiogram (ECG) analysis and brain tumor segmentation. These real-

world use cases showcase HTO’s potential for improving cardiology diagnosis and tumor treatment

planning.

The paper is structured as follows: after the introduction that provides context for the research, section 2

delves into related work in the fields of deep learning and task offloading for mobile devices. In section 3,

the proposed hybrid task offloading (HTO) system is elaborated, outlining the algorithms and policies used

for dynamic task offloading. Section 4 presents the performance evaluation metrics applied to assess the

efficiency of the HTO framework. Subsequently, section 5 provides a detailed analysis of the experimental

results, highlighting the improved energy efficiency, reduced latency, and enhanced accuracy achieved by

HTO in real healthcare use cases. In section 6, the paper concludes by summarizing the key findings and

contributions. Finally, section 7 outlines potential avenues for future research and development in the

domain of mobile healthcare, building upon the foundation laid by the HTO framework.

2. Related work

The research paper the design of a dynamic task offloading method in multi-cloud mobile edge

computing (MEC) environments using deep learning. It focuses on mobile healthcare applications like ECG

analysis and brain tumor segmentation, proposing a hybrid task offloading (HTO) approach. The HTO

framework dynamically offloads computation-intensive tasks to edge or cloud servers, enhancing energy

efficiency and reducing latency. This research paper includes a thorough evaluation of HTO’s performance

and suggests future work for further optimization and broader dataset inclusion. For a detailed analysis of

techniques, algorithms, strengths, weaknesses, and step-by-step elaborations.

1) Deep learning in ECG analysis:

• Übeyli[8]: Demonstrated the use of recurrent neural networks employing Lyapunov exponents for

ECG signal analysis, showcasing high accuracy in nonlinear dynamic mapping. The study,

however, faced challenges due to the complex variability in ECG signals.

• Dutta et al.[9]: Focused on identifying ECG beats using cross-spectrum information and learning

vector quantization. This approach offered precise results but required extensive data training.

2) HeartFog in cardiovascular diagnosis:

• Pati et al.[10]: Introduced HeartFog, a real-time decision support system utilizing IoT for diagnosing

cardiovascular diseases. The framework’s efficiency was evaluated through various metrics like

training accuracy and power consumption.

4

• Raju et al.[11]: Extended the use of HeartFog with a cascaded convolutional neural network

optimized by galactic swarm optimization for processing cardiac features, enhancing diagnostic

accuracy.

3) Fog computing in cardiac monitoring:

• Akrivopoulos et al.[12]: Explored the integration of fog computing with wearable sensors for real-

time, individualized cardiac monitoring, emphasizing the benefits of processing data closer to the

source.

4) Machine learning in edge computing:

• Ram et al.[13]: Investigated the application of machine learning methods like random forest and

SVM for activity monitoring in edge computing, aiming to improve health status prediction

accuracy.

5) IoT and AI in cardiac rhythm detection:

• Rincon et al.[14] and Moghadas et al.[15]: Developed IoT-based systems for cardiac rhythm detection

using AI algorithms, focusing on enhancing clinical diagnosis through accurate arrhythmia

detection.

6) MEC in IoMT healthcare systems:

• Abdellatif et al.[16] and Awad et al.[17]: Investigated MEC-based IoMT healthcare systems like

HealthFog, which combined deep learning with edge computing for efficient heart disease analysis.

7) Task offloading in healthcare IoT:

• Firouzi et al.[18] and Amini et al.[19]: Proposed methods for task offloading in healthcare IoT,

focusing on balancing accuracy, performance, and energy costs.

8) Optimization in fog computing:

• Mutlag et al.[20] and Tuli et al.[21]: Addressed optimization in fog computing, particularly in latency

and response time, offering scalable solutions for healthcare computation.

9) Energy prediction and task optimization in IoT:

• Pradeep et al.[22]: Focused on energy prediction and task optimization in IoT, providing insights

into efficient resource allocation strategies for mobile healthcare applications.

2.1. Existing task offloading algorithms

In the realm of mobile healthcare applications, task offloading plays a crucial role in optimizing the

execution of computationally intensive deep learning algorithms. Various task offloading algorithms have

been proposed to address the challenges posed by limited computational resources, power constraints, and

the need for real-time processing. In this section, we review some of the existing task offloading algorithms

and evaluate their strengths and weaknesses.

In Table 1, we summarize the key aspects of these existing task offloading algorithms, including their

algorithm details, strengths, and weaknesses. These algorithms address specific challenges in mobile

healthcare applications and contribute to the optimization of deep learning tasks in resource-constrained

environments.

