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ABSTRACT 

In today’s rapidly evolving digital landscape, the imperative of data security stands paramount. With the 

proliferation of sensitive information being stored and transmitted online, the necessity for robust encryption 

algorithms has grown exponentially. However, the suitability of traditional encryption methods in resource-

constrained settings, like mobile devices and cloud computing, remains a concern due to their computational 

intensity. To address this, researchers have introduced a novel category of encryption algorithms known as 

lightweight cryptography algorithms. These cryptographic solutions are designed to offer robust security while 

minimizing computational demands, thus striking a harmonious balance between security and efficiency. 

While lightweight cryptography algorithms present a promising solution, their adequacy for applications 

demanding exceptionally high security, particularly within Big Data environments, warrants careful 

consideration. In this study, we presented a novel approach involving the utilization of lightweight 

cryptography algorithms within the MapReduce framework. By subjecting these algorithms to rigorous 

experimentation, we assessed their performance using software-oriented metrics from various dimensions. 

Keywords: big data; Hadoop; stream ciphers; block ciphers; data security; MapReduce; lightweight 
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1. Introduction 

In the modern era of information technology, data security has 

emerged as a paramount concern due to the exponential growth of data 

and the rise in sophisticated cyber threats. Organizations and 

businesses are increasingly reliant on large-scale data processing, often 

performed in distributed computing environments like MapReduce on 

Hadoop Distributed File System (HDFS). These distributed processing 

frameworks enable the efficient processing of vast amounts of data 

across multiple nodes in a cluster, making them highly scalable and 

suitable for big data analytics[1]. 

However, the distributed nature of data processing introduces new 

challenges in ensuring data confidentiality, integrity, and availability. 

As data traverses through multiple nodes during processing, it becomes 

susceptible to interception or unauthorized access, exposing sensitive 

information to potential breaches. 

The use of Hadoop as a platform for storing and processing large 

amounts of data has become increasingly popular in recent years. 
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However, the security aspect of Hadoop was not initially considered[2] during its design. While various projects 

have since evolved to improve Hadoop’s security, such as Project Rhino, which provides the ability to encrypt 

or decrypt data stored in HDFS using AES encryption, these methods can still be memory-intensive and may 

negatively impact performance. Furthermore, traditional cryptographic algorithms rely on encryption 

algorithm secrecy, which is insufficient for real-world needs, particularly in the context of big data. As such, 

there is a need for efficient encryption and decryption algorithms for securing large volumes of data. 

This research paper proposes a new solution to this problem by introducing a hybrid key management 

scheme of MapReduce that leverages the efficiency and effectiveness of lightweight cryptography algorithms. 

This approach has the potential to efficiently secure big data while maintaining low computational overhead. 

The proposed algorithm is validated through comprehensive experimentation using different big data scenarios 

to measure processing time, memory utilization, and security of the algorithms[3]. 

The significance of this research lies in the increasing importance of secure big data management. As 

more and more organizations rely on Hadoop and other big data platforms, the need for efficient and effective 

encryption methods becomes critical. The proposed approach can efficiently secure big data while maintaining 

low computational overhead, making it a practical and effective solution for various industries dealing with 

big data and can provide a much-needed solution to the challenge of securing big data in an efficient and 

practical manner, making it an important contribution to the field of data security[4]. 

The landscape of data security within the Hadoop ecosystem is expansive, yet not without its gaps and 

limitations. While significant strides have been made in securing data, the effective integration of robust 

security measures without compromising operational efficiency remains a challenge. Existing security 

protocols within Hadoop often lean towards heavier encryption methods, potentially hindering performance in 

data processing and analysis. 

Moreover, a notable gap exists in addressing security vulnerabilities inherent in distributed systems, 

especially concerning the MapReduce framework. Despite efforts to secure data during transit and storage, 

potential threats from untrusted mappers and the creation of counterfeit data within this framework pose 

ongoing risks. The gap in lightweight cryptographic solutions tailored specifically for Hadoop’s distributed 

architecture necessitates further exploration. 

The motivation driving our research stems from the pressing need to bridge these identified gaps in 

Hadoop’s data security. Our quest is rooted in the understanding that while robust security measures are 

imperative, they should not impede the seamless operation of the data processing system. 

We are motivated to innovate and develop a solution that harmoniously integrates lightweight 

cryptography into Hadoop, particularly within the MapReduce framework. Our aspiration is to create a security 

approach that effectively safeguards sensitive data without sacrificing the system’s performance and 

operational efficiency. 

Understanding the complexities of security vulnerabilities in distributed systems, we aim to devise a 

solution, the MR-LightWeight Algorithm, that specifically targets these risks within Hadoop. This motivation 

is fueled by a desire to provide a practical and scalable approach that addresses the evolving security concerns 

posed by untrusted mappers and counterfeit data creation. 

We are further inspired by the practical application of our research. The opportunity to showcase the 

effectiveness of our algorithm in securing sensitive data, such as mental health records within healthcare 

systems, presents a compelling motivation. This practical implementation serves as a testament to the real-

world applicability and benefits of our proposed solution. 

In summary, we are driven by the necessity to fill the void in lightweight security measures for the Hadoop 
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ecosystem, motivated by the pursuit of a balanced approach that effectively fortifies data security without 

compromising the system’s operational efficiency. Our ultimate aim is to provide a practical and scalable 

solution to the pressing security concerns in distributed systems, specifically within Hadoop’s MapReduce 

framework. 

In this paper, we’ve advanced several key contributions: 

First, we’ve delved into data security, looking at the many challenges that arise when protecting large-

scale data processing. This includes studying issues like fake data generation and the risks posed by untrusted 

mappers in distributed systems. We’ve also thoroughly examined existing Hadoop security measures to see 

how effective they are against evolving threats. 

Second, we’ve introduced the MR-LightWeight Algorithm. This is an innovative approach that seamlessly 

combines lightweight cryptography with MapReduce, a core part of the Hadoop system. This algorithm is 

designed to enhance data security without slowing down operations. Our research covers lightweight 

cryptographic algorithms, including stream and block ciphers, and explains their importance and benefits. We 

also go into detail about the design principles of MR-LightWeight, providing insights into how it’s integrated, 

its pseudo-code, and how it works in practice. 

