
Journal of Autonomous Intelligence (2024) Volume 7 Issue 5
doi: 10.32629/jai.v7i5.1370

1

Original Research Article

Adaptive Multi-Layer Security Framework (AMLSF) for real-time

applications in smart city networks
M. Sethu Ram, R. Anandan*

Department of Computer Science & Engineering, VELS Institute of Science, Technology & Advanced Studies (VISTAS),

Chennai 603203, India

* Corresponding author: R. Anandan, anandan.se@velsuniv.ac.in

ABSTRACT

This study introduces the Adaptive Multi-Layer Security Framework (AMLSF), a novel approach designed for

real-time applications in smart city networks, addressing the current challenges in security systems. AMLSF

innovatively incorporates machine learning algorithms for dynamic adjustment of security protocols based on real-time

threat analysis and device behavior patterns. This approach marks a significant shift from static security measures,

offering an adaptive encryption mechanism that scales according to application criticality and device mobility. Our

methodology integrates hierarchical key management with real-time adaptability, further enhanced by an advanced

rekeying strategy sensitive to device mobility and communication overhead. The paper’s findings reveal a substantial

improvement in security efficiency. AMLSF outperforms existing models in encryption strength, rekeying time,

communication overhead, and computational time by significant margins. Notably, AMLSF demonstrates an

adaptability increase of over 30% compared to traditional models, with encryption strength and computational time

efficiency improving by approximately 25%. These results underscore AMLSF’s capability in delivering robust,

dynamic security without sacrificing performance. The achievements of AMLSF are significant, indicating a promising

direction for smart city security frameworks. Its ability to adapt in real-time to various security needs, coupled with its

performance efficiency, positions AMLSF as a superior choice for smart city networks facing diverse and evolving

security threats. This framework sets a new benchmark in smart city security, paving the way for future developments in

this rapidly advancing field.

Keywords: adaptive security, machine learning; smart cities; real-time applications; rekeying, encryption strength;

communication overhead

1. Introduction

Smart cities aim to improve the quality of life for residents by

leveraging data and technology to optimize city services, enhance

sustainability, and foster economic growth. They encompass a wide

range of interconnected systems and applications such as

transportation, healthcare, waste management, and public safety. As

the interconnectivity among various devices and applications grows,

so does the risk of security vulnerabilities. Security issues can range

from unauthorized access to sensitive data to disruptions in essential

city services. These threats can have significant impacts on both

individual residents and the functioning of the smart city as a whole.

Therefore, ensuring robust security measures is crucial in the design

and operation of smart city networks[1–7].

Smart cities, emblematic of modern urban development, are

designed to enhance residents’ quality of life through data-driven

ARTICLE INFO

Received: 17 October 2023
Accepted: 11 December 2023
Available online: 3 April 2024

COPYRIGHT

Copyright © 2024 by author(s).
Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).
https://creativecommons.org/licenses/by-

nc/4.0/

2

optimization of city services, sustainability efforts, and economic growth. These sprawling networks

integrate various systems and applications, from transportation and healthcare to waste management and

public safety. However, this intricate web of connectivity introduces multifaceted security vulnerabilities,

ranging from data breaches to service disruptions, posing significant risks to both residents and the

infrastructure[8]. Hence, the development and operation of smart city networks necessitate robust security

measures to safeguard against these evolving threats.

As smart cities evolve, they present a complex array of security challenges, including data privacy

concerns, unauthorized access, and the safety of interconnected systems controlling critical infrastructure.

The high degree of interconnectedness amplifies the attack surface, complicating comprehensive security

efforts[9]. Addressing these challenges demands innovative solutions that are both effective and adaptable to

the dynamic nature of smart cities.

The primary challenges in smart city security encompass ensuring data privacy, preventing unauthorized

access, and protecting interconnected systems that are essential to city functioning. The complexity of these

networks creates a broad and varied attack surface, making it difficult to secure them comprehensively[10].

The central problem addressed in this paper is the development of a security framework capable of

effectively managing the complex and dynamic nature of smart city networks. This framework must not only

be robust and efficient but also adaptable to the constantly evolving landscape of urban technological

ecosystems.

The motivations for this research are multifaceted. There is a significant drive to improve the efficiency

and effectiveness of smart city operations, further highlighted by the challenges posed by societal issues like

public health crises[11] and public safety concerns[12]. These motivations underscore the need for advanced

and adaptable security strategies that are technically robust and responsive to societal needs.

This paper’s key contributions are centered around the development and evaluation of the Adaptive

Multi-Layer Security Framework (AMLSF), designed for real-time applications in smart city environments.

The novel AMLSF framework is ground-breaking in its use of machine learning algorithms for dynamic

security protocol adjustments, tailored encryption mechanisms, and advanced rekeying strategies. It also

introduces a hierarchical key management system to optimize access control and encryption across various

network levels. The paper further provides an efficiency evaluation model for AMLSF and demonstrates its

superiority over existing security frameworks through comparative analysis[13,14].

This paper aims to address the following objectives:

1) To introduce a novel Adaptive Multi-Layer Security Framework (AMLSF) tailored for real-time

applications in smart city environments.

2) To evaluate the effectiveness of AMLSF in terms of encryption strength, rekeying time, communication

overhead, and computational time.

3) To compare the performance of AMLSF with existing security schemes in smart city networks.

The centrepiece of this contribution is the development of the AMLSF, a novel and sophisticated

approach to safeguarding real-time applications in these complex environments. This framework is

revolutionary in its use of machine learning algorithms to dynamically adjust security protocols based on

ongoing threat analyses and the behaviour patterns of devices within the network.

A key innovation of AMLSF is its adaptive encryption mechanism. This mechanism is not static; instead,

it varies its encryption strength depending on the criticality and mobility of the device in question, ensuring a

tailored and efficient security approach. This is complemented by an advanced rekeying strategy, which is

sensitive to various factors like device movement, communication overhead, and prevailing attack vectors,

thereby bolstering the overall security posture.

3

Another significant aspect of their contribution is the hierarchical key management system proposed

within AMLSF. This system organizes access and encryption keys in a layered hierarchy, optimizing access

control and encryption strategies across different network levels. Such a system is vital in managing the

diverse and often complex structures of smart city networks.

Furthermore, the paper introduces an efficiency evaluation model specifically designed for AMLS. This

model assesses the framework’s effectiveness across several parameters, including encryption strength,

rekeying time, communication overhead, and computational demands. The authors have also conducted a

comparative analysis through experimental results, demonstrating AMLSF’s superiority over existing

security frameworks in terms of adaptability and performance metrics.

The integration of machine learning algorithms like Random Forests, Neural Networks, and Support

Vector Machines is another notable aspect of this framework. These algorithms are employed for critical

functions such as anomaly detection, risk assessment, and the dynamic reconfiguration of security

parameters, illustrating a cutting-edge approach to real-time, adaptive cybersecurity.

The paper’s use of a real-world traffic dataset from Kaggle for simulation and validation purposes

showcases its practical application in real-world scenarios, emphasizing the framework’s relevance and

applicability to current smart city networks.

The remainder of the paper is structured as follows: Section II delves into the existing literature

concerning security in smart cities, providing a comprehensive backdrop against which this study is

positioned. Section III outlines the theoretical framework, focusing on key concepts and metrics pertinent to

the research. In Section IV, the Adaptive Multi-Layer Security Framework (AMLSF) is discussed in detail,

elucidating its components and functionalities. Section V elaborates on the research methodology,

encompassing the simulation environment and methods of data collection. Section VI presents the

experimental results, offering a comparative analysis with existing models to evaluate the effectiveness of

AMLSF. Section VII provides a thorough discussion of the findings, limitations, and avenues for future work.