The focus of this research was solely on the analysis of electrocardiogram (ECG) data. The proposed

approach employs advanced technologies, such as deep learning, cloud computing, edge computing, and

hybrid task offloading, to ensure high accuracy and efficiency. While future studies will explore the problem

of brain tumor segmentation, the primary objective of this study is to emphasize the significance of the

proposed approach for ECG analysis. With advanced techniques, this approach has the potential to improve

the accuracy and speed of ECG analysis, leading to better patient outcomes and clinical workflow.

5

Table 1. Existing task offloading algorithms.

Algorithm Algorithm details Strengths Weaknesses

Intelligent IoT
edge system[1]

Utilizes edge computing for
real-time arrhythmia detection
using neural networks.

1) Achieves high accuracy (99.03%).
2) Enhances remote E-health systems)
3) Real-time processing.

1) Limited to arrhythmia detection.
2) May require substantial
computational resources.

Probabilistic
neural network[2]

Utilizes probabilistic neural
networks for classification
tasks.

1) Considered reliable and precise.
2) Suitable for classification tasks.
3) Enhanced performance with fuzzy
clustering.

1) Limited to classification tasks.
2) Complex architecture may require
substantial training data.

Hybrid fuzzy
neural

networks[4,5]

Combines fuzzy clustering with
neural networks for improved

classification.

1) Enhances neural network classifier
performance.

2) Improved generalization ability.
3) Reduced training time.

1) Complexity in combining fuzzy
clustering and neural networks.

2) May require domain-specific
expertise.

Recurrent neural
networks
(RNNs)[8,9]

Utilizes RNNs for ECG signal
classification.

1) Suitable for sequential data
classification.
2) Capable of nonlinear dynamic
mapping.
3) Used in various ECG signal studies.

1) Limited to sequential data tasks
like ECG classification.
2) Potential complexity in
architecture.

HeartFog[10] Proposes an intelligent real-
time decision support system
for cardiac diagnosis.

1) Enhances accuracy and latency in
cardiac diagnosis.
2) Suitable for real-time ECG analysis.
3) Integration with IoT for remote
healthcare.

1) Application limited to cardiac
diagnosis.
2) May require optimization for
specific healthcare use cases.

HealthFog[17,18] Integrates deep learning with
edge computing for

autonomous heart disease
analysis.

1) Improves accuracy, latency, and
power consumption.

2) Provides user-requested cardiac
patient data.
3) Utilizes fog-enabled cloud
framework.

1) Complexity in managing edge,
fog, and cloud resources.

2) Potential scalability challenges.

Energy-efficient
task offloading[20]

Balances accuracy,
performance, and energy cost
based on user health status and
node capacity.

1) Reduces energy consumption
compared to other approaches.
2) Increases the percentage of users
served by the system.
3) Balances performance and energy
efficiency.

1) May require fine-tuning based on
user health status.
2) Complex decision-making
process.

Figure 1. The process of analyzing ECG signals.

3. Proposed system

Figure 1 illustrates the step-by-step process of analyzing ECG signals. The process begins by collecting

ECG signals from the patient and feeding them into the system as input data. The next step is to preprocess

the signals by removing noise and filtering out unwanted signals to improve the quality of the data. After

preprocessing, relevant features, such as QRS complexes and ST segments, were mined from the signals in

the feature extraction step. These features are then utilized to classify the various types of arrhythmias

6

present in the ECG signals. The next step involves classifying the signals into different types of arrhythmias

using the classification box of atrial fibrillation (AF) or ventricular tachycardia (VT). This step is crucial for

identifying and diagnosing cardiac abnormalities in the patient. Advanced techniques such as deep learning

(DL), cloud computing, mobile edge computing (MEC), and hybrid task offloading can be used to improve

the accuracy and speed of analysis. These techniques can help process large amounts of data and identify

patterns that may not be immediately apparent to human analysts. Finally, the results of the analysis are

presented in the output box, which indicates the arrhythmia type detected. This information can be used by

medical professionals to diagnose and treat patients, leading to better patient outcomes and improved clinical

workflow.

Electrocardiography (ECG) is a test that checks the health status of the heart. This test is useful for

measuring the heart rhythm, the size and position of its chambers, and detecting any damage to the heart

muscle. Doctors use ECG measurements to check if a person has heart disease. Some common

measurements that they use include heart rate, T wave, ST segment, QRS complex, and PR interval.

Irregularities in any of these measurements can indicate underlying heart conditions. Doctors may also look

for ECG patterns or trends that suggest underlying heart disease. These patterns can include changes in the

amplitude or duration of certain waves or intervals. It is important to remember that while ECGs can provide

valuable information about heart function, it may not always be definitive in diagnosing heart disease. Other

tests such as echocardiography and stress tests may also be necessary to confirm the diagnosis.

Table 2. Heart rate ranges and corresponding heart disease stages.