Third, we’ve turned our attention to real-world applications, especially in securing sensitive data. We’ve 

shared information about our experiments, performance metrics, and comparisons that highlight the 

algorithm’s security strength and efficiency in distributed environments. 

We have structured our paper as follows: 

The landscape of data security in distributed environments presents multifaceted challenges in securing 

large-scale data processing. Section 2 delves into the significance of data security within distributed processing 

frameworks, shedding light on the paramount importance of safeguarding data in such dynamic and expansive 

settings. It outlines the top challenges faced in ensuring security within large-scale data processing, pinpointing 

the critical areas that demand attention. 

Motivated by the necessity to address these challenges, Section 2.3 explores the rationale for integrating 

lightweight cryptography in the MapReduce framework. This section serves as the crux for the proposed MR-

LightWeight Algorithm, emphasizing the need to fuse security measures seamlessly into the distributed 

processing infrastructure. 

Section 3 unfolds the architecture and design principles underpinning the MR-LightWeight Algorithm. It 

meticulously dissects the key-value components and functionalities driving the proposed algorithm, 

showcasing its strategic focus on enhancing data security and operational efficiency, particularly through 

mapper-reducer encryption and decryption processes. 

Moving into Section 4, the paper dives into the technical details of encryption and decryption processes 

within MapReduce, offering insights into the pseudo-codes for lightweight encryption and decryption 

algorithms. These sections—4.1, 4.2, and 4.3—break down the intricate coding elements for lightweight 

encryption and decryption, elucidating the main functions driving security within MapReduce. 

Transitioning to Section 5, the focus shifts towards the practical aspects and findings resulting from the 

application of the MR-LightWeight Algorithm. It assesses the performance impact of lightweight cryptography, 

breaking down encryption and decryption times for both stream and block ciphers. Through detailed analyses 

in 5.2, the section provides a comparative overview of encryption and decryption times, categorizing both 

stream and block ciphers for a comprehensive understanding of their operational efficiency. 

Finally, the paper concludes with insights drawn from the findings and lays down potential future avenues 

for research and development in data security within distributed processing frameworks. It encapsulates the 
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outcomes and suggests areas where further exploration could fortify the synergy between data protection and 

operational efficacy in the evolving landscape of large-scale data processing. 

2. Safeguarding the Hadoop ecosystem: Exploring security measures 

When Hadoop was first released in 2007 it was intended to manage large amounts of web data in a trusted 

environment, it did not have a security mechanism, a security model, or an overall security plan.  

Effectively, security was not a significant concern or focus. With the increasing use of Hadoop, malicious 

behaviors such as unauthorized job submission, Job Tracker status change, and data falsification continue to 

occur. 

The Hadoop open-source community began to consider security requirements and added security 

mechanisms such as Kerberos authentication, ACL file access control, and network layer encryption. 

The Hadoop ecosystem consists of various components. We need to secure all the other Hadoop 

ecosystem components.  

In this section, we will look at the each of the ecosystem components security and the security solution 

for each of these components, each component has its own security challenges, issues, and needs to be 

configured properly based on its architecture to secure them[3]. 

2.1. Hadoop security landscape: Threats, vulnerabilities, and countermeasures 

The Hadoop security landscape is marked by a complex interplay of threats, vulnerabilities, and the 

corresponding countermeasures. As organizations increasingly rely on the Hadoop ecosystem for Big Data 

processing, understanding, and addressing these security aspects becomes paramount. Threats to Hadoop-

based systems encompass a range of potential breaches, including unauthorized data access, data integrity 

compromise, and service disruptions[4]. 

One notable vulnerability lies in the distributed nature of Hadoop clusters, which can expose sensitive 

data during intra-node and inter-node communication[5]. Furthermore, the open-source nature of Hadoop makes 

it susceptible to vulnerabilities arising from unpatched software or misconfigurations, which can be exploited 

by attackers[6]. 

Counteracting these threats and vulnerabilities demands a multifaceted approach. Effective authentication 

and authorization mechanisms are crucial, ensuring that only authorized users can access and manipulate 

Hadoop resources[7]. Encryption techniques are pivotal in protecting data at rest and during transit, thwarting 

unauthorized access and tampering[8]. 

Hadoop security projects such as Apache Knox and Apache Ranger play a pivotal role in enhancing the 

security landscape[9]. These projects offer centralized authentication and access control frameworks, providing 

administrators with tools to manage and enforce security policies. 

However, relying solely on Hadoop security projects might not be sufficient. Supplementary security 

layers, such as intrusion detection systems and real-time monitoring, are essential for prompt threat detection 

and response[10]. Additionally, maintaining a proactive stance in patch management and staying abreast of 

emerging security advisories is vital to preemptively addressing potential vulnerabilities. 

2.2. Exploring varieties of Hadoop security measures 

Delving into the diverse array of security measures within the Hadoop ecosystem reveals a comprehensive 

landscape designed to fortify Big Data processing against an evolving spectrum of threats. 

As organizations navigate the complexities of Big Data, an intricate fabric of security mechanisms and 

strategies has been woven to safeguard data integrity, confidentiality, and availability[11]. 
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2.2.1. Authentication and authorization mechanisms 

At the core of Hadoop security lies a robust system of authentication and authorization[12]. This 

encompasses user authentication through Kerberos, enabling secure user identification, and role-based access 

control (RBAC) mechanisms that dictate user privileges based on predefined roles[13]. 

2.2.2. Encryption techniques 

Hadoop boasts various encryption approaches to secure data at rest and in transit[14]. Hadoop’s HDFS 

Transparent Data Encryption (TDE) safeguards data at rest by encrypting data blocks on disk. Moreover, 

Secure Sockets Layer (SSL) encryption facilitates secure communication between nodes, preventing 

eavesdropping and data interception. 

2.2.3. Fine-Grained access control 

Fine-grained access control is achieved through tools like Apache Ranger, allowing administrators to 

define specific access policies[15]. This offers granular control over who can access, modify, or delete data, 

minimizing the risk of unauthorized manipulation. 