Finally, Section VIII concludes the paper by summarizing the key findings and their broader implications.

2. Literature review

Smart cities, while heralding a new era of convenience and efficiency, also open up a multitude of

security challenges. These challenges include data privacy, unauthorized access, and the security of

interconnected systems that control critical infrastructure like electricity grids and healthcare services.

Moreover, the high degree of interconnectedness creates a complex attack surface that is difficult to secure

comprehensively.

The comparative analysis Table 1 serves as an insightful lens into the complex ecosystem of Smart

Cities, IoT, and emerging technologies like 5G and blockchain. The papers reviewed offer complementary

perspectives on critical aspects such as security, innovation, and comprehensive planning. For example, the

first paper by Gracias et al.[15] provides a broad overview, which establishes the foundation for specialized

investigations like those by Kazmi et al.[16] on 5G and SDN, and Haroon et al.[17] on IoT Security. These

specialized papers dive deep into the intricacies of their respective domains, revealing potential gaps and

areas for improvement that a broad review might not capture.

The latter two papers by Ahmad et al.[18] and Siddiqui et al.[19] introduce innovative solutions like

blockchain-based multi-factor authentication and smart contract security, respectively. These innovative

mechanisms could potentially address some of the limitations and challenges highlighted in the earlier papers,

particularly in the domain of security. This interconnectedness among the papers underscores the multi-

disciplinary and multi-faceted nature of Smart Cities and IoT. It highlights how a broad overview is essential

for understanding the landscape, but also how focused, specialized research can offer solutions to the

4

challenges identified, completing the research loop. Therefore, Table 1 serves not just as a summary but as a

guide for identifying how different research efforts in this space can inform and enrich each other.

Table 1. Comparative Analysis of research papers on smart cities, IoT, and related technologies.

Strategy Strengths Weaknesses Limitations Citation

Smart Cities Literature
Review

Comprehensive,
Covers multiple

domains

Limited databases Time, expertise of authors Gracias et al.[15]

5G and SDN Survey In-depth, Security

focus

Complex

architecture

Narrow focus on 5G and

SDN

Kazmi et al.[16]

IoT Security Security focus, Real-

world implications

Limited scope Focused on security Haroon et al.[17]

BAuth-ZKP Innovation, Blockchain Complexity Limited to blockchain Ahmad et al.[18]

Smart Contract Security Blockchain, SDN and
IoT

Narrow focus Focused on smart contracts Siddiqui et al.[19]

Several key management and cyber security schemes have been developed to address the unique needs

of smart cities. These schemes often focus on robust encryption, secure communication channels, and

efficient key distribution mechanisms. Some use static approaches that pre-define security measures, while

others incorporate more dynamic methods to adapt to real-time security requirements as shown in Table 2.

The papers encompass a wide array of strategies to tackle security issues in different domains, including

smart metering systems, smart grids, industrial IoT, smart transportation, and cloud computing. While

Abdalzaher et al.[20] provide a comprehensive review of key management techniques in smart meters, Hasan

et al.[21] delve into the cyber-physical and cybersecurity systems within smart grids. Srikanth et al.[22] focus

on Industrial Internet of Things (IIoT) and introduce a dynamic key agreement and authentication scheme,

whereas Bagga et al.[23] address security concerns in smart transportation through a bilinear pairing-based

access control. Waseem et al.[24] explore the potential of blockchain technology in enhancing smart grid

applications, and Sheik and Muniyandi[25] tackle cloud security with a focus on Artificial Neural Networks

(ANN).

Table 2. Comparative analysis of research papers on cybersecurity strategies in various domains (2023).

Strategy/Focus Strengths Weaknesses Limitations Citation

Smart Meter Key
Management

Comprehensive, Key
management focus

High computational load Focused on smart
metering

Abdalzaher et al.[20]

Smart Grid
Cybersecurity

Extensive, Covers
standards

Complexity SG specific
challenges

Hasan et al.[21]

IIoT Security Dynamic authentication,
Real-world implications

Limited to IIoT Focused on
Industrial IoT

Srikanth et al.[22]

Smart Transportation
Security

Access control, Real-world
application

Complexity Limited to
transportation

Bagga et al.[23]

Blockchain in Smart
Grid

Innovative, Focus on
architecture

Complexity Limited to
blockchain
technology

Waseem et al.[24]

Cloud Security with
ANN

Comprehensive, Covers
ANN

Limited scope Cloud-specific Sheik and Muniyandi[25]

These works collectively provide a holistic understanding of the current challenges and innovations in

cybersecurity across various domains. While each paper has its strengths, they also highlight the complexity

and the domain-specific challenges that need to be addressed. For example, the paper by Abdalzaher et al.[20]

illustrates the high computational load involved in key management, whereas the work by Waseem et al.[24]

5

points to the limitations of using blockchain technology in smart grids. This literature review reveals the

pressing need for cross-domain research that could potentially result in more universal, scalable, and efficient

cybersecurity solutions.

Hierarchical Key Management schemes have gained attention for their effectiveness in securing

complex networks. These schemes involve multiple layers of keys and rely on a hierarchical structure to

manage them. Each layer of the hierarchy may have a different level of access and encryption, providing

both flexibility and robustness. The seminal work on hierarchical PIN generation for smart cities sets a

strong foundation in this area, especially concerning key management in relation to node regions and

mobility speed.

Learning Automata (LA) based schemes are a newer entrant into the field of smart city security. They

leverage machine learning algorithms to dynamically adjust security protocols. Learning Automata schemes

consider real-time metrics such as communication overhead and adapt the system’s security configurations

accordingly. These approaches have shown promise in optimizing rekeying times and reducing

computational overhead.

While existing literature covers a range of techniques and methods for securing smart cities, there are

notable gaps. First, few studies have attempted to combine the robustness of hierarchical key management

with the adaptability of Learning Automata. Second, there is a lack of focus on real-time applications, which

form the crux of smart city functionalities. Finally, existing schemes often do not adequately address the need

for scalability and adaptability in the face of evolving threats and growing smart city infrastructures.

Table 3. Strategies for enhancing security and resource management in emerging technologies.

Strategy Strengths Weaknesses Limitations Citation

Cellular Learning
Automata for IoT

High energy efficiency,
fewer active nodes, and
improved coverage.

Complex initial setup and
adjustment stages.

Not tested on real-world
IoT networks.

Su and Ju[26]

ML-Assisted Channel
Allocation in 5G

Reduces handover rate by
99%, improves link
reliability.

Requires software patches
for implementation.

Compatibility with
existing 5G structure
not tested.

Raeisi and Sesay[27]

Secret Image Sharing
Schemes

Comprehensive survey,
identifies various secure
methods.

Does not propose a new
method, but surveys
existing ones.

The focus is mainly on
academic research.

Saha et al.[28]

ML-Based Resource
Allocation in Fog

Computing

Reduces processing time
by 19.35% and energy

consumption by 7%.

Complexity in integrating
ML models into existing

infrastructure.

Limited to SDN-
enabled fog computing

environments.

Singh et al.[29]

IoT Capabilities

Composition and
Decomposition

Provides a reference

taxonomy, identifies gaps
in existing research.

The paper is a review and

does not propose a new
solution.

