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ABSTRACT 

The Enhanced Adaptive Security Algorithm (EASA) is crafted to bolster the robustness of smart city network 

security, specifically targeting the dynamic and complex nature of these networks. Its primary objective revolves around 

enhancing the adaptability of network security, focusing particularly on traffic management applications within smart 

cities. EASA emerges from the foundation of the Adaptive Multi-Layer Security Framework (AMLSF), integrating 

advanced deep learning techniques and leveraging optimized encryption for a more adaptive and efficient solution. In 

addressing the limitations of traditional security solutions, EASA exhibits superior performance in real-time 

responsiveness and efficient encryption compared to existing models, such as AMLSF. A comprehensive evaluation of 

EASA’s performance metrics reveals an adaptability rate of approximately 90%, underscoring its efficacy in adapting to 

varying network conditions and threats. The integration of machine learning algorithms in AMLSF, a pivotal aspect of 

EASA, facilitates dynamic security adaptation, crucial for real-time responsiveness and robust encryption in smart city 

networks. EASA’s advanced use of deep learning techniques and efficient data processing capabilities effectively 

complement and enhance the overall network security, addressing scalability issues and adding layers of security, 

especially in IoT environments within smart cities. Performance metrics such as threat detection accuracy (TDA), 

encryption efficiency (EE), key generation efficiency (KGE), adaptive response time (ART), system overhead score 

(SOS), and overall security efficiency (OSE) are employed to evaluate EASA. These metrics collectively reflect the 

algorithm’s ability to detect true threats, efficiently encrypt data, generate keys swiftly, respond adaptively to changes, 

manage system resources effectively, and provide an overall efficient security solution. EASA demonstrates impressive 

performance metrics, with an accuracy of 92%, precision of 91%, recall of 90%, and an F1 score of 90.5%, indicating 

its superior capability in smart city network security compared to AMLSF and CNN. This robust performance, coupled 

with its adaptability and efficiency, positions EASA as a promising solution for next-generation smart city security 

frameworks, advocating for user privacy and ethical data handling while encouraging collaborative efforts for 

continuous refinement. 

Keywords: enhanced security; deep learning; smart city optimization; adaptive encryption; performance metrics 

1. Introduction 

In the realm of urban development, the concept of a smart city 

network emerges as a multifaceted paradigm, fundamentally 

reshaping the landscape of urban infrastructure through the 

integration of information and communication technologies (ICT). 

At its core, this network is a sophisticated assemblage of 

interconnected technologies, deployed to enhance the efficiency and 

efficacy of urban services such as transportation, energy distribution, 

public safety, and environmental monitoring. The foundational 

elements of such networks include a vast array of Internet of Things 
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(IoT) devices, sprawling data management and analytics systems, comprehensive communication 

infrastructures, and platforms for active citizen engagement. The integration of these elements fosters a 

dynamic environment, poised to revolutionize urban living through data-driven decision-making and 

optimized resource management. 

However, the transition to smart city networks is not without its challenges, particularly in the domain 

of security. The inherent complexity and interconnectivity of these networks introduce a labyrinth of 

potential vulnerabilities. The deployment of IoT devices, often on a large scale and in publicly accessible 

spaces, raises concerns about their susceptibility to both cyberattacks and physical tampering. Moreover, the 

privacy of citizens becomes a paramount concern, given the sensitive nature of the vast quantities of data 

collected and processed within these networks. Furthermore, the reliance on technology for critical 

infrastructure services amplifies the impact of potential cyber threats or system failures, underscoring the 

need for robust and continually evolving security measures. The integration of systems from diverse vendors 

further complicates the security landscape, necessitating a harmonized approach to safeguard against an 

ever-changing array of cyber threats. In essence, the pursuit of building smart city networks demands an 

equally smart approach to security, one that is adaptive, comprehensive, and proactive in nature. 

The advent of smart city networks has ushered in an era of unprecedented connectivity and data-driven 

decision-making, profoundly impacting various sectors including transportation, industry, and urban 

planning. This transformation is underpinned by sophisticated network systems that integrate technologies 

like the Internet of Things (IoT), artificial intelligence (AI), and advanced communication frameworks. 

However, as these networks become increasingly complex and integral to urban infrastructure, they also 

become more susceptible to security threats and operational challenges. Addressing these concerns 

necessitates innovative approaches in network security and optimization. 

One of the primary challenges in this realm is the security of in-vehicle networks, which are critical 

components of intelligent transportation systems. Zhang et al.[1] emphasized the need for many-objective 

optimization in intrusion detection to bolster in-vehicle network security. Similarly, the integration of real-

time virtual machine scheduling in industry IoT networks, as explored by Ma et al.[2], highlights the 

complexity of managing secure and efficient data flow in IoT environments. These challenges are 

compounded when considering remotely piloted aircraft systems (RPAS), where secure, multi-dimensional 

optimization models become crucial for reliable operation, as demonstrated by Mahmoodi et al.[3]. 

In the domain of smart urban transportation, the optimization of traffic signal timing, as investigated by 

Jiang et al.[4], presents both an opportunity and a challenge for enhancing network performance in smart 

cities. The security of communications, particularly in unmanned aerial vehicle (UAV) traffic management, 

has been a focal point of research, with Aissaoui et al.[5] delving into cryptographic methods tailored for this 

purpose. 

The core problem lies in achieving a balance between robust security measures and optimized network 

performance. Traditional security solutions often fail to adapt to the dynamic and diverse nature of smart city 

networks. This necessitates the development of adaptive and scalable security algorithms that not only 

protect against a wide array of cyber threats but also ensure minimal impact on network performance. 

The motivation for this research stems from the growing dependence on smart city networks and the 

imperative need to safeguard them against evolving cyber threats. Innovations in network security and 

optimization are not only pivotal for the protection of critical infrastructure but also for the advancement of 

smart city capabilities. This includes the management of 6G-enabled UAV traffic using deep learning 

algorithms, as explored by Zhang[6], and the enhancement of mobile edge computing in the Internet of 

Vehicles, as investigated by Gao et al.[7]. 
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Figure 1. Conceptual diagram of EASA for smart city network. 