2.2.4. Auditing and monitoring 

Hadoop’s auditing and monitoring mechanisms provide real-time visibility into system activities[16]. Audit 

logs track user interactions, aiding in the identification of suspicious or unauthorized activities. Tools like 

Apache Ambari Metrics help visualize cluster performance, facilitating early detection of anomalies. 

2.2.5. Secure cluster deployment 

Implementing a secure cluster involves meticulous consideration of network security and resource 

isolation[17]. Isolating clusters with firewalls, segregating networks, and utilizing network security groups add 

layers of defense against external threats. 

As Big Data’s landscape evolves, so do the strategies to safeguard it. The Hadoop ecosystem continues 

to adapt, embracing emerging technologies like machine learning for anomaly detection and behavioral 

analysis to augment security[18]. By embracing these multifaceted security measures, organizations can harness 

the power of Hadoop while ensuring data remains impervious to the ever-expanding spectrum of cyber risks. 

2.2.6. Data protection strategies: Encryption and masking in Hadoop 

Safeguarding data integrity and privacy within the Hadoop ecosystem hinges on strategic implementation 

of advanced data protection techniques. In this context, encryption and masking emerge as pivotal strategies, 

fortified by their ability to shield sensitive information from unauthorized access while preserving data 

usability[19]. 

2.2.7. Encryption 

Encryption, a cornerstone of modern data security, finds resonance within Hadoop’s dynamic 

environment. Transparent Data Encryption (TDE) mechanisms such as HDFS Encryption contribute to 

securing data at rest. By encrypting data blocks on disk, HDFS Encryption prevents unauthorized access to 

raw data in the event of storage device compromise[20]. Moreover, utilizing encryption for data in transit via 

Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols ensures that communication between 

nodes remains impervious to eavesdropping[21]. 

2.2.8. Column-Level encryption 

For enhanced security, column-level encryption methods are pivotal. Sensitive fields within datasets can 

be encrypted individually, bolstering the safeguarding of particularly confidential information. Apache HBase, 

a distributed NoSQL database, supports cell-level encryption, allowing individual cell values to be 

encrypted[22]. This technique ensures that even within a larger dataset, only the necessary sensitive information 
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is concealed. 

2.2.9. Data masking 

Complementing encryption, data masking—also referred to as data obfuscation—provides an additional 

layer of security. Masking involves substituting sensitive data with fictitious values while retaining the format, 

thereby rendering the data pseudonymous. This technique ensures usability for development, testing, and 

analytics purposes while safeguarding the underlying sensitive information[23]. 

However, these strategies are not without their challenges. Balancing security with performance is an 

intricate undertaking, as encryption and masking can introduce overhead. Key management also assumes 

paramount importance to avoid central points of failure. 

2.2.10. Building the shield: A survey of Hadoop security projects 

There are six major Hadoop security projects including Apache Knox Gateway, Apache Sentry, Apache 

Ranger, and Project. The section below briefly explains some of this existing reviewed security tools for 

Hadoop cluster security. 

2.2.11. Kerberos 

Kerberos, a widely used authentication protocol, plays a crucial role in enhancing security within Big 

Data environments. Developed by the Massachusetts Institute of Technology (MIT), Kerberos provides a 

strong foundation for ensuring secure communication and access control in distributed systems, including 

those within the realm of Big Data. 

By employing a trusted third-party authentication server, Kerberos enables users and services to securely 

authenticate their identities and access resources across the cluster. In Big Data frameworks like Hadoop, 

Kerberos integration enhances data protection, mitigates unauthorized access risks, and contributes to 

maintaining the integrity of the overall ecosystem. 

In all, there are three steps that a client must take to access a service when using Kerberos Figure 1, each 

of which involves a message exchange with a server. 

 
Figure 1. Kerberos. 

2.2.12. Apache Knox gateway 

Apache Knox is an application gateway for interacting, in a secure way, with the REST APIs and the user 

interfaces of one or more Hadoop clusters. 
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Apache Knox provides multiple layers of security for authentication, authorization of service level, and 

security checks of out-of-the-box Web applications for multiple Hadoop components. 

Knox has several authentication mechanisms supported with Kerberos, such as LDAP over SSL, AD, 

PAM-based authorization for UNIX users, integration with identity providers such as Okta, and more.  

Similarly, features such as Secure Proxy, Single Sign-On, Hostmap Provider, Provider Identity 

Assignment, Client Authentication, improve overall security. 

2.2.13. Apache sentry 

Apache Sentry is a granular, role-based authorization module for controlling and enforcing fine grained 

role-based authorization to data and metadata stored on a Hadoop cluster. 

In the existing group mapping environment of the Hadoop ecosystem, it is easy to manage permissions 

by simply manipulating the unique role of Sentry. 

Currently Apache Sentry integrates with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, 

and HDFS (limited to hive table data). Apache Sentry has successfully graduated from the Incubator in March 

of 2016 and is now a Top-Level Apache project. 

2.2.14. Apache rhino 

Apache Rhino is an open-source project aimed at enhancing the security aspects of the Hadoop ecosystem. 

It specifically focuses on augmenting the security of the Hadoop Distributed File System (HDFS) by 

introducing advanced encryption and key management capabilities[24]. The project’s primary goal is to 

contribute code directly to relevant Apache projects, thereby elevating the overall security standards of Hadoop. 

One of the standouts features of Apache Rhino is its emphasis on providing options for encryption and 

compression of files stored within HDFS. This dual approach allows organizations to choose whether to 

compress, encrypt, or apply both operations to the files stored in the Hadoop cluster[25]. This flexibility enables 

tailored security strategies that align with the specific needs of data processing workflows. 

To achieve its encryption objectives, Apache Rhino follows a strategy that involves dividing entire files 

into distinct splits, with each split stored in a separate data block within the cluster’s data nodes. This approach 

ensures that data remains segmented and distributed, enhancing security while enabling parallel processing. 

It’s important to note that Apache Rhino relies on the widely recognized Advanced Encryption Standard (AES) 

for encryption, a well-established encryption algorithm known for its strong security properties[26]. 