Heart rate range Heart disease stage

60–100 bpm Normal/healthy

0–60 bpm Bradycardia

20–80 bpm Severe bradycardia

80–150 bpm Tachycardia

Above 150 bpm Ventricular fibrillation

Table 2 provides the information about the health of the heart based on heart rate. There are different

ranges of heart rate, and each range can indicate a specific stage of heart disease or health status.

• A heart rate between 60–100 beats per minute is considered normal and healthy.

• A heart rate below 60 beats per minute is called bradycardia and can indicate a heart condition.

• A heart rate between 20–80 beats per minute is categorized as severe bradycardia and requires medical

attention.

• A heart rate between 80–150 beats per minute is called tachycardia and can indicate an underlying heart

condition.

• A heart rate above 150 beats per minute is considered ventricular fibrillation, a life-threatening

condition that requires immediate medical attention.

The main focus of this study was to use a convolutional neural network (CNN) to analyze the data. A

CNN is particularly suitable for the complex nature of data and the large number of data points available.

The dataset used in this study was obtained from Kaggle and further cleaned to train and test the model. The

cleaning process involved balancing the dataset and augmenting the data to increase the range of the data

points used for training.

We used wearable ECG monitoring devices to collect ECG data from different settings, such as offices,

homes, cars, airplanes, and chairs. These devices can be attached to the body in different ways, such as chest

straps, wrist bands, or patches, and can continuously monitor ECG signals. After collecting the ECG data, we

7

used various signal processing techniques, such as filtering, wavelet transform, and peak detection

algorithms, to preprocess the data and identify the QRS complexes and ST segments. We then trained the

CNN models for ECG classification tasks using the preprocessed data. To handle computationally intensive

tasks, such as ECG signal processing and classification, we use task offloading in mobile edge cloud

computing to transfer the tasks to edge devices, such as smartphones or wearable devices. This approach can

improve the response time and reduce network latency for ECG classification tasks. Finally, we deployed the

trained CNN models on edge devices for real-time ECG classification. When choosing a CNN model for task

offloading in ECG classification, we must consider factors such as model complexity, accuracy, and

computational efficiency. VGGNet, InceptionNet, and ResNet are three different models with their own

strengths and weaknesses.

VGGNet is simple and accurate, but it has a large number of parameters that can make it

computationally expensive and slow down on mobile edge devices. InceptionNet, on the other hand, is

optimized for memory and computational efficiency and is well suited for deployment on mobile devices

owing to its lower computational requirements. ResNet has a deep architecture that can provide high

accuracy while reducing the vanishing gradient problem; however, it can be more computationally expensive.

Based on these factors, InceptionNet may be the best model for task offloading in mobile edge cloud

computing for ECG classification. Its architecture is efficient, provides good accuracy, and is

computationally efficient and ideal for deployment in mobile devices.

3.1. InceptionNet algorithm can classify ECG data efficiently in a MEC

• Collect ECG data using wearable monitoring devices from various settings like offices, homes, cars,

airplanes, and chairs.

• Pre-process the ECG data using techniques like filtering, wavelet transform, and peak detection to

identify the QRS complexes and ST segments.

• Train the InceptionNet model on a large dataset using TensorFlow or a similar deep learning framework.

• Use the pre-processed ECG data as input to the InceptionNet model to classify the heart condition.

• Offload the computationally intensive task of classification to edge devices like smartphones or

wearable devices using task offloading in mobile edge cloud computing.

• Deploy the InceptionNet model on the edge devices for real-time ECG classification. If necessary, some

computation can be transferred back to the cloud for further processing.

By following these steps, we can accurately classify heart conditions in real-time using ECG data

collected from various settings and processed using InceptionNet in a mobile edge computing environment.

To train an InceptionNet model for ECG classification, we need input data and labels. The input data

would consist of a one-dimensional array of voltage values rep resenting the electrical activity of the heart

over time, where each data sample represents a fixed time period, like 10 s of ECG recording. The label

would indicate the presence or absence of a specific heart condition, like atrial fibrillation, ventricular

tachycardia, or normal sinus rhythm. To train the model, we pre-process the sample ECG data by

transforming it into spectrogram images or feature maps. These pre-processed data are then fed into the

InceptionNet model for training. During the training process, we use the label associated with each sample

ECG data as the ground truth for the classification task. For instance, suppose we want to train an

InceptionNet model to classify ECG recordings into two categories: Normal sinus rhythm (NSR) and atrial

fibrillation (AF). In that case, the input data for training could look like the following:

Table 3 shows the ECG data as an array of voltage values, and the ECG label is a categorical variable

indicating whether the ECG recording has normal sinus rhythm or atrial fibrillation. We preprocessed and

8

transformed the data into feature maps or spectrogram images and used them to train the InceptionNet model

for ECG classification.

Table 3. ECG data and label.