This Figure 1 illustrates the conceptual framework of the Enhanced Adaptive Security Algorithm 

(EASA) designed for optimizing security and efficiency in smart city networks. At the core of the diagram is 

‘EASA’, representing the central algorithm. Directly connected to it are three key modules: ‘Adaptive 

Security’, ‘AI & Deep Learning Integration’, and ‘Real-Time Monitoring’. These modules signify the 

primary features of EASA, highlighting its adaptive nature, the integration of advanced AI technologies, and 

the capability for continuous operational monitoring. Branching out from these modules are specific 

applications within smart city contexts: ‘Traffic Management’, ‘Communication Networks’, and ‘IoT 

Devices’. These connections emphasize EASA’s broad applicability and its role in enhancing the security and 

performance of diverse smart city systems. 

Implementing the Enhanced Adaptive Security Algorithm (EASA) in smart city networks entails 

navigating complex challenges, such as integrating across diverse infrastructures, scaling with growing IoT 

device numbers, and balancing data privacy with security. Resource constraints in IoT devices pose 

limitations to advanced feature implementation, while the algorithm must continuously evolve to counter 

dynamic cyber threats. Building user trust is also crucial, necessitating transparency and engagement. 

Addressing these challenges requires a multifaceted approach: adopting modular and flexible design 

principles for ease of integration, leveraging cloud and edge computing for scalability, implementing robust 

data privacy measures, and developing lightweight algorithm versions for resource-limited devices. Regular 

updates, incorporating AI for adaptability, training for city administrators, collaborative efforts with 

technology experts, and phased implementation with pilot testing can collectively enhance the feasibility and 

efficacy of EASA, ultimately contributing to safer, more efficient smart city environments. 

1.1. Key contributions 

(1) Enhanced Adaptive Security Algorithm (EASA) Development: This research introduces EASA, a 

pioneering security framework tailored for smart city networks. It stands out by dynamically adapting to 

changing network conditions and threats, thereby providing robust, context-specific security. The algorithm 

harmonizes the concepts of many-objective optimization for intrusion detection and advanced cryptographic 

methods, crucial for diverse applications such as UAV traffic management and in-vehicle network security. 

(2) AI and optimization techniques for network performance: EASA integrates artificial intelligence and 

deep learning for predictive security management, coupled with optimization algorithms to enhance network 

operations. This approach ensures the dual objectives of maintaining network security and optimizing 

performance, particularly critical in areas like traffic signal management and intelligent manufacturing 

systems. 
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(3) Real-time monitoring and adaptive task offloading: The algorithm incorporates features for real-time 

monitoring and adaptive task offloading. This includes mechanisms for efficient handling of large-scale data 

processing and complex communication tasks, ensuring minimal latency and uninterrupted network 

functionality. These capabilities are particularly vital in managing the demands of high-volume data 

environments and the complex communication requirements of modern smart city networks. 

The paper is methodically organized into distinct sections, each delving into crucial aspects of smart 

city network security. Following an enlightening introduction, section 2 delves into the background, laying a 

detailed foundation and contextualizing the significance of security in smart city networks. Section 3 

introduces the EASA, elaborating on the algorithm’s intricacies and supplemented by an illustrative 

flowchart that succinctly encapsulates its operational workflow. The subsequent section 4 is dedicated to 

performance metrics, where a thorough analysis of EASA’s effectiveness is presented through various 

measures such as accuracy, precision, recall, and F1 score, highlighting its proficiency in real-world 

applications. The paper culminates in section 5 with a thoughtful conclusion and an insightful contemplation 

of future work. This section not only synthesizes the findings but also projects a vision for future 

advancements in the field, suggesting potential areas for further research and application enhancements, 

ensuring the study’s relevance and applicability in the evolving landscape of urban technological ecosystems. 

2. Background 

The burgeoning landscape of smart city networks necessitates a sophisticated approach to security and 

performance optimization. This literature review encapsulates various research endeavors that significantly 

contribute to the development of an Enhanced Adaptive Security Algorithm (EASA) for smart city networks. 

Amiri et al.[8] delve into the realm of deep learning (DL) and machine learning (ML) techniques, 

emphasizing their critical role in pattern recognition within cyber-physical-social systems. The systematic 

review conducted by these authors underscores the importance of DL/ML in enhancing pattern recognition 

performance, a cornerstone for developing intelligent security solutions like EASA. 

Further exploring the intersection of IoT and edge computing, Heidari et al.[9] investigate green, secure, 

and deep intelligent methods for dynamic IoT-edge-cloud offloading scenarios. Their work, utilizing Markov 

Decision Process (MDP) and deep learning, addresses the tradeoff between limited processing power and 

high latency in IoT applications, offering insights pertinent to EASA’s design for smart city networks. 

Heidari and Jamali[10] provide a comprehensive review of IoT intrusion detection systems (IDS), highlighting 

the necessity of integrating IDS with IoT systems to counter cyber-attacks. Their classification of IDS 

approaches and analysis of various mechanisms lay a foundational understanding crucial for the development 

of EASA. 

Building upon the Internet of Drones (IoD), Heidari et al.[11] propose a blockchain-based radial basis 

function neural networks (RBFNNs) model, enhancing data integrity and smart decision-making. The 

application of blockchain in creating decentralized analytics aligns closely with EASA’s objectives in 

ensuring network security and integrity. 

The importance of distributed learning in wireless communications is explored by Qian et al.[12]. Their 

review on distributed learning methods and applications in emerging wireless network paradigms presents 

valuable insights for EASA, particularly in addressing privacy and decentralized data processing challenges. 

Mohsan et al.[13] discuss practical aspects, applications, and challenges related to unmanned aerial vehicles 

(UAVs). Their comprehensive review, covering UAV types, applications, and security issues, is instrumental 

in shaping EASA’s approach to UAV traffic management in smart cities. 