2.2.15. Apache ranger 

Apache Ranger stands as a robust open-source platform designed to bolster data security within modern 

enterprises. As organizations grapple with the complexities of data privacy and access control, Apache Ranger 

emerges as a vital tool to safeguard sensitive information. 

With its centralized management framework, Ranger offers comprehensive authorization and auditing 

capabilities, allowing administrators to define fine-grained policies to govern data access and usage across a 

diverse range of data stores and platforms. 

By enabling dynamic policy enforcement and access control, Apache Ranger empowers organizations to 

maintain compliance, mitigate risks, and protect their valuable data assets, thereby fostering a secure and trust-

driven environment. 

2.3. Beyond projects: Evaluating the adequacy of Hadoop security measures 

In the realm of fortifying Hadoop’s security posture, the incorporation of a robust security framework 

emerges as a pivotal strategy. An exemplar initiative, Project Rhino, seeks to elevate Hadoop’s security 
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standards by directly contributing code to relevant Apache projects. 

Central among Project Rhino’s objectives is the integration of encryption and key management support[27]. 

This project introduces an option to compress, encrypt, or both compress and encrypt files within Hadoop 

Distributed File System (HDFS). The segmentation of files into distinct splits, each residing in a separate data 

block, underpins the encryption process[28]. 

However, Project Rhino does come with inherent limitations, particularly in its utilization of the widely 

known Advanced Encryption Standard (AES)[29]. 

The memory-intensive nature of AES can potentially impact performance, especially considering the 

substantial memory constraints of client nodes and the often-voluminous size of files. 

In the context of Big Data environments, data storage is not the sole challenge; efficient data processing is 

equally vital. 

Beyond the realm of Hadoop security projects, published studies have explored the terrain of data 

encryption within Hadoop. 

Viplove Kadre and Sushil Chaturvedi[30] present a parallel encryption technique leveraging the Advanced 

Encryption Standard using MapReduce (AES-MR) to enhance data security within HDFS. 

The need for efficient encryption in parallel stems from the time-intensive nature of encryption, which 

this technique addresses by leveraging the parallel capabilities of MapReduce. Their findings highlight the 

efficiency of AES-MR encryption when executed solely within the mapper function. 

Additionally, novel encryption algorithms have been harnessed to bolster Hadoop data security. Modified 

parallel RC4 encryption, for instance, was explored to minimize costs while maximizing security[31]. 

The experimental results underscore the efficiency of encryption when integrated with MapReduce, 

showcasing reduced time consumption. 

Other studies have explored hybrid encryption schemes. Kumar and Rao[32] achieved data confidentiality 

within HDFS through integration of AES with RSA and pairing-based encryption, ensuring data protection. A 

hybrid encryption scheme proposed in 2012[33] utilized DES, RSA, and IDEA algorithms to secure files and 

user keys. 

Continuing this trajectory, Liu and Ge[34] proposed a secure Hadoop architecture integrating encryption 

and decryption into HDFS, resulting in a minimal computation overhead. Park and Lee[35] suggested a HDFS 

data encryption scheme supporting both ARIA and AES algorithms.  

Moreover, a 2021 research study[36] comprehensively examines security challenges and solutions in 

Hadoop-based big data analytics, encompassing data privacy, access control, integrity, and more. 

Yet, despite the comprehensive arsenal of Hadoop security projects, several challenges persist. Constantly 

evolving threats demand regular updates and enhancements. Complexity and resource demands can make 

implementation and management arduous, especially for resource-limited organizations. Moreover, the cost of 

security measures may hinder comprehensive adoption, particularly for smaller entities. 

In summary, while Hadoop security projects provide essential tools, their adequacy requires holistic 

assessment. The evolving security landscape, intricate implementation, resource constraints, and costs 

underscore the dynamic nature of securing the Hadoop ecosystem. Staying ahead of emerging threats and 

addressing these challenges becomes an ongoing pursuit in the pursuit of robust security. 
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3. Data security and distributed processing 

3.1. The importance of data security in distributed environments 

In today’s interconnected and data-driven world, the importance of data security in distributed 

environments cannot be overstated. With the increasing adoption of distributed computing frameworks like 

MapReduce and cloud computing, vast amounts of data are being processed, stored, and transmitted across 

networks.  

This distributed nature of data processing introduces unique challenges and vulnerabilities that require 

robust security measures. In distributed environments, data is fragmented and spread across multiple nodes, 

making it more susceptible to interception, tampering, and unauthorized access.  

A security breach in one part of the system could potentially compromise the entire network, leading to 

severe consequences such as data theft, financial losses, and damage to reputation.  

Additionally, as data travels through different nodes and communication channels, it is exposed to 

various risks, including man-in-the-middle attacks and data leakage. Furthermore, compliance with data 

protection regulations and industry standards necessitates a strong focus on data security in distributed 

environments. 

To build trust and maintain customer confidence, organizations must prioritize data security as a 

fundamental aspect of their operations. Implementing encryption, access controls, and other security 

mechanisms becomes paramount to ensure data confidentiality, integrity, and availability throughout the 

distributed data processing lifecycle.  

By addressing data security comprehensively in distributed environments, businesses can confidently 

leverage the potential of large-scale data processing and cloud computing while safeguarding sensitive 

information from evolving cyber threats[5]. 

3.2. Challenges in securing large-scale data processing 

Securing large-scale data processing is a multifaceted endeavor that involves overcoming numerous 

challenges to ensure the confidentiality, integrity, and availability of data. As organizations handle vast 

volumes of data in distributed environments like MapeReduce and cloud computing, they encounter the 

challenge of efficiently implementing encryption and decryption techniques that can scale without degrading 

performance.  

The distributed nature of data processing introduces complexities in managing security controls 

consistently across multiple nodes and storage locations. Furthermore, the diverse range of data types, from 

structured to unstructured data, necessitates adaptable security measures to address varying data formats. Key 

management emerges as a critical challenge, requiring the secure generation, storage, and distribution of 

cryptographic keys while safeguarding against unauthorized access.  