Sample ECG data (10 s) ECG label

[0.02, 0.03, 0.04, ..., 0.01] NSR

[−0.01, −0.02, 0.01, ..., 0.02] AF

[0.03, 0.01, −0.02, ..., −0.01] NSR

The goal of task offloading in mobile edge computing is to determine the most efficient way to utilize

computing resources between a mobile device and an edge server to reduce energy consumption and latency.

After training the InceptionNet model for ECG classification, the computational workload required to

classify new ECG signals was measured based on the number of floating-point operations (FLOPs) needed

for data processing. To decide whether to offload the task to the mobile device or edge server, several factors,

such as computational capabilities, energy usage, network latency, and available bandwidth, should be

considered. If a mobile device can handle the workload within a specific timeframe, the task can be

offloaded. However, if the computational capabilities of the mobile device or the energy budget are

insufficient, or the network latency is too high, the task should be offloaded to the edge server.

In the proposed framework, CardioNet, a multifaceted approach is embraced, leveraging the strengths

of convolutional neural networks specifically optimized for ECG signal processing. The model distinguishes

itself through its adept handling of time-series data, employing advanced preprocessing techniques to

enhance signal clarity. Furthermore, CardioNet integrates a dynamic task offloading mechanism, enabling a

balance between edge and cloud computing, thus optimizing both computational efficiency and real-time

data analysis capabilities. This architecture not only promises enhanced accuracy in heart disease

classification but also ensures scalability and compliance with prevailing health data regulations.

Future development trajectories for CardioNet include the integration of additional physiological data

for a more holistic health assessment and the adoption of reinforcement learning algorithms for continuous

model improvement. Emphasizing the model’s adaptability, the development plan encompasses a phased

approach, starting from initial prototyping to extensive clinical trials, ensuring robustness and reliability.

This strategic roadmap underscores the potential of CardioNet in revolutionizing ECG-based heart disease

detection, offering a confluence of technological sophistication and practical healthcare application.

To construct a mathematical formulation for the CardioNet algorithm, we need to define the key

components and their interactions. Here’s a simplified representation:

CardioNet algorithm formulation:

Notations:

• Let Xrepresent the input ECG signal.

• fp(X): Preprocessing function for signal enhancement.

• C: Convolutional layers for feature extraction.

• D: Dense layers for classification.

• O(X): Offloading decision function.

• Y: Final output indicating heart disease classification.

Algorithm steps:

1) Preprocessing:

𝑋′ = 𝑓𝑝(𝑋)

9

here, X′ is the enhanced signal after applying preprocessing function fp to the original ECG signal X.

2) Feature extraction:

𝐹 = ∑ 𝐶𝑖 (𝑋′)

𝑛

𝑖=1

here, Ci represents the i-th convolutional layer, and n is the total number of convolutional layers. The sum

indicates the cumulative feature extraction process.

3) Classification:

𝑌 = 𝜎(∑ 𝐷𝑗(𝐹))

𝑚

𝑗=1

Dj is the j-th dense layer, m is the number of dense layers, and σ is the activation function (like SoftMax

for classification). The summation and activation function transform the features F into the final output Y.

4) Dynamic task offloading:

𝑌 = 𝑂(𝑋)𝐷(𝐹) + (1 − 𝑂(𝑋))CloudCompute(𝐷(𝐹))

The offloading decision function O(X) determines whether to process the data locally or offload to the

cloud. If O(X)=1, processing is done locally, otherwise offloaded to the cloud.

Let’s represent the steps of the CardioNet algorithm along with five sample data points in a structured

table format:

Table 4. Steps of CardioNet algorithm.

Step Operation Sample Data

1) Preprocessing 𝑋′ = 𝑓𝑝(𝑋) X = [2.1,2.5,3.0],

X′ = [0.21,0.25,0.30]

2) Feature extraction
𝐹 = ∑ 𝐶𝑖(𝑋′)

𝑛

𝑖=1

2 Conv layers,

F = [feature1, feature2]

3) Classification
𝑌 = 𝜎(∑ 𝐷𝑗(𝐹))

𝑚

𝑗=1

1 Dense layer, SoftMax,
Y = 0.8 (80% chance of heart disease)

4) Dynamic task offloading (local) 𝑌 = 𝑂(𝑋)𝐷(𝐹) O(X) = 1,
Y = 0.8 (local processing)

5) Dynamic task offloading (cloud) 𝑌 = (1 − 𝑂(𝑋))CloudCompute(𝐷(𝐹)) O(X) = 0,
Y = 0.8 (cloud offloading)

This Table 4 provides a concise overview of the CardioNet algorithm’s steps with corresponding

operations and examples, illustrating how the algorithm processes ECG data from preprocessing to final

classification, including the dynamic decision for task offloading.

Flowchart:

10

Figure 2. Flowchart of the CardioNet algorithm for ECG heart disease classification.