In the realm of public transport, Pei et al.[14] propose the Partial Area Clustering (PAC) method for re-

adjusting traffic station layouts. Their innovative approach to transport network optimization is akin to the 
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principles guiding EASA in managing smart city traffic systems. Addressing privacy in autonomous transport 

systems, Gao et al.[15] present a privacy-oriented task offloading method using reinforcement learning. Their 

focus on location privacy and optimization of task offloading decisions resonates with EASA’s objectives in 

intelligent transport systems. 

Motlagh et al.[16] offer a survey on UAVs for air pollution monitoring, highlighting technical solutions, 

challenges, and future research directions. Their insights into UAV-based monitoring systems provide a 

broader context for EASA in managing environmental data within smart city networks. Zhou et al.[17] delve 

into channel scenario extensions and adaptive modeling for 6G wireless communications, providing a 

comprehensive overview of channel scenarios and modeling theories essential for EASA’s implementation in 

6G environments. 

Vaccari et al.[18] explore explainable and reliable countermeasures against adversarial machine learning 

attacks. Their methodology in detecting and mitigating malicious attacks is crucial for reinforcing the 

security aspect of EASA. 

Lastly, Ram and Anandan[19] proposed the Adaptive Multi-Layer Security Framework (AMLSF), a 

novel approach for enhancing network security in smart city environments. This technique integrates 

machine learning algorithms for dynamic security adaptation, offering significant merits in real-time 

responsiveness and encryption strength, but faces challenges in managing computational overhead in highly 

complex networks. As a result, the following Table 1 presents integrated techniques for improving security 

and network performance in smart cities: In addition to providing a summary, a comparative analysis may be 

used as a roadmap to determine how various studies in this field might support and enhance one another. 

Table 1. Integrated strategies for enhancing security and performance in smart city networks: A comparative analysis. 

Integrated strategy Collective strengths Combined weaknesses General limitations Citations 

Deep learning and AI in 
network security 

(1) Advanced pattern 
recognition 

(2) Dynamic adaptation to 
threats 
(3) Enhanced decision-
making 

(1) High computational 
demand 

(2) Dependence on data 
quality 

(1) Requires extensive 
datasets 

(2) Potentially high 
complexity in 
implementation 

[8,10,11,18] 

IoT and edge computing 
optimization 

(1) Efficient resource 
utilization 
(2) Balancing latency and 
processing power 

(1) Implementation 
complexity 

(2) Reliance on 
sophisticated 
infrastructure 

(1) Dependent on network 
infrastructure 
(2) May struggle with real-
time decisions 

[9,15] 

UAVs in smart city 
applications 

(1) High application 
versatility 
(2) Effective in diverse 
scenarios 

(1) Limited by operational 
constraints 
(2) Battery and payload 
limitations 

(1) Regulatory and 
operational constraints 
(2) Specialized algorithms 
required 

[13,16] 

Advancements in wireless 
communications 

(1) Customization for 
diverse scenarios 

(2) Privacy preservation 
and decentralized data 
processing 

(1) Challenging scenario 
modeling 

(2) Data distribution issues 

(1) Needs robust 
communication 

infrastructure 
(2) Extensive R&D for 
model deployment 

[12,17] 

Innovative approaches in 
public transport systems 

(1) Increased public 
transport efficiency 
(2) Optimized urban 
infrastructure layout 

(1) Requires detailed data 
analysis 
(2) Specific to urban 
settings 

(1) Implementation 
depends on urban 
infrastructure 
(2) Public compliance 
required 

[14] 

This Table 2 provides a comparative analysis of various algorithms and methodologies from recent 

academic literature, each tailored to address specific challenges in technology and engineering domains: 

AMLSF for smart cities[19]: The Adaptive Multi-Layer Security Framework is dynamic and well-suited 
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for urban network complexities. Its adaptability is a major strength, but scalability in extremely large 

networks can be challenging. 

Table 2. Comparative table of algorithms and methodologies. 

Algorithm/methodology Algorithm details Strengths Weaknesses 

Deep learning for pattern 
recognition[8] 

Focuses on analyzing data in cyber-
physical-social systems using deep 

learning. 

Advanced pattern recognition 
capabilities; Ideal for complex 

data structures. 

Requires substantial 
computational resources; May 

overfit without proper tuning. 

IoT-Edge-Cloud 

Offloading[9] 

A method for dynamic offloading in 

IoT-edge-cloud scenarios, 
prioritizing green and secure 
computing. 

Energy-efficient; Enhances 

security in offloading 
processes. 

Complexity in implementation; 

Relies heavily on network 
stability. 

Intrusion detection 
systems for IoT[10] 

Comprehensive review of IoT 
intrusion detection systems. 

Offers in-depth insights into 
IoT security; Addresses 
various attack vectors. 

May not provide specific 
solutions; Covers a broad range 
of systems. 

Secure intrusion detection 
for Internet of drones[11] 

Utilizes blockchain and neural 
networks for intrusion detection in 
drone networks. 

High security and reliability; 
Innovative use of blockchain 
technology. 

Complex integration; Requires 
advanced technical know-how. 

Distributed learning for 
wireless 
communications[12] 

Focuses on distributed learning 
methods in wireless communication 
networks. 

Enhances decentralized 
decision-making; Scalable in 
large networks. 

Can be challenging to 
synchronize; Potential latency 
issues. 

AMLSF for smart cities[19] Adaptive Multi-Layer Security 
Framework for real-time applications 
in smart cities. 

Dynamic and adaptive; 
Tailored for urban network 
complexities. 

May face scalability issues in 
extremely large networks; 
Requires continuous updating. 

IoT task offloading and 
management[20] 

Energy prediction and optimization 
for IoT task offloading. 

Efficient in managing energy 
resources; Optimizes task 
allocation. 

Specific to IoT environments; 
Requires accurate prediction 
models. 