Data privacy compliance becomes intricate, especially when sharing data across organizations or 

jurisdictions. Additionally, maintaining real-time monitoring and threat detection capabilities is vital to identify 

and respond to security incidents promptly[37]. 

Addressing these challenges requires a comprehensive approach, combining robust encryption practices, 

access controls, secure data transfers, and proactive security measures to create a resilient and secure data 

processing ecosystem. 

Top challenges in securing large-scale data processing: 

 Scaling Encryption and Decryption: Efficiently implementing encryption and decryption techniques 
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that can scale with the growing volume of data without compromising performance. 

 Distributed Security Controls: Managing security controls consistently across multiple nodes and 

storage locations in distributed computing environments. 

 Data Format Diversity: Addressing the security of diverse data types, including structured, semi-

structured, and unstructured data, while ensuring their confidentiality and integrity. 

 Key Management: Securely generating, storing, and distributing cryptographic keys to authorized users 

while preventing unauthorized access. 

 Data Privacy Compliance: Ensuring compliance with data protection regulations and industry standards 

when processing and transferring large-scale data. 

 Real-Time Monitoring and Threat Detection: Maintaining continuous monitoring and proactive threat 

detection capabilities to identify and respond swiftly to security incidents. 

Each of these challenges represents a critical aspect of securing large-scale data processing and requires 

tailored and comprehensive solutions to mitigate risks and protect sensitive information effectively. 

3.3. Motivation for integrating lightweight cryptography in MapReduce 

The motivation for integrating lightweight cryptography in MapReduce arises from the increasing need 

to secure large-scale data processing in distributed environments effectively. As data processing tasks become 

more extensive and complex, traditional encryption algorithms may impose significant computational 

overhead and slow down processing speed. 

Lightweight cryptography offers a compelling solution by providing efficient encryption and decryption 

techniques that strike a balance between security and performance.  

By integrating lightweight cryptography in MapReduce, organizations can ensure data confidentiality and 

integrity without compromising the efficiency of data processing tasks. Moreover, lightweight cryptography 

algorithms are designed to be resource-efficient, making them well-suited for distributed computing 

environments like MapReduce, where data is processed across multiple nodes.  

Additionally, the integration of lightweight cryptography enhances the security of data stored in Hadoop 

Distributed File System (HDFS) by encrypting data at rest and during transit within the MapReduce workflow.  

Ultimately, the integration of lightweight cryptography in MapReduce enables secure, scalable, and high-

performance data processing, meeting the demands of modern big data analytics. 

Motivations for integrating lightweight cryptography in MapReduce: 

 Efficiency: Lightweight cryptography offers efficient encryption and decryption techniques, minimizing 

computational overhead and preserving the performance of data processing tasks in distributed 

environments. 

 Resource-Optimization: Lightweight cryptography algorithms are designed to be resource-efficient, 

making them well-suited for deployment in distributed computing frameworks like MapReduce, where 

resources are shared across multiple nodes. 

 Data Confidentiality: Integrating lightweight cryptography ensures data confidentiality, safeguarding 

sensitive information during data processing and storage in HDFS. 

 Scalability: Lightweight cryptography allows for seamless scaling of data processing tasks, making it 

ideal for handling large volumes of data in distributed environments without compromising security. 

 End-to-End Security: The integration of lightweight cryptography in MapReduce ensures end-to-end 

security, encrypting data at rest and during transit, providing comprehensive data protection throughout 

the data processing workflow. 
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4. The proposed MR-lightweight algorithm: Design and principles 

The Persuasive MR-LightWeight Algorithm represents an innovative and robust encryption approach that 

combines the strengths of lightweight cryptography with the efficiency of the MapReduce paradigm. 

The design of the algorithm is founded on several key principles to ensure both data security and high-

performance processing in distributed environments.  

Firstly, the algorithm prioritizes efficiency by employing lightweight cryptographic primitives, such as 

optimized block ciphers and stream ciphers, to minimize computational overhead during encryption and 

decryption operations. 

This efficiency is critical in large-scale data processing scenarios, where data volumes are substantial and 

computational resources are shared across multiple nodes. 

Secondly, the Persuasive MR-LightWeight Algorithm offers end-to-end security by integrating seamlessly 

into MapReduce workflows, encrypting data before storage in Hadoop Distributed File System (HDFS) and 

decrypting it during processing. 

This approach ensures that sensitive information remains encrypted at all stages, mitigating risks of 

unauthorized access or exposure during data transfers. 

Thirdly, the algorithm provides granular control over data security, allowing selective encryption of 

specific data elements while preserving the efficiency of MapReduce tasks. This flexibility is valuable when 

dealing with diverse data types and data with varying sensitivity levels.  

Lastly, robust key management principles are incorporated to ensure secure generation, storage, and 

distribution of cryptographic keys, preventing unauthorized access and enhancing overall data security. 

By adhering to these design principles, the Persuasive LightWeight Algorithm offers a powerful and 

practical solution for securing large-scale data processing in distributed environments, fostering an 

environment of trust and confidentiality while enabling high-performance data analytics[4]. 

4.1. Introduction to the proposed encryption and decryption approach 

 
Figure 2. Proposed MR-LWT encryption/decryption approach. 

The proposed encryption and decryption approach in Figure 2 introduces a cutting-edge solution to 

enhance data security in distributed data processing environments like MapReduce.  

In this approach, lightweight cryptography algorithms are seamlessly integrated into the Map and Reduce 
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tasks of the MapReduce framework.  

The primary objective is to safeguard sensitive information at all stages of the data processing workflow, 

from storage in HadooP Distributed File System (HDFS) to the final computation in MapReduce.  

By leveraging lightweight cryptography, the approach ensures efficient resource utilization and minimal 

computational overhead, making it well-suited for handling large-scale data volumes without compromising 

performance. The integration of end-to-end encryption and decryption provides comprehensive data protection, 

preventing unauthorized access or exposure during data transfers between nodes.  

Moreover, the approach offers the flexibility to selectively encrypt specific data elements, enabling fine-

grained control over data confidentiality. Key management forms a crucial component, ensuring the secure 

generation, storage, and distribution of cryptographic keys to authorized users, bolstering overall data security. 