Limited to academic

discussion and future
research.

Halba et al.[30]

In the ever-evolving technological landscape, researchers are exploring innovative solutions to

challenges in security and resource management. For instance, Su and Ju[26] and Raeisi and Sesay[27] focus on

improving self-protection in IoT and reducing handovers in 5G networks, respectively. While their methods

show promise in terms of efficiency, they also present limitations such as compatibility issues and initial

setup complexities. On the other hand, Saha et al.[28] offer a comprehensive survey on Secret Image Sharing

(SIS) schemes, serving as a guide for future research in data security.

Building on the computational theme, Singh et al.[29] propose a machine learning-based resource

allocation scheme for fog computing, praised for its efficiency but limited to specific environments. Similarly,

Halba et al.[30] provide a systematic review that identifies gaps in IoT capabilities but doesn’t offer a solution.

These studies as shown in Table 3 highlight the trend of using computational methods to tackle challenges

but also indicate the need for further empirical validation.

6

As smart cities continue to evolve, the security measures employed must be equally dynamic.

Adaptability in security measures allows for real-time adjustments[31–37]. to tackle emerging threats and

challenges. It is crucial for not only addressing the inherent vulnerabilities of a complex smart city network

but also for ensuring the long-term sustainability of security measures[38–42].

3. The AMLSF framework

Figure 1 provides a theoretical grounding for the concepts used throughout the paper, allowing for a

coherent understanding of the methodologies and analyses employed later on.

Figure 1. AMLSF framework.

Adaptive Security refers to the ability of a system to dynamically modify its security measures in

response to environmental changes and detected threats. The goal is to enable a flexible yet robust security

posture that can evolve as the risk landscape changes. Adaptive security is especially crucial in highly

dynamic environments like smart cities where attack vectors and vulnerabilities can rapidly evolve.

Machine Learning techniques are increasingly being adopted in cybersecurity frameworks to detect

anomalies, predict threats, and adapt security protocols. Algorithms such as neural networks, decision trees,

and clustering can analyze historical and real-time data to make data-driven security decisions. In the context

of this paper, machine learning serves as the backbone of the Adaptive Multi-Layer Security Framework

(AMLSF), facilitating its real-time adaptability.

Real-Time Applications in smart cities include those that require immediate data processing and

decision-making, such as traffic control systems, emergency response, and healthcare monitoring. These

applications have unique security requirements, often demanding quick adaptation to maintain both

functionality and security.

To facilitate a coherent analysis, this study utilizes a set of metrics designed to measure the

effectiveness and efficiency of security frameworks in a smart city environment.

• Encryption strength: Refers to the robustness of the encryption algorithms used. It is usually measured in

bits and gauges the computational effort needed to break the encryption.

• Rekeying time: The time taken to generate and distribute new keys within the system. Shorter rekeying

times are preferable as they minimize the window of opportunity for an attacker to compromise the

system.

7

• Communication Overhead: Measures the additional computational and bandwidth resources required to

implement the security features. Lower communication overhead is desirable for maintaining system

efficiency.

• Computational Time: The time taken by the system to execute various security algorithms and processes.

Lower computational times are beneficial for real-time applications where quick decision-making is

crucial.

3.1. System model

This section outlines the methodologies employed to evaluate the effectiveness and efficiency of the

Adaptive Multi-Layer Security Framework (AMLSF). The approach consists of the simulation environment,

data collection methods, algorithms, and validation metrics used in the study which represents in Figure 2.

Figure 2. Proposed AMLSF model.

The Adaptive Multi-Layer Security Framework (AMLSF) serves as the central innovation of this study.

Designed specifically for smart city applications, AMLSF leverages machine learning algorithms and

hierarchical key management to offer a dynamic, robust, and efficient security solution. It adapts in real-time

to the changing risk landscape and the unique requirements of various applications, making it particularly

suitable for the complexities of smart city networks.

AMLSF integrates machine learning algorithms to achieve adaptability and real-time responsiveness.

Algorithms such as Random Forests, Neural Networks, and Support Vector Machines are used for anomaly

8

detection, risk assessment, and dynamic reconfiguration of security parameters. Each algorithm has its own

advantages and is selected based on the specific application or threat model.

Incorporating hierarchical key management, AMLSF organizes keys into different layers of hierarchy,

each tailored for specific levels of access and encryption. The upper layers handle more generalized

encryption tasks for broad network segments, while the lower layers deal with specialized tasks for

individual nodes or applications. This layered approach allows for efficient key distribution and minimizes

the potential damage from key compromises. Real-time adaptability is achieved through a continuous

monitoring and feedback loop. The system utilizes machine learning algorithms to analyze incoming data

and adjusts the security settings in real-time. For example, if a potential threat is detected, the system could

automatically increase the encryption strength or expedite the rekeying process.

AMLSF introduces an advanced rekeying strategy that is both efficient and secure. By considering

variables such as mobility speed of devices, real-time risk assessment, and network congestion, AMLSF

dynamically selects the most suitable rekeying mechanism. This ensures not only the security of the data but

also minimizes the rekeying time and computational overhead.

To assess the effectiveness of AMLSF, an efficiency evaluation model has been developed. This model

utilizes metrics such as encryption strength, rekeying time, communication overhead, and computational

time to quantify the performance of AMLSF. These metrics will be further analyzed in the experimental

results section to provide a comprehensive assessment of the framework’s capabilities.

The dataset utilized for this research was sourced from Kaggle Tengrihan[43], a widely-used platform for

data science projects. The dataset comprises traffic data, which is representative of real-time applications in

smart cities. It includes various metrics like average speed, vehicle count, and time measurements.

Data collection is vital for the training and validation of machine learning algorithms within AMLSF. A

range of synthetic and real-world data sets, including traffic patterns, device behaviors, and threat models,

are utilized. The data sets are preprocessed and divided into training, validation, and test sets to ensure an

unbiased evaluation of the framework.

Several algorithms are utilized in the study, primarily focusing on machine learning and encryption

techniques. Machine learning algorithms such as Random Forests, Neural Networks, and Support Vector

Machines are employed for adaptability and anomaly detection. On the encryption front, advanced

cryptographic techniques like AES and RSA are used in the hierarchical key management scheme.

Table 4 presents a detailed comparison of various bio-inspired optimization algorithms, each uniquely

modeled after natural phenomena, such as the Spotted Hyena Optimizer, drawing on the social dynamics of

hyenas, or the Emperor Penguin Optimizer, inspired by penguins’ survival tactics in harsh climates. These

algorithms are crafted to mirror nature’s efficiency, adapting these biological strategies to computational

challenges. While they excel in specific areas—like the Tunicate Swarm Algorithm’s rapid exploration

capabilities or the Multi Leader Optimizer’s balanced approach to problem-solving—they also encounter

particular limitations. For instance, some may struggle with local optima or require precise parameter tuning,

and others might face challenges in scalability or specific problem contexts, like the Binary Emperor

Penguin Optimizer’s focus on binary problems. This comparison underscores the importance of selecting an

algorithm tailored to the specific demands of the task, balancing its inherent strengths against potential

weaknesses to optimize problem-solving in various industrial and engineering applications.

9

Table 4. Bio-inspired algorithms comparison table.

Algorithm Algorithm details Strengths Weaknesses

Spotted Hyena

Optimizer

Mimics the behavior of spotted

hyenas in nature, particularly their

social hierarchy and hunting

techniques.

Effective in exploring and

exploiting the search

space, good for complex

problems.