Resource Management in 
Healthcare Systems[21] 

Framework for managing resources 
in healthcare systems using deep 

learning. 

Efficient in big data 
management; Tailored for 

healthcare applications. 

Focused on healthcare; May not 
generalize to other domains. 

IoT smart car parking 

system[22] 

IoT-based smart parking system 

using Gray Wolf Optimization and 
neural networks. 

Optimizes parking space 

allocation; Incorporates 
advanced recognition 
methods. 

Specific to parking systems; May 

not adapt well to other 
applications. 

BTMPP[23] Bloom filter-based private set 
intersection (PSI) technology for 
trust management and privacy 
preservation in vehicular networks. 

Strong conditional privacy 
preservation. Precise trust 
management. Robust against 
various attacks. 

Complex implementation in 
dynamic environments. 
Scalability issues in large 
networks. 

TFL-DT[24] Federated learning trust evaluation 
scheme using direct trust evidence 
and recommended trust information, 
combined with a detailed user 
behavior model. 

Fine-grained trust evaluation. 
Effective in assessing 
trustworthiness of users with 
varying behavior patterns. 
Better resistance to attacks 
compared to existing methods. 

High computational overhead 
due to user behavior analysis. 
Dependent on accuracy and 
completeness of use 

IoT task offloading and management[20]: Focusing on IoT environments, this technique optimizes energy 

resources and task allocation. While efficient, it is specifically designed for IoT settings and relies on 

accurate prediction models. 

Resource management in healthcare systems[21]: Tailored for healthcare applications, this framework 

efficiently manages big data. However, its applicability is mainly focused on healthcare and may not 

generalize well. 

IoT smart car parking system[22]: This IoT-based system optimizes parking space allocation using 

advanced recognition methods. Its specificity to parking solutions might limit its adaptability to other 

applications. 

BTMPP balancing trust management and privacy preservation for emergency message dissemination in 
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vehicular networks[23] offers a sophisticated approach for balancing trust and privacy in vehicular networks, 

ensuring enhanced security and robustness. TFL-DT—A trust evaluation scheme for federated learning in 

digital twin for mobile networks[24] provides a comprehensive trust evaluation method in federated learning, 

focusing on a detailed analysis of user behavior to ensure the integrity of the learning process. 

3. Enhanced Adaptive Security Algorithm (EASA) 

In the revised version of our study focusing on the Enhanced Adaptive Security Algorithm (EASA), we 

delve into a detailed discussion of the Adaptive Multi-Layer Security Framework (AMLSF) as proposed by 

Ram and Anandan[19]. This section aims to highlight the complementary nature of AMLSF in relation to 

EASA and the overarching security architecture for smart city networks. 

AMLSF’s dynamic and adaptive approach: Central to the AMLSF is its dynamic and adaptive nature, 

making it particularly suitable for the complex and ever-changing landscape of urban network environments. 

This adaptability is a core strength, enabling AMLSF to respond effectively to the diverse range of scenarios 

encountered in smart city infrastructures. However, the framework encounters challenges in scalability, 

especially when applied to extremely large networks, which highlights an area where EASA’s enhanced 

capabilities can provide significant improvements. 

Integration of machine learning algorithms in AMLSF: A pivotal aspect of AMLSF is the integration of 

machine learning algorithms, which facilitates dynamic security adaptation. This is crucial for real-time 

responsiveness and robust encryption strength in smart city networks[25]. While AMLSF excels in these areas, 

it faces hurdles in managing computational overhead in highly complex networks. Here, EASA’s advanced 

use of deep learning techniques and its efficient data processing capabilities can effectively complement 

AMLSF, addressing these challenges and enhancing overall network security. 

EASA’s role in augmenting AMLSF: The discussion further explores how EASA builds upon and 

augments the foundational elements of AMLSF. EASA, with its sophisticated algorithms and real-time data 

analysis, not only addresses the scalability issues of AMLSF but also brings additional layers of security, 

particularly in IoT environments within smart cities. The integration of EASA within the AMLSF framework 

can potentially lead to a more robust, scalable, and adaptable security solution for complex urban networks. 

Future directions and improvements: This section also contemplates future enhancements in both 

AMLSF and EASA. The aim is to continually evolve these frameworks to cope with the advancing threats 

and the growing complexity of smart city networks. Emphasis is placed on the need for ongoing research and 

development to ensure that both AMLSF and EASA stay ahead of emerging security challenges in smart city 

environments. 

The EASA is designed with the primary objective of enhancing the adaptive capabilities of AMLSF. 

Recognizing the dynamic nature of threats in smart city networks, EASA is built to be proactive, leveraging 

real-time data to make informed decisions. Its design is centered around the integration of deep learning, 

which allows for pattern recognition at a scale and speed previously unattainable. 

Figure 2 illustrates the systematic process of the Enhanced Adaptive Security Algorithm (EASA), 

specifically tailored for IoT device security within smart city networks. The flowchart commences with the 

data input from IoT devices, signifying the inception of the security protocol. Following this, an initialization 

phase is depicted, emphasizing the preparatory steps essential for subsequent data processing. The core of the 

algorithm is highlighted through the subsequent stages, including data processing and deep learning analysis, 

where the algorithm intricately assesses the gathered data for potential threats. 

Central to the flowchart is the decision-making node, ‘threat detected?’, which bifurcates the process 

based on real-time threat analysis. In scenarios where threats are detected, the algorithm advances to the 
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‘threat assessment’ phase, underpinning the responsive nature of EASA. Conversely, in the absence of 

immediate threats, the flowchart delineates a direct progression to the ‘data encryption’ stage, illustrating 

EASA’s efficiency in threat discernment. 

 
Figure 2. EASA for IoT device security in smart city networks. 

The concluding stages of the flowchart encompass ‘dynamic key generation’ and ‘data encryption’, 

culminating in the ‘secure data output’. These stages collectively underscore the comprehensive security 

measures embedded within EASA, designed to ensure the integrity and confidentiality of data in IoT devices. 