Through this proposed encryption and decryption approach, organizations can confidently process and 

store sensitive data in distributed environments, laying the foundation for a secure, efficient, and scalable data 

processing ecosystem. 

4.2. Design principles for combining lightweight cryptography with MapReduce 

The seamless integration of lightweight cryptography with MapReduce presents a novel approach to 

enhance data security and efficiency in distributed data processing environments. To achieve this integration 

successfully, several design principles are essential. 

Firstly, the encryption and decryption operations should be designed to minimize computational overhead, 

prioritizing the use of lightweight cryptographic primitives that offer a balance between security and 

performance. 

Secondly, the approach must provide end-to-end security, encrypting data before storage in Hadoop 

Distributed File System (HDFS) and decrypting it during MapReduce processing, ensuring data confidentiality 

at all stages. 

Thirdly, the system should be designed to accommodate the diverse range of data types typically 

encountered in distributed computing, allowing for efficient encryption and decryption of structured, semi-

structured, and unstructured data. 

Fourthly, robust key management is imperative, ensuring secure generation, storage, and distribution of 

cryptographic keys, preventing unauthorized access and safeguarding sensitive information. 

Finally, the approach should be flexible and scalable, capable of handling large-scale data volumes and 

seamlessly integrating with existing MapReduce workflows. By adhering to these design principles, the 

combination of lightweight cryptography with MapReduce can create a powerful and secure data processing 

environment that meets the demands of modern big data analytics. 

List of design principles for combining lightweight cryptography with MapReduce: 

 Efficiency: Prioritize lightweight cryptographic primitives to minimize computational overhead and 

maintain efficient data processing. 

 End-to-End Security: Implement encryption before data storage in HDFS and decryption during 

MapReduce processing to ensure comprehensive data protection. 

 Data Type Flexibility: Design encryption and decryption mechanisms that can accommodate a diverse 

range of data types, including structured, semi-structured, and unstructured data. 

 Robust Key Management: Develop a secure key management system to generate, store, and distribute 

cryptographic keys to authorized parties, enhancing overall data security. 

 Scalability and Flexibility: Create a flexible and scalable approach that seamlessly integrates with 
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existing MapReduce workflows, enabling efficient handling of large-scale data volumes without 

compromising performance. 

4.3. Key-Value components and functionalities of the proposed MR-light weight algorithm 

 

Figure 3. General model of proposed MR-LWC framework. 

The Persuasive MR-Light Weight Algorithm in Figure 3 comprises key components and functionalities 

that synergistically contribute to its efficient and secure data processing in MapReduce. One of the central 

components is the lightweight cryptographic primitives, such as optimized block ciphers and stream ciphers, 

which play a pivotal role in ensuring data security while minimizing computational overhead. 

The algorithm’s functionality begins with the process of splitting files into blocks, where each block is 

uniquely identified with a value to maintain data integrity throughout the distributed processing. 

During the Map phase, each block is individually encrypted using the lightweight cryptographic 

primitives, enabling granular control over data confidentiality. 

The Persuasive MR-LightWeight Algorithm employs a robust key management system to generate, store, 

and distribute cryptographic keys, enhancing overall data protection and ensuring secure access. 

As the MapReduce tasks proceed, the algorithm seamlessly handles the fusion of blocks, intelligently 

merging encrypted blocks back into their original files during the Reduce phase.  

This fusion process guarantees the completeness and accuracy of decrypted data without compromising 

on performance.  

By encompassing these key components and functionalities, the Persuasive MR-LightWeight Algorithm 

empowers large-scale data processing with enhanced security, efficiency, and end-to-end encryption, making 

it a compelling solution for safeguarding sensitive information in distributed environments. 

The Persuasive MR-LightWeight Algorithm boasts a significant advantage in MapReduce, being flexible 

and compatible, which facilitates the seamless integration of various lightweight cryptography algorithms like 

RABBIT and CHACHA20.  

By designing the algorithm to be adaptable and extensible, it can accommodate different lightweight 

cryptographic primitives, making it versatile for a wide range of data processing scenarios.  

This flexibility enables organizations to tailor the algorithm to their specific security requirements and 

preferences, leveraging the strengths of various lightweight algorithms to suit different use cases.  

Moreover, the Persuasive MR-LightWeight Algorithm’s compatibility ensures that it can be easily 

integrated into existing MapReduce workflows without major modifications, streamlining the adoption process 

and minimizing implementation efforts. This compatibility fosters a smooth transition for organizations 

seeking to enhance their data security without overhauling their existing data processing infrastructure. 

The ability to adapt every lightweight algorithm with the proposed Persuasive LightWeight Algorithm in 

MapReduce enhances its appeal as a comprehensive and future-proof solution, catering to diverse security 
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needs and keeping pace with advancements in lightweight cryptography research. 

4.4. Strategic choice: Elevating data security and efficiency via mapper-reducer encryption 

and decryption 

In our proposed approach, we have deliberately adopted the strategy of utilizing Mapper-Reducer 

encryption and decryption within the MapReduce framework.  

This choice stems from the dual objective of enhancing data security while concurrently optimizing 

computational efficiency, the decision to employ encryption in the mapper phase and decryption in the reducer 

phase is a strategic one that brings forth several advantages.  

The primary goal of this approach is to enhance the overall security of the data while efficiently utilizing 

the capabilities of the MapReduce paradigm. 

Encrypting data within the mapper phase ensures that sensitive information remains protected during its 

transfer between different nodes and throughout the processing pipeline. This added layer of security mitigates 

the risk of unauthorized access or data leakage at various stages of computation. 

Decryption, on the other hand, is often performed within the reducer phase to avoid the transmission of 

plaintext data across the network, minimizing exposure to potential threats. Additionally, performing 

decryption in the reducer phase allows for a centralized control over the decryption process, making it easier 

to manage keys and implement security policies. 

By distributing the encryption process across mappers and deferring decryption to reducers, this approach 

leverages the parallelism inherent in MapReduce frameworks, which enhances processing efficiency. Mappers 

work concurrently to encrypt different portions of data, while reducers collaboratively decrypt the data chunks, 

making the most of the cluster’s resources. 