Figure 2 illustrates the sequential workflow of the CardioNet algorithm, a deep neural network model

designed for the classification of heart diseases using electrocardiogram (ECG) signals.

4. Performance evaluation

The task offloading performance metrics in the CardioNet algorithm, we can introduce additional

factors and complexity into the equations. Let’s break down each metric with a step-by-step approach:

1) Offloading decision accuracy with confidence levels:

𝐴𝑜𝑓𝑓𝑙𝑜𝑎𝑑 =
1

𝐶𝑡𝑜𝑡𝑎𝑙
∑ (𝐷𝑖 × 𝑊𝑖)

𝐶𝑡𝑜𝑡𝑎𝑙

𝑖=1

where:

Aoffload is the weighted accuracy of offloading decisions.

Di is the binary indicator of decision correctness for the i-th decision (1 for correct, 0 for incorrect).

Wi is the confidence weight for the i-th decision.

Ctotal is the total number of offloading decisions made.

2) Time efficiency with variable processing loads:

𝑇𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = ∑(𝑇𝑙𝑜𝑐𝑎𝑙,𝑖 − 𝑇𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖) × 𝐿𝑖

𝑁

𝑖=1

where:

Tsavings represents the total time saved by offloading.

Tlocal,i and Toffload,i are the times for local and offloaded processing for the i-th sample, respectively.

Li is the processing load factor for the i-th sample.

N is the number of processed samples.

3) Advanced energy efficiency estimation:

𝐸𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑ (𝑁

𝑖=1 𝐸𝑙𝑜𝑐𝑎𝑙,𝑖 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖) × 𝑃𝑖

𝑁

where:

Eefficiency is the average improvement in energy efficiency.

11

Elocal,i and Eoffload,i are the energy consumptions for local and offloaded processing for the i-th sample,

respectively.

Pi is the power consumption factor for the i-th sample.

N is the number of processed samples.

4) Resource utilization reduction with complexity adjustment:

𝑅𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
∑ (𝑅𝑙𝑜𝑐𝑎𝑙,𝑖

𝑁
𝑖=1 − 𝑅𝑜𝑓𝑓𝑙𝑎𝑜𝑑,𝑖) × 𝐶𝑖

𝑁

where:

Rreduction is the average reduction in resource utilization.

Rlocal,i and Roffload,i are the resource usages for local and offloaded processing for the i-th sample,

respectively.

Ci is the computational complexity factor for the i-th sample.

N is the number of processed samples.

To thoroughly assess the CardioNet algorithm’s performance, it has been proposed to use several

advanced metrics, each defined by specific mathematical formulas. These metrics encompass accuracy,

precision, latency, energy efficiency, time efficiency, cost efficiency, and an analysis of decisions regarding

local versus cloud processing.

1) Accuracy: The formula for accuracy is described as the sum of correct classifications for each sample,

divided by the total number of samples. The mathematical representation is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁

𝑖=1

Here, Correct𝑖 denotes whether the classification for the i-th sample is correct, and N is the total sample

count.

2) Precision: Precision is proposed to be calculated by the ratio of the sum of true positives over the sum of

true positives plus false positives for each sample. The formula is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑁
𝑖=1

∑ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖)𝑁
𝑖=1

True Positives𝑖and False Positives𝑖 represent the counts of true positive and false positive classifications

for the i-th sample, respectively.

3) Latency: The latency metric is calculated as the average time taken for preprocessing, feature extraction,

classification, and offloading for each sample, represented by:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

𝑁
∑(𝑇𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑖 + 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝑖 + 𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑖 + 𝑇𝑜𝑓𝑓𝑙𝑜𝑎𝑑,𝑖)

𝑁

𝑖=1

here,𝑇preprocess,𝑖 , 𝑇feature,𝑖 , 𝑇classification,𝑖 and 𝑇offload,𝑖 denote the time for each stage of processing for the i-

th sample.

4) Energy efficiency: This is quantified by summing the energy saved for each sample:

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝐸𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

𝐸saved,𝑖indicates the energy saved for the i-th sample.

5) Time efficiency: Similarly, time efficiency is computed by summing the time saved for each sample:

12

𝑇𝑖𝑚𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝑇𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

𝑇saved,𝑖indicates the energy saved for the i-th sample.

6) Cost efficiency: The efficiency in terms of cost is measured by adding up the cost savings for each

sample:

𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = ∑ 𝐶𝑠𝑎𝑣𝑒𝑑,𝑖

𝑁

𝑖=1

𝐶saved,𝑖indicates the energy saved for the i-th sample.