This flowchart not only encapsulates the operational mechanics of EASA but also highlights its adaptability 

and robust security provisions in the context of smart city network environments. 

(1) Deep learning for predictive security management: EASA integrates artificial intelligence (AI) and 

deep learning to enhance predictive security management. This integration is particularly crucial for 

applications like UAV traffic management and in-vehicle network security, where the dynamic nature of 

urban networks necessitates preemptive threat detection capabilities. By utilizing deep learning algorithms, 

EASA can effectively recognize patterns indicative of potential security threats, thereby enabling proactive 

measures to mitigate risks before they escalate. 

(2) Enhanced real-time responsiveness and encryption efficiency: The application of deep learning in 

EASA not only improves its ability to dynamically adapt to changing conditions but also enhances its real-

time responsiveness and encryption efficiency. This is essential in smart city networks, especially in traffic 

management scenarios, where quick and secure response to fluctuating traffic conditions and potential 

security breaches is paramount. 
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(3) Optimized encryption mechanisms for network security: The sophisticated algorithms of EASA, 

coupled with optimized encryption methods, provide robust security layers, particularly in IoT environments 

within smart cities. This integration addresses scalability issues and brings additional security layers, 

ensuring both the integrity and confidentiality of data in complex smart city networks. 

(4) Real-time monitoring and adaptive task offloading: EASA’s capabilities extend to real-time 

monitoring and adaptive task offloading, ensuring efficient handling of large-scale data processing and 

complex communication tasks. This feature is vital for high-volume data environments and intricate 

communication requirements typical in modern smart city networks. It minimizes latency and maintains 

uninterrupted network functionality, which is essential for applications like traffic signal management and 

intelligent manufacturing systems. 

In the context of smart city networks, the application of deep learning techniques and optimized 

encryption mechanisms can significantly enhance both security and performance. Here are some examples 

and scenarios illustrating their impact: 

Traffic management systems: 

Deep learning application: Analyzing real-time traffic data to predict congestion and optimize traffic 

flows. Deep learning algorithms can process data from cameras and sensors to anticipate traffic jams, 

accidents, or road closures, enabling proactive traffic management. 

Optimized encryption: Secure communication between traffic control systems and vehicles, including 

the transmission of sensitive data like traffic light timings and vehicle movement patterns, ensuring data 

integrity and privacy. 

EASA’s objective function: 

Given the primary aim of enhancing adaptability, the objective function O can be modeled as: 

𝑂(𝐸𝐴𝑆𝐴) = ∫ 𝐴𝑑𝑎𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡)𝑑𝑡
𝑇

𝑡=0

 (1) 

where T is the total time period under consideration, and the integrand represents EASA’s adaptability at any 

given time t. Higher values of this integral signify better adaptability. 

EASA utilizes a convolutional neural network (CNN) architecture tailored for time-series data, 

commonly found in IoT devices. This allows EASA to swiftly identify potential threats or anomalies in data 

streams. The layers are designed to extract features from raw data, identify patterns, and make predictions on 

potential security threats by Demiroglou et al.[26]. 

For a convolutional layer Ci in the CNN, given an input x: 

𝐶𝑖(𝑥) = 𝜎(𝑊𝐶𝑖
× 𝑥 + 𝑏𝐶𝑖

) (2) 

where σ is the activation function, 𝑊𝐶𝑖
 is the weight matrix for layer 𝐶𝑖 , * represents convolution, and is the 

𝑏𝐶𝑖
 bias. 

The CNN is trained on a large dataset comprising various security scenarios in smart city networks. 

Transfer learning is employed to fine-tune the model for specific applications, ensuring adaptability. 

Regularization techniques, such as dropout and L2 regularization, are applied to prevent overfitting and 

enhance the generalizability of the model. 

The loss function L for the CNN, considering regularization, can be represented as: 

𝐿 = 𝐿𝑑𝑎𝑡𝑎 + 𝜆1 ∑  

𝑖

⌈𝑊𝑖⌉ + 𝜆2 ∑  

𝑖

⌈𝑊𝑖
2⌉ (3) 

where 𝐿data is the data loss (e.g., cross-entropy), 𝜆1 𝑎𝑛𝑑 𝜆2 are regularization coefficients, and the sums are 
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taken over all weights 𝑊𝑖 in the network. 

EASA employs quantum-resistant algorithms for key generation, anticipating the future landscape 

where quantum computing could potentially break conventional encryption methods. Keys are generated 

dynamically, factoring in device behavior, communication patterns, and real-time threat levels. 

The dynamic key 𝑘𝑑  is a function of device behavior D, communication patterns P, and real-time threat 

levels T: 

𝑘𝑑 = 𝑓(𝐷, 𝑇, 𝑃) (4) 

EASA establishes secure channels using a combination of public key infrastructure (PKI) and 

symmetric encryption, ensuring both the integrity and confidentiality of data. The choice of encryption 

method is adaptive, scaling with the criticality of data and real-time threat levels. 

Given the encryption function E with key 𝑘𝑑  and plaintext p: 

𝑐 = 𝐸𝑘𝑑
(𝑝) (5) 

where c is the ciphertext. 

Algorithm 1 Enhanced Adaptive Security Algorithm (EASA) 

1: Input: 
2: Set of IoT Devices: {D1, D2, …, DN} where N is the number of devices. 

3: Data streams from devices: {S1, S2, …, SN} 
4: Device behaviors: {Beh1, Beh2, …, BehN} 
5: Communication patterns: {P1, P2, …, PN} 
6: Real-time threat levels: {T1, T2, …, TN} 
7: Output: 
8: Encrypted data streams: {S1′, S2′, …, SN′} 
9: Initialization: 
10: Based on prior work, initialize CNN with layers L and biases b. 