Overall, this choice of encryption in mapper and decryption in reducer presents a balanced strategy that 

combines security, efficiency, and optimized resource utilization, making it a compelling approach for ensuring 

data confidentiality and integrity in large-scale distributed computing environments. 

Encrypting data with the mapper and decrypting it with the reducer in a MapReduce framework can serve 

several purposes, particularly in scenarios where data security, privacy, and confidentiality are paramount: 

 Data confidentiality: Encrypting data before it’s processed by the mapper ensures that the sensitive 

information remains confidential during the data processing phase. This is especially important when the 

data needs to be shared among different nodes or when using cloud-based or distributed systems. 

 Secure Data Transfer: When data is transmitted from the mapper to the reducer, encrypted data ensures 

that even if the communication is intercepted, the data remains secure and unreadable by unauthorized 

parties. 

 Limited Access to Raw Data: In some cases, the reducer nodes might not be fully trusted or controlled 

by the same entity that processes the mapper. By encrypting the data before sending it to the reducer, you 

prevent the reducer nodes from accessing the raw data, thus reducing the risk of data breaches. 

 Data Privacy in Outsourcing: When outsourcing data processing to third-party services or cloud 

providers, encrypting the data before sending it ensures that the service provider cannot access the actual 

data. Only the entity with the appropriate decryption key can access the original data. 

 End-to-End Security: By encrypting data in the mapper and decrypting it in the reducer, you ensure that 

the data remains encrypted during its entire journey within the MapReduce framework, from input to 

output. 

 Secure Interactions with External Systems: In cases where the reducer interacts with external systems, 

such as databases or applications, decrypting the data in the reducer allows for seamless integration while 
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maintaining data security. 

 Data Compliance: In regulated industries, encrypting data throughout its lifecycle, including within a 

MapReduce job, can help meet data security and compliance requirements. 

The choice of whether to encrypt with the mapper and decrypt with the reducer depends on the specific 

security requirements, the nature of the data, and the overall system architecture. 

5. Encryption and decryption in MapReduce: Pseudo-Code and 

implementation 

5.1. Pseudo-Code of proposed algorithm for lightweight encryption in MapReduce 

Integrating Encryption and decryption process into MapReduce requires defining the encryption and 

decryption processes within the Map and Reduce tasks. Below is a simplified pseudo-code algorithm 

illustrating our proposed persuasive lightweight algorithm in MapReduce for encryption. 

Algorithm 1 Map function (Encryption) 

1: map (Key, Value): 
2: //Key: input file offset 
3: //Value: input data block 
4: //Step 1: Read the input data block from Value 

5: //Step 2: Perform Lightweight Encryption on the data block 
6: encryptedDataBlock ← LightweightEncrypt(Value) 
7: //Step 3: Emit (Key, encryptedDataBlock) as the output 
8: Emit (Key, encryptedDataBlock) 

The provided pseudo-code in Algorithm 1 represents the Map Function for Encryption in the context of 

MapReduce. In this algorithm, data encryption is applied to secure the input data block before processing it 

further.  

The Map Function takes a Key, which represents the input file offset, and a Value, which is the input data 

block to be encrypted. The process starts by reading the input data block from the Value, ensuring that the data 

is ready for encryption. 

Next, in Step 2, the algorithm performs Lightweight Encryption on the data block using a specified 

lightweight encryption function, denoted as LightweightEncrypt(). 

The lightweight encryption function is designed to strike a balance between data security and processing 

efficiency, making it suitable for large-scale data processing tasks in distributed environments like MapReduce.  

Finally, in Step 3, the encrypted data block is emitted as the output. The output of the Map Function 

consists of Key-Value pairs, where the Key remains unchanged (representing the input file offset), and the 

Value is now the encrypted data block. By emitting (Key, encryptedDataBlock) as the output, the Map Function 

preserves the association between the input data block and its corresponding encrypted version, which is 

essential for further processing in the MapReduce workflow. 

Overall, this pseudo-code demonstrates a straightforward yet effective encryption process within 

MapReduce, providing data security while maintaining the integrity of the data processing workflow[4]. 

5.2. Pseudo-Code of proposed algorithm for lightweight decryption in MapReduce 

Our proposed pseudo-code represents the Reduce Function for Decryption in the context of MapReduce. 

This algorithm aims to decrypt the encrypted data blocks associated with the same Key during the Reduce 

phase. The Reduce Function takes a Key, which is the file offset shared across all values, and a list of Values, 

which consists of encrypted data blocks that share the same Key. 
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Algorithm 2 Reduce Function (Decryption) 

1: reduce (Key, Values): 
2: //Key: file offset (common to all values) 

3: //Values: List of encrypted data blocks associated with the same key 
4: //Step 1: Concatenate the encrypted data blocks into a single data block 
5: concatenatedDataBlock ← Concatenate (Values) 
6: //Step 2: Perform Lightweight Decryption on the concatenated data block 
7: decryptedDataBlock ← LightweightDecrypt(concatenatedDataBlock) 
8: //Step 3: Emit (Key, decryptedDataBlock) as the output 
9: Emit (Key, decryptedDataBlock) 

The decryption process in Algorithm 2 starts with Step 1, where the algorithm concatenates all the 

encrypted data blocks from the Values into a single data block. This step ensures that the algorithm can 

accurately decrypt the data by reconstructing the original order and structure of the data. 

In Step 2, the algorithm proceeds with Lightweight Decryption on the concatenated data block. The 

LightweightDecrypt() function is specifically designed to efficiently decrypt data encrypted using lightweight 

encryption techniques, preserving the performance efficiency required for large-scale data processing in 

distributed environments. 

Finally, in Step 3, the algorithm emits the decrypted data block along with the corresponding Key as the 

output. By emitting (Key, decryptedDataBlock), the Reduce Function preserves the association between the 

Key and its decrypted data block, allowing for further processing or storage of the decrypted data. 

In conclusion, this pseudo-code exemplifies an effective decryption process within MapReduce, where 

encrypted data blocks associated with the same Key are decrypted and combined to reconstruct the original 

data, ensuring data confidentiality while maintaining the integrity of the distributed data processing workflow. 