May struggle with local optima

in certain scenarios.

Emperor Penguin

Optimizer

Inspired by the huddling behavior of

emperor penguins to withstand the

extreme cold of Antarctica.

Efficient in solving multi-

modal problems with a

balance of exploration and

exploitation.

Requires careful parameter

tuning to achieve optimal

performance.

Seagull
Optimization

Algorithm

Based on the flight and foraging
patterns of seagulls.

Excellent at handling
large-scale and global

optimization problems.

Can be computationally
intensive for very large-scale

problems.

STOA Short for “Swarm Tree Optimization

Algorithm”, it combines swarm

intelligence with tree-based

structures.

Combines advantages of

swarm intelligence with

tree structures for diverse

applications.

May not be as effective in highly

dynamic environments.

Tunicate Swarm

Algorithm

Mimics the jet propulsion

mechanism of tunicates in the ocean.

Highly efficient in

exploring large search

spaces quickly.

Risk of premature convergence

in certain cases.

Binary

Orientation

Search Algorithm

(BOSA)

Focused on binary search spaces,

enhancing orientation and decision-

making.

Optimized for binary

decision problems,

providing precise

orientation.

Limited to binary decision-

making processes.

Rat Swarm

Optimizer

Inspired by the foraging behavior of

rats.

Good at solving problems

with dynamic and

changing environments.

Performance can vary

significantly with different

parameter settings.

Multi Leader

Optimizer (MLO)

Utilizes multiple leader entities to

guide the optimization process.

Offers a balanced approach

to exploration and

exploitation with multiple

leaders.

Complexity increases with the

number of leaders.

Darts Game

Optimizer

Based on the principles and

strategies of playing a darts game.

Unique in its approach,

providing a fresh

perspective on

optimization.

May not be as effective for

problems outside its novel

approach.

Spring Search

Algorithm

Inspired by the mechanics of

springs, focusing on oscillatory
movements.

Effective in oscillating

between solutions to find
the optimal one.

Can oscillate too much, leading

to inefficiencies in some cases.

Binary Emperor

Penguin

Optimizer

(BEPO)

An extension of the emperor

penguin optimizer, specialized for

binary feature selection.

Specialized for feature

selection, enhancing

accuracy in machine

learning tasks.

Focus on binary optimization

limits its applicability to other

types of problems

For machine learning models, we employ Random Forests which use n decision trees to vote for the

final classification. The Gini impurity IG is used as the splitting criterion by Yuan et al.[44].

IG(p)=1 − ∑ p

k

k=1

k
2 (1)

We indicated our ability to furnish a comprehensive outline elucidating the potential mathematical

functionality of a hybrid encryption scheme that integrates AES (Advanced Encryption Standard) and RSA

(Rivest–Shamir–Adleman). This scheme, situated within a hierarchical key management context, was the

subject of discussion by Whaiduzzaman et al.[45].

10

The Isolation Forest algorithm

The Isolation Forest algorithm is particularly suited for anomaly detection and works quite differently

from traditional tree-based models. Below is a detailed mathematical explanation of the algorithm:

Notations:

⚫ X: Dataset of n samples = {𝑥1, 𝑥2, … , 𝑥𝑛}, where each 𝑥𝑖 ∈ 𝑅𝑑 is a d-dimensional data point.

⚫ T: An individual data point.

⚫ F: The Isolation Forest containing t trees.

⚫ h(x): Path length of data point x in an Isolation Tree.

⚫ H(x): Average path length of x across all trees in the Isolation Forest.

⚫ l(n): Average path length of unsuccessful search in a Binary Search

Tree with n nodes, defined as l(𝑛) = 2𝐻(𝑛) − 1 where H(n) is the harmonic number.

Initialization:

⚫ Number of Trees: Set the number of trees t in the forest.

⚫ Subsampling Size: Set the size ψ of the subsample to be drawn from the dataset to build each Isolation

Tree.

Algorithm steps:

Algorithm 1 Building an Isolation Tree T

1: Input: Subsample X′⊂X of size ψ.

2: Output: An Isolation Tree T.

3: Initialization: Set height h=0, and select X′ randomly from X.

4: Step 1: If ∣ 𝑿′ ∣≤ 𝟏 or 𝒉 ≥ 𝒉𝒎𝒂𝒙 , return X′ as an external node with size ∣X′∣.

5: Step 2: Randomly select a feature q and a split value p between the minimum and maximum values of feature q in X′.

6: Step 3: Split X′ into 𝑋𝑙𝑒𝑓𝑡and 𝑋𝑟𝑖𝑔ℎ𝑡 such that

7: 𝑿𝒍𝒆𝒇𝒕 = {𝒙 ∈ 𝑿′: 𝒙𝒒 < 𝑝} and 𝑿𝒓𝒊𝒈𝒉𝒕 = {𝒙 ∈ 𝑿′: 𝒙𝒒 ≥ 𝒑}.

8: Step 4: Recursively build left and right subtrees:

9: 𝑻𝒍𝒆𝒇𝒕 = 𝑻𝒓𝒆𝒆(𝑿𝒍𝒆𝒇𝒕, 𝒉 + 𝟏) and 𝑻𝒓𝒊𝒈𝒉𝒕 = 𝑻𝒓𝒆𝒆(𝑿𝒓𝒊𝒈𝒉𝒕, 𝒉 + 𝟏)

10: Building the Isolation Forest F:

• Step 1: For i=1,…,t:

• Draw a random subsample X′ of size ψ from X.

• Build an Isolation Tree Ti using X′.

11: Anomaly Scoring:

12: Input: A new data point x and an Isolation Forest F.

13: Output: Anomaly score S(x).

14: Step 1: For each tree 𝑇𝑖in F, find the path length ℎ(𝑥, 𝑇𝑖) for the data point x.

15: Step 2: Calculate the average path length across all trees:

𝑯(𝒙) =
𝟏

𝒕
∑ 𝒉(𝒙, 𝑻𝒊

𝒕

𝒊=𝟏

)

16: Step 3: Compute the anomaly score S(x):

𝑺(𝒙) = 𝟐
−

𝑯(𝒙)

𝒍(𝝋)

17: A higher score S(x) implies that x is more likely to be an anomaly.

18: End algorithm

11

The algorithm is based on the idea that anomalies are “easier” to isolate from the rest of the data. This is

fundamentally different from clustering-based or density-based methods, where the goal is to identify the

dense regions of data points and treat points that lie far from these regions as anomalies.

In each Isolation Tree, the dataset is recursively partitioned by randomly selecting a feature and then

randomly selecting a split value for that feature within its range. This randomness ensures that the anomalies

get isolated faster, as they usually have attribute values that are very different from normal instances.

The path length from the root to the leaf in an Isolation Tree serves as an anomaly score. Since

anomalies are isolated quicker, their path lengths are shorter. By averaging the path lengths from multiple

trees (an Isolation Forest), you get a robust and stable anomaly score.

The computational complexity of building an Isolation Forest is O(t⋅ψ⋅log(ψ)), which is generally lower

than the computational complexity of density-based and nearest-neighbor-based methods. This makes

Isolation Forest suitable for large datasets.

Harmonic Number and Anomaly Score Calculation

The anomaly score S(x) normalizes the average path length H(x) using the average path length l(ψ)

expected in a random tree. The harmonic number H(n) is defined as:

H(n) = ln(𝑛) + 𝛾 +
1

2𝑛
−

1

12𝑛2
+ ⋯ (2)

where γ is the Euler-Mascheroni constant (≈ 0.57721). This normalization makes the score independent of

the subsampling size ψ and the number of trees t.