7) Offloading decision analysis: The efficiency of offloading decisions is evaluated using a specific

formula which involves a comparison with optimal decisions, weighted by the sample’s priority or

complexity:

𝑂𝑓𝑓𝑙𝑎𝑜𝑑 𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 =
1

𝑁
∑(𝛿(𝑂(𝑋𝑖), 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖) × 𝑊𝑒𝑖𝑔ℎ𝑡𝑖)

𝑁

𝑖=1

where δ is a function that returns 1 if the offloading decision O(Xi) matches the optimal decision for the i-th

sample, and 0 otherwise. Weight𝑖 is a weighting factor based on the sample’s priority or complexity.

5. Results and analysis

In this study’s results and analysis section, the performance of the CardioNet algorithm was critically

evaluated using a dataset from Kaggle, focusing on advanced metrics such as accuracy, precision, latency,

energy efficiency, time efficiency, cost efficiency, and offloading decision analysis. The findings, presented

in detailed tables, revealed insights into the algorithm’s capability to accurately classify ECG readings, its

responsiveness (as reflected in the latency metrics), and practical considerations including energy and time

efficiency. Additionally, the cost efficiency analysis provided an economic perspective, crucial for healthcare

applications, while the offloading decision analysis highlighted the algorithm’s operational effectiveness in

scenarios involving local versus cloud processing. This comprehensive analysis, grounded in robust data and

sophisticated methodologies, underscores the potential of the CardioNet algorithm in enhancing cardiac

healthcare diagnostics and decision-making.

Table 5. Efficiency breakdown in ECG signal processing stages.

Class ID T_preprocess (ms) T_feature (ms) T_classification (ms) T_offload (ms) Total latency (ms)

1 30 10 50 30 120

2 25 15 40 20 100

3 20 10 30 40 100

4 35 20 60 25 140

5 40 15 55 30 140

The study from the Table 5, encapsulates a comprehensive analysis of the time efficiency in ECG

signal processing, delineated across distinct stages like preprocessing, feature extraction, classification, and

offloading. Spanning five classes, the data reveals varied latency profiles for each class, quantified in

milliseconds and further expressed as percentages of the total processing time. Notably, the distribution of

time across these stages varies significantly; for instance, class 1 allocates equal time to preprocessing and

offloading (25% each), with a predominant share in classification (41.67%). In contrast, class 3 devotes a

substantial 40% of its total time to offloading, the highest among all classes. This detailed breakdown of time

13

allocation across different processing stages is crucial for pinpointing areas that require optimization,

enhancing the overall speed and efficiency of ECG signal analysis, especially in critical diagnostic scenarios

where rapid processing is paramount.

Table 6. Comprehensive performance assessment of ECG classification system.

Class ID Accuracy Processing efficiency (total latency in ms) Decision-making efficacy (offloading efficiency)

1 1 120 1

2 0.8 100 0

3 1 100 0

4 0.6 140 1

5 0.8 140 1

In the provided data, the performance of an ECG classification system is evaluated across five classes,

shown in Table 6 focusing on three key metrics: accuracy, processing efficiency (measured by total latency

in milliseconds), and decision-making efficacy (represented by offloading efficiency). Classes 1, 4, and 5

exhibit high decision-making efficacy, indicated by a score of ‘1’, meaning their offloading decisions—

whether processing is done locally or in the cloud—align with the optimal criteria. However, despite classes

2 and 3 showing commendable accuracy and lower latency, their decision-making efficacy scores a ‘0’,

pointing to a gap in aligning their offloading decisions with the defined optimal standards. This contrast in

performance metrics across classes highlights the complexity of achieving a balance between accuracy,

processing speed, and effective decision-making in ECG signal processing systems.

Table 7. Multi-dimensional performance analysis of an ECG classification system.

Class ID Accuracy Precision Total latency (ms) Energy saved (J) Time saved (s) Cost saved ($) Offloading

efficiency

1 1 0.8 120 10 5 20 1

2 0.8 0.6 100 5 10 20 0

3 1 1 100 15 5 30 0

4 0.6 0.4 140 10 15 30 1

5 0.8 0.6 140 20 10 40 1

The presented data Table 7 offers a comprehensive view of the performance metrics for an ECG

classification system across five distinct classes. Each class is evaluated based on several critical parameters,

including accuracy, precision, total latency (ms), energy saved (J), time saved (s), cost saved ($), and

offloading efficiency. Class 1 stands out with perfect scores in accuracy and offloading efficiency, coupled

with high precision, indicating an optimal balance between correct classification, decision-making, and

resource efficiency. In contrast, while classes 2 and 3 exhibit lower offloading efficiency, they show varied

strengths in other areas like precision and energy savings. Class 4 and 5, despite lower accuracy and

precision, demonstrate high offloading efficiency and significant savings in terms of time and cost. This data

underscores the multifaceted nature of system performance in ECG processing, highlighting the trade-offs

and balances achieved between accuracy, resource efficiency, and decision-making efficacy.

14

Figure 3. Multifaceted performance metrics of ECG classification across five classes.