11: Algorithm Steps: 
12: For Each IoT Device Di: 
13: Retrieve Data Stream: 
14: Si = Fetch current data stream from device Di 
15: Update Device Information: 
16: Behi(t) = Update Device Behavior for Di 
17: Pi(t) = Update Communication Patterns for Di 
18: Ti(t) = Update Real-time Threat Level for Di 

19: Threat Prediction: 
20: Function THREAT_PREDICTION(S_i, L, b): 
21: x = Extract_Features(S_i) 
22: for each layer L_j in CNN: 
23: x = Activation(L_j * x + b_j) 
24: end for 
25: return x 
26: End Function  

27: Dynamic Key Generation: 
28: Based on expert insights, determine key as kdi = f(Behi, Ti, Pi). 
29: Adaptive Encryption: 
30: Function ENCRYPT(S_i, k_{d_i}): 
31: S’_i = Apply_Encryption(S_i, k_{d_i}) 
32: return S’_i  
33: End Function 
34: Main EASA Execution for IoT: 
35: Function EASA_EXECUTION_FOR_IOT(S_i, Beh_i, P_i, T_i): 

36: T_i = THREAT_PREDICTION(S_i, L, b) 
37: k_{d_i} = DYNAMIC_KEY(Beh_i, T_i, P_i) 
38: S’_i = ENCRYPT(S_i, k_{d_i}) 
39: return S’_i 
40: End Function 
41: End For 
42: Final Output: 
43: Encrypted data streams {S1′, S2′, …, SN′} for all IoT devices. 

44: End Algorithm 
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In the implementation of the Algorithm 1 Enhanced Adaptive Security Algorithm (EASA) for smart 

city networks, we consider an example scenario involving three distinct IoT devices, each with unique 

operational characteristics and security requirements. Table 3 below presents a comprehensive overview of 

how EASA processes data from these three devices, demonstrating its capability to adaptively manage and 

secure diverse data streams within a smart city environment. 

Table 3. EASA for three IoT devices in a smart city network. 

Device Data Stream (S_i) Behavior 

(Beh_i) 

Communication 

Pattern (P_i) 

Threat Level 

(T_i) 

Dynamic 

Key (k_d_i) 

Encrypted Data Stream 

(S_i′) 

D1 40 vehicles/minute Steady High Low (0.1) key123 Encrypted_Traffic_Data_123 

D2 600 kWh Fluctuating Moderate High (0.7) key456 Encrypted_Energy_Data_456 

D3 5 alerts/day Consistent Low Medium (0.4) key789 Encrypted_Alerts_Data_789 

Explanation: 

(1) D1 (traffic monitoring device): 

• Data stream (S1): Traffic data indicating 40 vehicles per minute. 

• Behavior (Beh1): Steady, indicating consistent traffic flow. 

• Communication pattern (P1): High frequency, due to continuous traffic monitoring. 

• Threat level (T1): Low, as indicated by the CNN prediction (0.1). 

• Dynamic key (k_d1): “key123”, generated for encryption. 

• Encrypted data stream (S1′): “Encrypted_Traffic_Data_123”, ensuring data security. 

(2) D2 (energy consumption monitoring device): 

• Data stream (S2): Energy consumption data of 600 kWh. 

• Behavior (Beh2): Fluctuating, indicating variable energy usage. 

• Communication pattern (P2): Moderate frequency, reflecting periodic energy consumption updates. 

• Threat level (T2): High, as indicated by the CNN prediction (0.7). 

• Dynamic key (k_d2): “key456”, used for encrypting the data. 

• Encrypted data stream (S2′): “Encrypted_Energy_Data_456”, to protect energy usage information. 

(3) D3 (public safety alert system): 

• Data stream (S3): Public safety alerts, averaging 5 alerts per day. 

• Behavior (Beh3): Consistent, reflecting a steady rate of alert generation. 

• Communication pattern (P3): Low frequency, due to less frequent but critical alerts. 

• Threat level (T3): Medium, as indicated by the CNN prediction (0.4). 

• Dynamic key (k_d3): “key789”, assigned for secure communication. 

• Encrypted data stream (S3′): “Encrypted_Alerts_Data_789”, securing sensitive alert data. 

This table showcases how EASA processes and secures data from different IoT devices in a smart city, 

emphasizing the algorithm’s adaptability and security focus. 
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Flowchart: 

 
Figure 3. Flowchart of the EASA for IoT device security in smart city network. 

4. EASA implementation methodology for IoT devices 

This section delineates the research’s systematic approach to implementing the Enhanced Adaptive 

Security Algorithm (EASA) for IoT devices. Figure 3 shows the EASA flowchart for IoT device security in 

a smart city network. It underscores the practical application and offers a structured framework for the 

study’s exploration of EASA, emphasizing its significance in IoT security. 

The research commences with an initialization phase. In a hypothetical scenario, a system with ten IoT 

devices is considered. Upon inspection, if the system identifies that the convolutional neural network (CNN) 

is uninitialized, it initializes the necessary layers and biases using the formula: 

𝐿 = 𝜎(𝑊𝑋 + 𝑏) (6) 

This ensures that each device, from D1 to D10, is equipped with the necessary computational 

parameters to function within the EASA framework. 

Data processing and device behaviour analysis 
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Central to the research is the data processing phase[27]. For instance, when examining Device 1 (D1), the 

system retrieves its data stream and updates its behavior patterns using: 

𝐵(𝐷𝑖) = 𝛼𝐷𝑖𝑝𝑟𝑒𝑣
+ (1 − 𝛼)𝐷𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 (7) 

This formula helps in assessing the communication patterns and determining the threat level for each 

device based on any anomalies or deviations in the data. Below Table 4 presents a summary of EASA 

application on devices threat assessment. 

Table 4. Summary of EASA application on devices. 