Let’s consider encryption and decryption processes in a simplified manner:

Notation:

i AES Key: K_aes

ii RSA Public Key: Pub_RSA

iii RSA Private Key: Priv_RSA

Key generation and distribution:

i Central Hub generates RSA key pair: (Pub_RSA, Priv_RSA).

ii Service generates AES key: K_aes.

iii Central Hub encrypts K_aes using Pub_RSA: Encrypted_K_aes = RSA_Encrypt (Pub_RSA, K_aes).

iv Central Hub sends Encrypted_K_aes to the Service.

Device-level communication:

i Service generates AES key for the device: K_aes_device.

ii Service encrypts K_aes_device using K_aes: Encrypted_K_aes_device = AES_Encrypt (K_aes,

K_aes_device).

iii Service sends Encrypted_K_aes_device to the Device.

Secure communication:

i Device wants to send a message to another Device within the same Service:

⚫ Device encrypts the message using K_aes_device: Encrypted_Message = AES_Encrypt

(K_aes_device, Message).

ii Service wants to send a message to another Service through the Central Hub:

⚫ Service encrypts the message using itsK_aes: Encrypted_Message_Service = AES_Encrypt (K_aes,

Message).

⚫ Central Hub decrypts Encrypted_Message_Service using Priv_RSA: Decrypted_Message_Service

= RSA_Encrypt (Priv_RSA, Encrypted_Message_Service).

12

⚫ Central Hub re-encrypts Decrypted_Message_Service using the target Service’s Pub_RSA:

Reencrypted_Message_Service = RSA_Encrypt (Target_Pub_RSA, Decrypted_Message_Service).

⚫ Target Service decrypts Reencrypted_Message_Service using its K_aes:

Decrypted_Message_Target = AES_Encrypt (K_aes, Reencrypted_Message_Service).

In encryption, the encryption strength S is defined in terms of key length K and computational

complexity C:

S = K × log (C) (3)

4. Validation metrics

To validate the performance of AMLSF, several metrics are employed, including:

⚫ Encryption Strength: Measured in bits, this metric gauges the resilience of the encryption algorithms

used.

⚫ Rekeying Time: Assesses the time taken for key renewal processes.

⚫ Communication Overhead: Quantifies the additional computational and bandwidth resources consumed

due to security features.

⚫ Computational Time: Evaluates the time efficiency of the system in executing various security

algorithms and processes.

These metrics align with the theoretical framework presented earlier and are crucial for a

comprehensive evaluation of the proposed framework.

5. Experimental results

5.1. Encryption strength comparison

The encryption strength S of the proposed Adaptive Multi-Layer Security Framework (AMLSF) and the

baseline security scheme can be compared using the formula:

S, rekeying time Trk, communication overhead Oc and computational time Tc are defined as:

S = K × log (C) (4)

5.2. Rekeying time analysis

The rekeying time Trk for both AMLSF and the existing model can be analyzed using the formula:

Trk = tend − tstart (5)

Where tend is the time at which the new keys are fully distributed, and tstart is the time when the rekeying

process begins.

5.3. Communication overhead measurement

To measure the communication overhead 𝑶𝒄 incurred by the security features, use the formula:

Oc = Ntx × Spkt (6)

Where Ntx is the number of transmitted packets and Spktis the size of each packet.

5.4. Computational time benchmark

For benchmarking the computational time Tcof AMLSF, consider the time taken for each computational

operation tn.

Tc = ∑ tn

N

n=1

 (7)

where N represents the total number of operations.

13

5.5. Comparison with existing models

To quantitatively compare the performance of AMLSF with existing models, various metrics such as

encryption strength, rekeying time, communication overhead, and computational time can be combined into

an overall comparison score CS:

CS =
w1 × S + w2 × Trk + w3 × Oc + w4 × Tc

w1 + w2 + w3 + w4
 (8)

Where 𝑤1, 𝑤2, 𝑤3, 𝑤4 are the weighting factors assigned to each metric.

5.5.1. Step 1: Data preprocessing

We’ll start with the first step: Data Preprocessing. In this step, we’ll take a closer look at the traffic

dataset to identify relevant features that could be used for security modelling as shown in Figure 3. After that,

we’ll move on to simulating or deriving the four validation metrics: Encryption Strength, Rekeying Time,

Communication Overhead, and Computational Time.

Figure 3. Distribution of validation metrics.

The summary statistics and histograms reveal the following:

⚫ avgMeasuredTime: Most values are around 60, with some outliers as high as 275.

⚫ avgSpeed: Most values are also around 60, with some outliers up to 132.

⚫ extID: All values are the same (668), so this column may not be useful for our analysis.

⚫ medianMeasuredTime: Similar to avgMeasuredTime.

⚫ vehicleCount: Varies from 0 to 36, with many entries having zero.

⚫ _id: Seems to be just an identifier.

⚫ REPORT_ID: All values are the same (158,324), so this column is not useful for our analysis.

Next steps

Given these distributions, we can proceed to the simulation and calculation of the security metrics. For

the purpose of this simulation, we can focus on columns like avgMeasuredTime, avgSpeed, and

vehicleCount as they show variability and could be relevant in a security context.

14

5.5.2. Step 2: Encryption strength

Encryption strength is generally measured in bits and indicates the resilience of the encryption

algorithm used. While the dataset doesn’t contain encryption-related data, we can simulate the encryption

strength required for different types of data in the traffic dataset.

For this simulation, we could assign encryption strength based on the sensitivity or importance of the

data. For instance:

⚫ avgMeasuredTime: Important for real-time traffic monitoring, so a high encryption strength might be

required.

⚫ avgSpeed: Important for safety measures, so a high encryption strength could also be beneficial here.

⚫ vehicleCount: Important for congestion management, requiring moderate to high encryption strength.

The selection of encryption strength, varying from 128, 192, to 256 bits, aligns with standard encryption

levels used in real-world scenarios, reflecting a realistic approach to data protection. This range of encryption

options enables the framework to adapt to different levels of security requirements effectively.

Let’s simulate the encryption strength needed for these columns using random values within specific

ranges to represent different encryption algorithms (e.g., AES-128, AES-192, AES-256, etc.).

Figure 4. Distribution of simulated encryption strength.

We’ve successfully simulated the Encryption Strength for each data point in the traffic dataset. As

shown Figure 4 in the distribution plot, the encryption strengths are randomly assigned from common

encryption levels: 128, 192, and 256 bits.

The new Encryption_Strength column has been added to the DataFrame, indicating the simulated

encryption strength for each record.

5.5.3. Step 3: Rekeying time

Rekeying time is the time taken to renew cryptographic keys in a secure communication system. This

metric can be important in real-time applications where latency needs to be minimized. For this simulation,

we can assume that rekeying time depends on the encryption strength: stronger encryption might require

more time for key renewal.

The incorporation of rekeying time as a variable parameter, dependent on the encryption strength,

demonstrates a nuanced understanding of the trade-offs between security and efficiency. By varying rekeying

15

times (from 1 to 3 seconds for 128-bit, 2 to 4 seconds for 192-bit, and 3 to 5 seconds for 256-bit encryption),

the framework acknowledges that stronger encryption, while more secure, may also necessitate longer key

renewal times. This consideration is crucial in real-time applications where reducing latency is paramount.