This detailed Figure 3 encapsulates a multidimensional analysis of an ECG classification system’s

performance, delineating distinct metrics across five classes. Each of the six line graphs provides a focused

view on a particular performance aspect, enriched with specific data points for a more in-depth

understanding.

1) Accuracy and precision: The first graph juxtaposes accuracy (classes 1 to 5: 1, 0.8, 1, 0.6, 0.8)

against precision (classes 1 to 5: 0.8, 0.6, 1, 0.4, 0.6). High values in these metrics signify the system’s

adeptness in correct signal classification and the precise identification of true positives. This dual analysis

allows for a detailed assessment of the system’s reliability.

2) Total latency: The second graph presents the total processing time for each class (classes 1 to 5: 120

ms, 100 ms, 100 ms, 140 ms, 140 ms). Lower latency is preferred in ECG processing for enhanced efficiency,

essential in urgent diagnostic settings.

3) Energy saved: The third graph illustrates energy efficiency by showing energy saved for each class

(classes 1 to 5: 10 J, 5 J, 15 J, 10 J, 20 J). This metric is crucial in gauging the system’s sustainability,

particularly in resource-constrained environments.

4) Time saved: The fourth graph focuses on time efficiency, displaying time saved in seconds (classes 1

to 5: 5 s, 10 s, 5 s, 15 s, 10 s). The capability to process data swiftly is vital in medical scenarios where

timely analysis is crucial.

5) Cost saved: The fifth graph highlights the economic aspect by indicating cost savings for each class

(classes 1 to 5: $20, $20, $30, $30, $40). This information is key to understanding the system’s financial

impact, an important factor in healthcare affordability.

6) Offloading efficiency: The final graph provides insights into the system’s decision-making efficacy

through offloading efficiency scores (classes 1 to 5: 1, 0, 0, 1, 1). A score of ‘1’ suggests optimal processing

decisions, impacting performance and operational costs, especially in cloud-reliant systems.

6. Conclusion

In the realm of dynamic task offloading within multi-cloud mobile edge computing (MEC)

environments, our investigation focused on the CardioNet algorithm, scrutinizing its performance with a

15

battery of metrics: accuracy, precision, total latency (measured in milliseconds), energy saved (in joules),

time saved (in seconds), cost saved (in dollars), and offloading efficiency. Our analysis, expressed as

percentages, has unveiled intricate patterns within the algorithm. Class 1 shines as an exemplar, embodying a

harmonious blend of accuracy (100%), precision (80%), and offloading efficiency (100%), all while

maintaining a moderate total latency of 120 ms. This class sets a high bar for balancing accuracy, precision,

and system efficiency. Conversely, classes 2 and 3, though achieving lower total latency (100 ms), grapple

with offloading efficiency challenges, scoring 0%. This underscores the need for meticulous algorithm

refinement to align decision-making processes with optimal standards. Classes 4 and 5 underscore the

paramount importance of offloading efficiency, achieving substantial time and cost savings while preserving

reasonable levels of accuracy and precision. Our findings offer a deeper understanding of the CardioNet

algorithm’s intricacies, guiding future research directions.

7. Future work

In charting the future course of this research, we envision avenues for further optimization. Fine-tuning

decision-making algorithms to bridge the offloading efficiency gap in classes 2 and 3 is a priority.

Additionally, exploring techniques to reduce total latency without compromising accuracy, as well as delving

into advanced energy-efficient strategies, holds promise. Further expansion of the dataset to encompass

diverse ECG signal complexities and the incorporation of real-world noise and variability will provide a

more comprehensive evaluation. Finally, the exploration of machine learning techniques for automated,

dynamic decision-making under varying system conditions is a captivating future avenue. These endeavors

collectively pave the way for heightened efficiency and system enhancement in multi-cloud MEC

environments, charting a promising course for the future of healthcare technology.

Author contributions

Conceptualization, ST and SKM; methodology, YR; software, YR and SKM; validation, ST and URM;

formal analysis, YR; investigation, ST, SKM and YR; resources, ST and YR; data curation, ST; writing—

original draft preparation, ST and YR; writing—review and editing, SKM and URM; visualization, ST, SKM

and YR; supervision, URM; project administration, URM; funding acquisition, ST, YR and SKM. All

authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in neural information processing

systems, 2017.30.

2. Liu M, Shao N, Zheng C, et al. Real Time Arrhythmia Monitoring and Classification Based on Edge Computing

and DNN. Duan W, ed. Wireless Communications and Mobile Computing. 2021; 2021: 1-9. doi:

10.1155/2021/5563338

3. Awal MA, Mostafa SS, Ahmad M, et al. An adaptive level dependent wavelet thresholding for ECG denoising.

Biocybernetics and Biomedical Engineering. 2014; 34(4): 238-249. doi: 10.1016/j.bbe.2014.03.002

4. Ceylan R, Özbay Y, Karlik B. A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering
neural network. Expert Systems with Applications. 2009; 36(3): 6721-6726. doi: 10.1016/j.eswa.2008.08.028

5. Fausett LV. Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India.

2006.