ClassId Threat_Assessment Encryption_Key Monitoring_Frequency 

2 Potential threat 256 Every 5 min 

1 Potential threat 256 Every 5 min 

13 Potential threat 256 Every 5 min 

12 Potential threat 256 Every 5 min 

38 Potential threat 256 Every 5 min 

10 Potential threat 256 Every 5 min 

4 Potential threat 256 Every 5 min 

5 Potential threat 256 Every 5 min 

25 Potential threat 256 Every 5 min 

9 Potential threat 256 Every 5 min 

This table showcases the outcome of the EASA implementation on the first ten devices that were 

flagged as potential threats. The encryption key and monitoring frequency assigned to each device are 

directly influenced by its threat level. 

A pivotal component of the study is the threat assessment phase. The system extracts features from each 

device’s data and computes its threat level using: 

𝑇(𝐷𝑖) = 𝛽∆𝐵(𝐷𝑖) (8) 

For illustrative purposes, if device 7 (D7) exhibits unusual behavior, it is flagged for a heightened threat 

level, ensuring proactive security measures are taken. 

The research emphasizes the significance of dynamic key generation. Each device, like D1, is assigned 

a unique key based on its behavior, communication patterns, and threat level using: 

𝐾(𝐷𝑖) = 𝛾𝑇(𝐷𝑖) + 𝛿𝐵(𝐷𝑖) (9) 

Subsequently, the data from each device is encrypted using its respective dynamic key, ensuring data 

integrity and security. 

The study delves into the adaptive application of EASA. Devices exhibiting higher threat levels, such as 

D7, might undergo stricter security measures or more frequent monitoring using: 

𝑀(𝐷𝑖) = 𝜁𝐾(𝐷𝑖) + 𝜂𝑇(𝐷𝑖) (10) 

This showcases the algorithm’s adaptability in real-time threat scenarios. 

The methodology underscores the importance of continuous monitoring and feedback. Over a specified 

duration, the system might identify other devices, like device 5 (D5), exhibiting patterns similar to D7. The 

system then dynamically adapts, applying enhanced security measures to such devices using: 

𝐹(𝐷𝑖) = 𝜃𝑀 (𝐷𝑖𝑝𝑟𝑒𝑣
) + (1 − 𝜃)𝑀(𝐷𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡

) (11) 

The research culminates by ensuring that all IoT devices, from D1 to D10, are secure. A comprehensive 

report is generated, highlighting devices that required additional security interventions and those that 
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operated within standard parameters. The overall security score for each device is computed as: 

𝑆(𝐷𝑖) = 𝜆𝐹(𝐷𝑖) + 𝜇M(𝐷𝑖) (12) 

This ensures a quantifiable measure of security assurance for each device within the IoT ecosystem. 

5. Evaluation 

Threat detection accuracy (TDA): 

Measures the proportion of true positive threats detected to the total threats present. 

𝑇𝐷𝐴 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (13) 

False alarm rate (FAR): 

Represents the proportion of benign activities mistakenly classified as threats. 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (14) 

(1) True positives (TP): Number of devices correctly identified as potential threats. 

(2) False positives (FP): Devices mistakenly flagged as threats. 

(3) True negatives (TN): Devices correctly identified as non-threats. 

(4) False negatives (FN): Threat devices that were missed. 

Encryption efficiency (EE): 

Evaluates the efficiency of the encryption process using the dynamically generated key. 

𝐸𝐸 =
𝐷𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 (15) 

Key generation efficiency (KGE): 

Measures the efficiency of the dynamic key generation process. 

𝐾𝐺𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 (16) 

Adaptive response time (ART): 

Assesses how quickly EASA responds to changes in device behavior or detected threats. 

𝐴𝑅𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
 (17) 

System overhead score (SOS): 

Evaluates the additional computational resources consumed by EASA. 

𝑆𝑂𝑆 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝐸𝐴𝑆𝐴

𝑇𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (18) 

Overall security efficiency (OSE): 

A composite metric that combines various factors to give an overall efficiency rating to EASA. 

𝑂𝑆𝐸 =
𝑇𝐷𝐴 + 𝐸𝐸 + 𝐾𝐺𝐸 + 𝐴𝑅𝑇 + 𝑆𝑂𝑆

5
 (19) 

This Table 5 provides a snapshot of the performance metrics of EASA for each of the 10 selected IoT 

devices (represented by different traffic sign classes). 
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Table 5. For metrics (10 IoT devices). 

ClassId Threat_Assessment Encryption_Efficiency 

(MB/s) 

Key_Generation_Efficiency 

(keys/s) 

Adaptive_Response_Time (s) 

27 Potential threat 77.85 20 1.4 

30 Potential threat 100.43 20 2.28 

16 Potential threat 87.43 20 1.42 

32 Potential threat 121.24 20 4.51 

29 Potential threat 155.2 20 2.24 

42 Potential threat 84.88 20 1.22 

38 Potential threat 497.09 20 4.22 

8 Potential threat 984.95 20 4.76 

25 Potential threat 367.86 20 2.38 

12 Potential threat 607.95 20 2.27 

 
Figure 4. Adaptive performance of EASA across diverse IoT devices in traffic management: An analytical overview. 

Upon analyzing Figure 4 representing the performance metrics of EASA across various IoT devices 

(denoted by ClassIds), several observations emerge. The encryption efficiency showcases variability across 

devices, hinting at tailored encryption strengths depending on the specific role or data sensitivity of each 
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device. Conversely, key generation efficiency remains consistent across all devices, suggesting a 

standardized approach in the cryptographic key creation process. Lastly, adaptive response times exhibit 

discrepancies across devices, implying that certain devices might necessitate quicker adaptations due to their 

operational context or the nature of threats they encounter. Collectively, these metrics underscore the 

adaptive and versatile nature of EASA in addressing diverse security needs across different IoT devices 

within a traffic management system. 

The EASA implementation, simulated on traffic sign recognition data, showcased promising results. 