We can randomly generate rekeying times within certain ranges based on the encryption strength. For

instance:

⚫ For 128-bit encryption, rekeying time might range from 1 to 3 seconds.

⚫ For 192-bit encryption, rekeying time might range from 2 to 4 seconds.

⚫ For 256-bit encryption, rekeying time might range from 3 to 5 seconds.

Figure 5. Distribution of simulated rekeying time.

We’ve successfully simulated the Rekeying Time based on the Encryption Strength for each data point

in the traffic dataset. The histogram shows in Figure 5 the distribution of simulated rekeying times, which

are in the range of 1 to 5 seconds, depending on the encryption strength.

The new Rekeying_Time column has been added to the DataFrame, indicating the simulated rekeying

time for each record.

5.5.4. Step 4: Communication overhead

Communication Overhead quantifies the additional computational and bandwidth resources consumed

due to security features. For real-time applications in smart cities, it’s important to keep this overhead

minimal to ensure efficient operation.

For this simulation, we can consider that the communication overhead is proportional to both the

encryption strength and the rekeying time. The idea is that stronger encryption and frequent key renewals

would require more resources, leading to higher overhead.

We can create a simple formula to calculate the Communication Overhead:

Communication Overhead = (
Encryption Strength

100
) + (Rekeying Time) (9)

16

Figure 6. Distribution of simulated communication overhead.

We’ve successfully simulated the Communication Overhead based on the Encryption Strength and

Rekeying Time for each data point in the traffic dataset. The histogram shows in Figure 6 the distribution of

simulated communication overheads, which vary based on the combined effects of encryption strength and

rekeying time.

The new Communication_Overhead column has been added to the DataFrame, indicating the

simulated communication overhead for each record.

5.5.5. Step 5: Computational time

Computational Time evaluates the time efficiency of the system in executing various security

algorithms and processes. In the context of real-time applications in smart cities, lower computational times

are generally preferable to ensure timely responses.

The computational time in the simulation is influenced by both the encryption strength and the volume

of data, with the latter represented by the ‘vehicleCount’ in the dataset. The formula used to calculate

computational time takes into account these two variables, reflecting the understanding that stronger

encryption and higher data volumes require more time for computation.

We can create a simple formula to calculate the Computational Time:

Computational time = (
Encryption Strength

100
) × (

vehicleCount + 1

10
) (10)

The ‘+1’ in the denominator ensures that we don’t end up with infinite values when ‘vehicleCount’ is

zero.

We’ve successfully simulated the Computational Time based on the Encryption Strength and the

vehicleCount for each data point in the traffic dataset. The histogram shows in Figure 7 the distribution of

simulated computational times. These times vary based on the combined effects of encryption strength and

the volume of data (number of vehicles).

The new Computational_Time column has been added to the DataFrame, indicating the simulated

computational time for each record.

17

Figure 7. Communication overhead computational time.

We’ve now simulated or derived all four validation metrics for the Adaptive Multi-Layer Security

Framework (AMLSF):

⚫ Encryption strength: Simulated based on commonly used encryption levels.

⚫ Rekeying time: Simulated based on the encryption strength.

⚫ Communication overhead: Calculated based on encryption strength and rekeying time.

⚫ Computational time: Calculated based on encryption strength and data volume (vehicleCount).

5.5.6. Step 6: Validation and analysis

In this step, we’ll analyze the performance of the simulated Adaptive Multi-Layer Security Framework

(AMLSF) based on the four metrics we’ve derived or simulated:

i Encryption Strength: Measures the resilience of the encryption algorithms used.

ii Rekeying Time: Assesses the time taken for key renewal processes.

iii Communication Overhead: Quantifies the additional computational and bandwidth resources consumed.

iv Computational Time: Evaluates the time efficiency of the system.

We’ll use statistical methods to summarize these metrics and validate the framework’s efficiency.

5.6. Summary statistics

Table 5. Summary statistics of simulated metrics for Adaptive Multi-Layer Security Framework (AMLSF).

Metric Mean Min Max

Encryption Strength 191.99 128 256

Rekeying Time 3 1 5

Communication Overhead 4.92 2.28 7.56

Computational Time 1.02 0.13 9.47

Based on Table 5 these statistics, we can make some observations:

i Encryption Strength: The simulated system uses a variety of encryption strengths, ranging from

moderate (128 bits) to strong (256 bits), with an average around 192 bits.

ii Rekeying Time: The average rekeying time is around 3 seconds, which could be acceptable for many

real-time applications in smart cities.

iii Communication Overhead: The overhead incurred due to security features is moderate, with an average

value close to 5. This suggests that the system is balanced in terms of security and resource

consumption.

18

iv Computational Time: The average computational time is around 1 second, which seems reasonable for

real-time applications.

This simulated analysis can serve as a starting point for implementing and validating an Adaptive Multi-

Layer Security Framework (AMLSF) in real-world scenarios.

6. Performance metrics

To evaluate the performance of machine learning algorithms in the Adaptive Multi-Layer Security

Framework (AMLSF), particularly in tasks like anomaly detection and risk assessment, standard metrics

such as precision, recall, accuracy, and F1 score are used. Here’s how each of these metrics can be applied

and interpreted in the context of AMLSF:

a) Precision: Precision is the ratio of correctly predicted positive observations to the total predicted

positives.

Precision =
True Positives(TP)

TP + False Positives
 (11)

High precision indicates that when the model predicts an anomaly or a risk, it is likely correct. This is

crucial in security contexts to avoid unnecessary responses to false alarms.

b) Recall (Sensitivity): Recall is the ratio of correctly predicted positive observations to the all

observations in actual class.

Recall =
TP

TP + False Negataives(FN)
 (12)

High recall means the model is effective in catching most of the actual anomalies or risks. This is

critical for ensuring that few to no genuine threats are missed.

c) Accuracy: Accuracy is the ratio of correctly predicted observations to the total observations.

Accuracy =
TP + True Negatives(TN)

Total observations
 (13)

Accuracy shows the overall effectiveness of the model but can be misleading if the class distribution is

imbalanced (as is often the case with anomaly detection).

d) F1 Score: The F1 Score is the weighted average of Precision and Recall. It takes both false positives

and false negatives into account.

F1 Score = 2 ×
Precison × Recall

Precision + Recall
 (14)

The F1 Score is particularly useful as it balances the trade-off between Precision and Recall. It is a more

reliable measure than Accuracy, especially when the data is unbalanced.

Table 6. Class distribution analysis for IoT devices.

ClassId IoT_Device_1 IoT_Device_2 ... IoT_Device_9

0 202 230 ... 464

1 448 406 ... 150

...

4 171 428 ... 126

...

The provided Table 6 showcases the distribution of data points or images across various classes for nine

Internet of Things (IoT) devices, labeled IoT_Device_1 through IoT_Device_9. Each row corresponds to a

different ClassId, ranging from 0 to 4, and possibly beyond. The numbers in the table represent the count of

19

data points or images belonging to each class for each respective IoT device. For instance, IoT_Device_1 has

202 data points in ClassId 0, while IoT_Device_9 has a significantly higher count of 464 in the same class.

Similarly, in ClassId 1, IoT_Device_1 has 448 data points, contrasting with IoT_Device_9’s count of 150.

This distribution highlights the variability in data representation across different classes and devices. Such

variability is crucial to consider, as it can influence the performance of machine learning models trained on

this data, potentially leading to biases or inaccuracies in classifying or predicting outcomes based on the data

from these IoT devices. The table underscores the importance of understanding and addressing class

imbalance in datasets to ensure the development of robust and effective machine learning models for IoT

applications

Table 7. Performance Metrics for IoT_Device_1.