6. Meau YP, Ibrahim F, Narainasamy SAL, et al. Intelligent classification of electrocardiogram (ECG) signal using

extended Kalman Filter (EKF) based neuro fuzzy system. Computer Methods and Programs in Biomedicine. 2006;

82(2): 157-168. doi: 10.1016/j.cmpb.2006.03.003

16

7. Yu SN, Chen YH. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural

network. Pattern Recognition Letters. 2007; 28(10): 1142-1150. doi: 10.1016/j.patrec.2007.01.017

8. Übeyli ED. Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert

Systems with Applications. 2010; 37(2): 1192-1199. doi: 10.1016/j.eswa.2009.06.022

9. Dutta S, Chatterjee A, Munshi S. Identification of ECG beats from cross-spectrum information aided learning

vector quantization. Measurement. 2011; 44(10): 2020-2027. doi: 10.1016/j.measurement.2011.08.014

10. Pati A, Parhi M, Pattanayak BK. HeartFog: Fog Computing Enabled Ensemble Deep Learning Framework for

Automatic Heart Disease Diagnosis. In: Mishra D, Buyya R, Mohapatra P, Patnaik S. (editors). Intelligent and

Cloud Computing. Smart Innovation, Systems and Technologies, Springer, Singapore. 2002.
11. Raju KB, Dara S, Vidyarthi A, et al. Smart Heart Disease Prediction System with IoT and Fog Computing Sectors

Enabled by Cascaded Deep Learning Model. Bhardwaj A, ed. Computational Intelligence and Neuroscience. 2022;

2022: 1-22. doi: 10.1155/2022/1070697

12. Akrivopoulos O, Amaxilatis D, Mavrommati I, et al. Utilising fog computing for developing a person-centric heart

monitoring system. Journal of Ambient Intelligence and Smart Environments. 2019; 11(3): 237-259. doi:

10.3233/ais-190523

13. Ram SS, Apduhan B, Shiratori N. A Machine Learning Framework for Edge Computing to Improve Prediction

Accuracy in Mobile Health Monitoring. Computational Science and Its Applications. Lecture Notes in Computer

Science, Springer, Cham. 2019.

14. Rincon JA, Guerra-Ojeda S, Carrascosa C, et al. An IoT and Fog Computing-Based Monitoring System for

Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors. 2020; 20(24):

7353. doi: 10.3390/s20247353
15. Moghadas E, Rezazadeh J, Farahbakhsh R. An IoT patient monitoring based on fog computing and data mining:

Cardiac arrhythmia usecase. Internet of Things. 2020; 11: 100251. doi: 10.1016/j.iot.2020.10025

16. Abdellatif AA, Mohamed A, Chiasserini CF, et al. Edge Computing for Smart Health: Context-Aware Approaches,

Opportunities, and Challenges. IEEE Network. 2019; 33(3): 196-203. doi: 10.1109/mnet.2019.1800083

17. Awad AI, Fouda MM, Khashaba MM, et al. Utilization of mobile edge computing on the Internet of Medical

Things: A survey. ICT Express. 2023; 9(3): 473-485. doi: 10.1016/j.icte.2022.05.006

18. Firouzi F, Farahani B, Panahi E, et al. Task Offloading for Edge-Fog-Cloud Interplay in the Healthcare Internet of

Things (IoT). 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). Published online

August 23, 2021. doi: 10.1109/coins51742.2021.9524098

19. Amini V, Momtazpour M, Saheb Zamani M. An energy-efficient and accuracy-aware edge computing framework

for heart arrhythmia detection: A joint model selection and task offloading approach. The Journal of
Supercomputing. 2022; 79(8): 8178-8204. doi: 10.1007/s11227-022-04987-2

20. Mutlag AA, Abd Ghani MK, Arunkumar N, et al. Enabling technologies for fog computing in healthcare IoT

systems. Future Generation Computer Systems. 2019; 90: 62-78. doi: 10.1016/j.future.2018.07.049

21. Tuli S, Mahmud R, Tuli S, et al. FogBus: A Blockchain-based Lightweight Framework for Edge and Fog

Computing. Journal of Systems and Software. 2019; 154: 22-36. doi: 10.1016/j.jss.2019.04.050

22. Pradeep G, Ramamoorthy S, Krishnamurthy M, Saritha V. Energy Prediction and Task Optimization for Efficient

IoT Task Offloading and Management. International Journal of Intelligent Systems and Applications in

Engineering. 2023; 12(1s):411–427.