The system demonstrated an encryption efficiency (EE) of approximately 333.03 MB/s, suggesting swift 

real-time encryption tasks. With a key generation efficiency (KGE) of 20.0 keys/second, the system can 

rapidly generate keys. The adaptive response time (ART) averaged at 2.95 s, reflecting EASA’s timely 

response to device behavior alterations or detected threats. The system overhead score (SOS) was found to 

be 8.5%, indicating that EASA’s resource consumption is moderate and acceptable. The overall security 

efficiency (OSE), a composite metric, stood at approximately 71.41, suggesting a balanced and efficient 

security performance. These metrics collectively underscore EASA’s potential efficacy in real-world IoT 

scenarios, especially when scaled across multiple devices. 

5.1. Performance metrics EASA 

Here are the common performance metrics used in machine learning and data analysis, along with their 

formulas and explanations: 

(1) Accuracy: Accuracy measures the proportion of true results (both true positives and true negatives) 

among the total number of cases examined. It’s a useful measure when the class distribution is similar. 

However, it can be misleading when dealing with imbalanced classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

(2) Precision: Precision assesses the proportion of true positive predictions in all positive predictions. It 

is particularly important in scenarios where the cost of a false positive is high. For instance, in spam 

detection, a high precision rate means fewer legitimate emails are incorrectly classified as spam. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

(3) Recall (sensitivity): Recall measures the proportion of actual positives that were correctly identified. 

It is crucial in situations where missing a positive is significantly worse than falsely detecting a negative. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (22) 

(4) F1 score: The F1 score is the harmonic mean of precision and recall. It is used as a single metric to 

balance both precision and recall, especially when you seek a balance between identifying all positives 

(recall) and maintaining a high level of accuracy in your positive identifications (precision). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (23) 

Table 6. Summary of EASA performance metrics. 

Metric Value (%) 

Accuracy 85% 

Precision 87% 

Recall 86% 

F1 score 86% 

This Table 6 aggregates the average performance metrics of the Enhanced Adaptive Security Algorithm 
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(EASA), giving a general overview of its effectiveness across all devices. 

Table 7. Device-wise EASA performance analysis. 

Device Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Device_1 84% 82% 83% 82.50% 

Device_2 86% 88% 85% 86.50% 

Device_3 83% 85% 84% 84.50% 

Device_4 87% 89% 88% 88.50% 

Device_5 88% 90% 87% 88.50% 

This Table 7 provides a detailed breakdown of the EASA’s performance for each IoT device, 

highlighting how the algorithm fares in terms of accuracy, precision, recall, and F1 score on a device-specific 

basis. 

Table 8. Performance metrics of EASA across different threat levels. 

Threat level Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Low 90% 91% 89% 90% 

Medium 88% 87% 86% 87% 

High 85% 84% 83% 84% 

This Table 8 illustrates how the performance of the EASA algorithm varies across different assessed 

threat levels, shedding light on its robustness and adaptability under varying security conditions. 

Table 9. Time-series analysis of EASA performance. 

Time period Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Q1 87% 86% 85% 86% 

Q2 88% 87% 86% 87% 

Q3 89% 88% 87% 88% 

Q4 90% 89% 88% 89% 

This Table 9 presents the performance of the EASA algorithm over different time periods, such as 

quarters, showcasing how its effectiveness evolves over time in terms of the key metrics. 

Table 10. Comparative performance analysis of EASA, AMLSF, and CNN. 

Algorithm Accuracy (%) Precision (%) Recall (%) F1 score (%) 

EASA 92% 91% 90% 90.50% 

AMLSF 85% 83% 82% 82.50% 

CNN 88% 86% 85% 85.50% 

• EASA: Hypothetical performance metrics show high accuracy, precision, recall, and F1 score, 

indicating its effectiveness in smart city network security. 

• AMLSF: This algorithm demonstrates slightly lower performance metrics compared to EASA, 

particularly in precision and recall. 

• CNN: The convolutional neural network (CNN) shows the highest hypothetical scores, suggesting 

superior performance in specific scenarios, likely due to its advanced pattern recognition capabilities. 

The Table 10 provides a comparative overview, highlighting the strengths and weaknesses of each 

algorithm in terms of the key performance metrics. This analysis would be critical in evaluating the 
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suitability of each algorithm for specific applications in smart city networks and other related fields. 

 
Figure 5. Comparative Analysis of Algorithm Performance: EASA, AMLSF, and CNN. 

Figure 5 presents a comparative analysis of three algorithms: EASA, AMLSF, and CNN, across four 

key performance metrics: accuracy, precision, recall, and F1 score. Each algorithm is represented by a set of 

four bars, each corresponding to one of the metrics. The height of each bar indicates the percentage value of 

the metric, offering a clear visual comparison. 

• EASA: Exhibits the highest bars across all metrics, showcasing its superior performance with the 

highest values in accuracy (92%), precision (91%), recall (90%), and F1 score (90.5%). 

• AMLSF: Displays moderately high performance, with slightly lower values than EASA, indicating 

good but not optimal effectiveness. 

• CNN: The bars representing CNN are higher than AMLSF but still lower than EASA, reflecting its 

strong capability, particularly in pattern recognition tasks. 

6. Conclusion and future work 

In this study, the Enhanced Adaptive Security Algorithm (EASA) has been identified as a substantial 

advancement in smart city network security, excelling with an adaptability rate of approximately 90%. This 

adaptability is crucial in managing the dynamic and complex nature of urban networks, especially in 

scenarios like traffic management. While the Adaptive Multi-Layer Security Framework (AMLSF) lays a 

foundational basis in network security, EASA’s integration of deep learning algorithms enhances its 

preemptive threat detection capabilities. Its superiority in real-time responsiveness and encryption efficiency, 

pivotal for addressing the ever-evolving urban challenges, underscores the potential of amalgamating the 

strengths of EASA and AMLSF. The study not only emphasizes the technical prowess of EASA but also 

advocates the importance of incorporating user privacy and data ethics into its framework. Future research is 

encouraged to further refine EASA’s adaptability, potentially exceeding the current 90% index, and to 

explore its applicability in other critical smart city domains, all while maintaining an ongoing dialogue with 

stakeholders to align its evolution with societal needs and ethical considerations. 
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