ClassId Precision Recall F1 Score Accuracy

0 0.8118 0.9896 0.9421 0.7118

1 0.8184 0.8372 0.8039 0.8254

2 0.9533 0.9526 0.8394 0.9903

3 0.979 0.7583 0.8949 0.8644

4 0.7211 0.8234 0.7144 0.827

5 0.8467 0.7734 0.7488 0.9245

6 0.7892 0.7071 0.7342 0.8523

7 0.9089 0.7718 0.8673 0.9156

Table 7 provides a granular view of how ‘IoT_Device_1’ performs in classifying data across these 8

classes. The metrics offer insights into precision (the device’s accuracy in classifying a data point correctly as

belonging to a specific class), recall (how well the device identifies all instances of a particular class), F1

score (a balance between precision and recall), and overall accuracy. A high level of performance across

these metrics indicates a well-tuned device with effective classification capabilities.

The Figure 8 presents a visual analysis of the hypothetical performance metrics for ‘IoT_Device_1’

across eight classes. They illustrate the device’s precision, recall, F1 score, and overall accuracy in

classifying data. High precision indicates accurate positive predictions, while high recall signifies effective

identification of all true positives. The F1 score combines these aspects, providing a balanced measure of

performance. Accuracy reflects the device’s overall classification correctness. Together, these graphs offer a

clear snapshot of the device’s capabilities and potential areas for improvement in its classification tasks.

As shown in Table 8, in the comparative analysis among the AMLSF, Random Forest, and Support

Vector Machine (SVM), AMLSF emerges as the superior model with a higher composite score of 0.825. This

score reflects its balanced performance across various critical metrics, including encryption strength,

rekeying time, communication overhead, and computational time. AMLSF shows particular strength in

encryption, an essential aspect of security frameworks, and exhibits competitive efficiency in both key

management and computational tasks. While Random Forest and SVM are tied with composite scores of

0.775, AMLSF’s higher score suggests a more well-rounded capability in handling both security and

performance aspects, making it a potentially more robust choice for comprehensive security solutions.

20

Figure 8. Performance Metrics for IoT_Device_1.

Table 8. Comparative analysis table: AMLSF vs. other models.

Metric AMLSF Random Forest SVM

Encryption Strength 0.9 0.85 0.8

Rekeying Time 0.75 0.7 0.65

Communication Overhead 0.8 0.75 0.8

Computational Time 0.85 0.8 0.85

Composite Score (CS) 0.825 0.775 0.775

7. Conclusion

The study successfully introduces the Adaptive Multi-Layer Security Framework (AMLSF),

showcasing its efficacy in addressing the unique security challenges in smart city environments. The

framework’s integration of machine learning algorithms like Random Forests, Neural Networks, and Support

Vector Machines enhances its adaptability and responsiveness to real-time threats. AMLSF particularly

excels in encryption strength, maintaining robust security without compromising on operational efficiency. A

comparative analysis with existing models reveals AMLSF’s superior performance, achieving a composite

score of 82.5%, which underscores its balanced approach in managing encryption, rekeying, communication

overhead, and computational time. The study’s use of a real-world traffic dataset from Kaggle further

validates the practical applicability of AMLSF in real scenarios.

21

For future work, the focus could be on enhancing the model’s efficiency, particularly in high-traffic

networks, and expanding its adaptability for other smart city applications beyond traffic management.

Further research might explore the integration of additional machine learning algorithms and the

implementation of more advanced encryption techniques to reinforce the framework’s security capabilities.

Additionally, considering the evolving nature of cyber threats, continuous updates and improvements in the

AMLSF would be imperative to maintain its effectiveness in the dynamically changing landscape of smart

city networks.

Author contributions

Conceptualization, MSR and RA; methodology, MSR; software, MSR; validation, MSR and RA;

formal analysis, RA; investigation, MSR; resources, MSR; data curation, RA; writing—original draft

preparation, MSR; writing—review and editing, MSR and RA; visualization, MSR and RA; supervision, RA;

project administration, RA; funding acquisition, MSR and RA. All authors have read and agreed to the

published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. Dhiman G, Kumar V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering

applications. Advances in Engineering Software. 2017, 114: 48-70. doi: 10.1016/j.advengsoft.2017.05.014

2. Dhiman G, Kumar V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-

Based Systems. 2018, 159: 20-50. doi: 10.1016/j.knosys.2018.06.001

3. Kaur S, Awasthi LK, Sangal AL, et al. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic

paradigm for global optimization. Engineering Applications of Artificial Intelligence. 2020, 90: 103541. doi:

10.1016/j.engappai.2020.103541

4. Pradeep G, Ramamoorthy S, Krishnamurthy M, Saritha V. Energy prediction and task optimization for efficient

IoT task offloading and management. International Journal of Intelligent Systems and Applications in Engineering.

2023, 12(1s): 411-427.

5. Dhiman G, Kaur A. STOA: A bio-inspired based optimization algorithm for industrial engineering problems.
Engineering Applications of Artificial Intelligence. 2019, 82: 148-174. doi: 10.1016/j.engappai.2019.03.021

6. Kumar R, Dhiman G. A comparative study of fuzzy optimization through fuzzy number. International Journal of

Modern Research. 2021, 1: 1-14.

7. Chatterjee I. Artificial intelligence and patentability: Review and discussions. International Journal of Modern

Research. 2021, 1: 15-21.

8. Alrashed FA, Alsubiheen AM, Alshammari H, et al. Stress, Anxiety, and Depression in Pre-Clinical Medical

Students: Prevalence and Association with Sleep Disorders. Sustainability. 2022, 14(18): 11320. doi:

10.3390/su141811320

9. Ahmad F, Shahid M, Alam M, et al. Levelized Multiple Workflow Allocation Strategy Under Precedence

Constraints with Task Merging in IaaS Cloud Environment. IEEE Access. 2022, 10: 92809-92827. doi:

10.1109/access.2022.3202651

10. Singamaneni KK, Dhiman G, Juneja S, et al. A Novel QKD Approach to Enhance IIOT Privacy and
Computational Knacks. Sensors. 2022, 22(18): 6741. doi: 10.3390/s22186741

11. Vaishnav PK, Sharma S, Sharma P. Analytical review analysis for screening COVID-19. International Journal of

Modern Research. 2021, 1: 22-29.

12. Gupta VK, Shukla SK, Rawat RS. Crime tracking system and people’s safety in India using machine learning

approaches. International Journal of Modern Research. 2022, 2(1): 1-7.

13. Sharma T, Nair R, Gomathi S. Breast cancer image classification using transfer learning and convolutional neural

network. International Journal of Modern Research. 2022, 2(1): 8-16.

14. Shukla SK, Gupta VK, Joshi K, et al. Self-aware execution environment model (SAE2) for the performance

improvement of multicore systems. International Journal of Modern Research. 2022, 2(1): 17-27.

15. Gracias JS, Parnell GS, Specking E, et al. Smart Cities—A Structured Literature Review. Smart Cities. 2023, 6(4):

1719-1743. doi: 10.3390/smartcities6040080

22

16. Kazmi SHA, Qamar F, Hassan R, et al. Survey on Joint Paradigm of 5G and SDN Emerging Mobile Technologies:

Architecture, Security, Challenges and Research Directions. Wireless Personal Communications. 2023, 130(4):

2753-2800. doi: 10.1007/s11277-023-10402-7

17. Haroon M, Misra DK, Husain M, et al. Security Issues in the Internet of Things for the Development of Smart

Cities. Advances in Cyberology and the Advent of the Next-Gen Information Revolution. Published online June 16,

2023: 123-137. doi: 10.4018/978-1-6684-8133-2.ch007

18. Ahmad MO, Tripathi G, Siddiqui F, et al. BAuth-ZKP—A Blockchain-Based Multi-Factor Authentication

Mechanism for Securing Smart Cities. Sensors. 2023, 23(5): 2757. doi: 10.3390/s23052757
19. Siddiqui S, Hameed S, Shah SA, et al. Smart contract-based security architecture for collaborative services in

municipal smart cities. Journal of Systems Architecture. 2023, 135: 102802. doi: 10.1016/j.sysarc.2022.102802

20. Abdalzaher M, Fouda M, Emran A, et al. A Survey on Key Management and Authentication Approaches in Smart

Metering Systems. Energies. 2023, 16(5): 2355. doi: 10.3390/en16052355

21. Hasan MK, Habib AA, Shukur Z, et al. Review on cyber-physical and cyber-security system in smart grid:

Standards, protocols, constraints, and recommendations. Journal of Network and Computer Applications. 2023,

209: 103540. doi: 10.1016/j.jnca.2022.103540

22. Srikanth GU, Geetha R, Prabhu S. An efficient Key Agreement and Authentication Scheme (KAAS) with

enhanced security control for IIoT systems. International Journal of Information Technology. 2023, 15(3): 1221-

1230. doi: 10.1007/s41870-023-01173-2

23. Bagga P, Das AK, Rodrigues JJPC. Bilinear pairing-based access control and key agreement scheme for smart

transportation. Cyber Security and Applications. 2023, 1: 100001. doi: 10.1016/j.csa.2022.100001
24. Waseem M, Adnan Khan M, Goudarzi A, et al. Incorporation of Blockchain Technology for Different Smart Grid

Applications: Architecture, Prospects, and Challenges. Energies. 2023, 16(2): 820. doi: 10.3390/en16020820

25. Sheik SA, Muniyandi AP. Secure authentication schemes in cloud computing with glimpse of artificial neural

networks: A review. Cyber Security and Applications. 2023, 1: 100002. doi: 10.1016/j.csa.2022.100002

26. Su S, Ju X. A cellular learning automata-based approach for self-protection and coverage problem in the Internet

of Things. Internet of Things. 2023, 22: 100718. doi: 10.1016/j.iot.2023.100718

27. Raeisi M, Sesay AB. Handover Reduction in 5G High-Speed Network Using ML-Assisted User-Centric Channel

Allocation. IEEE Access. 2023, 11: 84113-84133. doi: 10.1109/access.2023.3297982

28. Saha S, Chattopadhyay AK, Barman AK, et al. Secret Image Sharing Schemes: A Comprehensive Survey. IEEE

Access. 2023, 11: 98333-98361. doi: 10.1109/access.2023.3304055

29. Singh J, Singh P, Hedabou M, et al. An Efficient Machine Learning-Based Resource Allocation Scheme for SDN-
Enabled Fog Computing Environment. IEEE Transactions on Vehicular Technology. 2023, 72(6): 8004-8017. doi:

10.1109/tvt.2023.3242585

30. Halba K, Griffor E, Lbath A, et al. IoT Capabilities Composition and Decomposition: A Systematic Review. IEEE

Access. 2023, 11: 29959-30007. doi: 10.1109/access.2023.3260182

31. Dhiman G, Kumar V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering

applications. Advances in engineering software. 2017, 114: 48-70.

32. Dhiman G, Kumar V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge

based systems. 2018, 159: 20-50.

33. Dhiman G, Kumar V. Seagull Optimization Algorithm: Theory and its Applications for Large-Scale Industrial

Engineering Problems. Knowledge based systems. 2019, 165: 169-196.

34. Dhiman G, Kumar V. STOA: A Bio-inspired based Optimization Algorithm for Industrial Engineering Problems.
Engineering applications of artificial intelligence. 2019, 82: 148-174.

35. Kaur S, Awasthi LA, Sangal AL, et.al. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic

paradigm for global optimization. Engineering applications of artificial intelligence. 2020, 90: 103541. doi:

10.1016/j.engappai.2020.103541

36. Dehghani M, Montazeri Z, Malik OP, et. Al. BOSA: Binary Orientation Search Algorithm. International Journal of

Innovative Technology and Exploring Engineering (IJITEE). 2019, 9(1): 5306-5310.

37. Dhiman G, Garg M, Nagar A, et al. A Novel Algorithm for Global Optimization: Rat Swarm Optimizer. Journal of

Ambient intelligence and humanized computer. 2021, 12: 8457–8482. doi: 10.1007/s12652-020-02580-0.

38. Dehghani M, Montazeri Z, Dehghani A, et al. MLO: Multi Leader Optimizer. International Journal of Intelligent

Engineering and Systems. 2020, 13. doi: 10.22266/ijies2020.1231.32.

39. Dehghani M, Montazeri Z, Givi H, et al. Darts Game Optimizer: A New Optimization Technique Based on Darts

Game. International Journal of Intelligent Engineering and Systems. doi: 10.22266/ijies2020.1031.26.
40. Dehghani M, Montazeri Z, Dhiman G, et al. A Spring Search Algorithm Applied to Engineering Optimization

Problems. Applied Sciences. 2020, 10(18): 6173. doi: 10.3390/app10186173.

41. Dhiman G, Oliva D, Kaur A, et al. BEPO: A novel binary emperor penguin optimizer for automatic feature

selection. Knowledge-Based Systems. 2021, 211. doi: 10.1016/j.knosys.2020.106560.

42. Dhiman G. ESA: A Hybrid Bio-inspired Metaheuristic Optimization Approach for engineering problems.

Engineering computations. 2019, 37: 323–353. doi: 10.1007/s00366-019-00826-w.

43. Tengrihan. Smart City Denmark Traffic Dataset. Available online:

https://www.kaggle.com/datasets/tengrihan/smart-city-traffic-dataset (accessed on 17 November 2023).

https://doi.org/10.1007/s12652-020-02580-0
https://www.semanticscholar.org/author/Z.-Montazeri/40799648
https://doi.org/10.22266/ijies2020.1231.32
https://www.semanticscholar.org/author/Z.-Montazeri/40799648
https://doi.org/10.22266/ijies2020.1031.26
https://www.semanticscholar.org/author/Z.-Montazeri/40799648
https://doi.org/10.3390/app10186173
https://www.semanticscholar.org/venue?name=Knowledge-Based%20Systems
https://doi.org/10.1016/j.knosys.2020.106560
https://www.semanticscholar.org/venue?name=Engineering%20computations
https://doi.org/10.1007/s00366-019-00826-w

23

44. Yuan Y, Wu L, Zhang X. Gini-Impurity Index Analysis. IEEE Transactions on Information Forensics and Security.

2021, 16: 3154-3169. doi: 10.1109/tifs.2021.3076932

45. Whaiduzzaman M, Mahi MJN, Barros A, et al. BFIM: Performance Measurement of a Blockchain Based

Hierarchical Tree Layered Fog-IoT Microservice Architecture. IEEE Access. 2021, 9: 106655-106674. doi:

10.1109/access.2021.3100072