5.3. Pseudo-Code of proposed algorithm for lightweight in MapReduce (Main function) 

The provided pseudo-code outlines the main function, serving as the driver code for our proposed 

algorithm. This algorithm demonstrates a comprehensive approach to secure data processing in distributed 

environments using MapReduce.  

Algorithm 3 Main Function (Driver Code) 

1: main(): 

2: //Step 1: Read the input file from HDFS 
3: inputFilePath ← "path/to/input/file" 
4: inputData ← ReadFromHDFS(inputFilePath) 
6: //Step 2: Split the input data into data blocks 
7: dataBlocks ← SplitData(inputData) 
8: //Step 3: Apply MapReduce for encryption using the defined Map function 
9: encryptedDataBlocks ← MapReduce(map, Input = dataBlocks) 
10: //Step 4: Write the encrypted data blocks to HDFS 

11: encryptedFilePath ← "path/to/output/encrypted_file" 
12: WriteToHDFS(encryptedFilePath, encryptedDataBlocks) 
13: //Step 5: Read the encrypted data from HDFS 
14: encryptedData ← ReadFromHDFS(encryptedF ilePath) 
15: //Step 6: Apply MapReduce for decryption using the defined Reduce function 
16: decryptedData ← MapReduce(reduce, Input = encryptedData) 
17: //Step 7: Write the decrypted data to the output file 
18: outputFilePath ← "path/to/output/decrypted_file" 
19: WriteToFile(outputFilePath, decryptedData) 

In Step 1, the Algorithm 3 reads the input file from Hadoop Distributed File System (HDFS) using the 

ReadFromHDFS() function, ensuring that the data is ready for processing.  

Step 2 involves splitting the input data into data blocks using the SplitData() function, breaking the data 

into manageable chunks to facilitate efficient processing. 
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In Step 3, the MapReduce paradigm is applied to encrypt the data blocks using the defined Map function. 

The algorithm leverages the Map function (map) to efficiently apply lightweight encryption on each data block, 

ensuring data confidentiality throughout the processing workflow. 

Step 4 involves writing the encrypted data blocks to HDFS, using the WriteToHDFS() function to store 

the secured data for further use or analysis. 

In Step 5, the encrypted data is read from HDFS, preparing for the decryption process. 

Step 6 applies MapReduce for decryption using the defined Reduce function. The algorithm employs the 

Reduce function (reduce) to efficiently decrypt the encrypted data blocks, reversing the encryption process and 

ensuring data integrity. 

Step 7 concludes the algorithm by writing the decrypted data to the output file using the WriteToFile() 

function, providing the final result of the data processing in a secure and accessible format. 

In summary, this pseudo-code of our proposed algorithm showcases a robust and practical approach to 

secure large-scale data processing in distributed environments using MapReduce. The integration of 

lightweight encryption and decryption functions ensures data security without compromising processing 

efficiency, making it suitable for diverse data processing applications in distributed computing environments. 

6. Results and finding 

6.1. Assessing the performance impact of lightweight cryptography 

In this study we compare two categories of algorithms lightweight block ciphers and lightweight stream 

ciphers. Stream ciphers are faster than block and are more difficult to implement correctly while block ciphers 

typically require more memory. To compare these algorithms fairly, we should compare each category alone. 

The table below present encryption time in seconds of algorithms with varying files sizes from 1 Megabytes 

to 1000 Megabytes. 

6.1.1. MR-Stream ciphers encryption time 

The ensuing Table 1 showcases the encryption times, measured in seconds, of the proposed MR-Stream 

Cipher algorithms across a spectrum of file sizes ranging from 1 Megabyte to 1000 Megabytes. 

Table 1. MR-Stream ciphers encryption time in seconds. 

Ciphers File size 

 1 MB 64 MB 128 MB 256 MB 512 MB 1 GB 

MR-AES(CTR) 79 s 91 s 102 s 139 s 400 s 820 s 

MR-Chacha20 70 s 96 s 152 s 187 s 409 s 802 s 

MR-Rabbit 80 s 89 s 97 s 117 s 322 s 612 s 

MR-HC128 99 s 98 s 167 s 193 s 587 s 1020 s 

6.1.2. MR-Block ciphers encryption time 

The following Table 2 provides a comprehensive overview of the encryption time, measured in seconds, 

for the Proposed MR-Block Ciphers algorithms. The encryption times are evaluated across a spectrum of file 

sizes ranging from 1 Megabyte to 1000 Megabytes. This analysis offers valuable insights into the performance 

characteristics of the algorithms under different data loads, shedding light on their efficiency and suitability 

for diverse applications. 
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Table 2. MR-Block ciphers encryption time in seconds. 

Ciphers File size 

 1 MB 64 MB 128 MB 256 MB 512 MB 1 GB 

MR-AES(CBC) 51 s 200 s 239 s 386 s 1072 s 1900 s 

MR-NOEKEON 58 s 110 s 135 s 240 s 309 s 601 s 

MR-Skipjack 43 s 105 s 152 s 257 s 517 s 940 s 

MR-XTEA 44 s 216 s 243 s 348 s 600 s 1023 s 

6.1.3. MR-Stream ciphers decryption time 

The subsequent Table 3 provides a comprehensive overview of decryption times, measured in seconds, 

for the MR-Stream Ciphers algorithms that we have proposed. These algorithms are assessed across a spectrum 

of file sizes ranging from 1 Megabyte to 1000 Megabytes. The presented table encapsulates the varying 

decryption durations for different file sizes, offering valuable insights into the performance characteristics of 

our proposed MR-Stream Ciphers algorithms. 

Table 3. MR-Stream Ciphers Decryption time in seconds. 

Ciphers File size 

 1 MB 64 MB 128 MB 256 MB 512 MB 1 GB 

MR-AES(CTR) 75 s 90 s 100 s 135 s 398 s 710 s 

MR-Chacha20 70 s 95 s 116 s 182 s 279 s 520 s 

MR-Rabbit 72 s 86 s 98 s 122 s 200 s 398 s 

MR-HC128 99 s 98 s 167 s 194 s 588 s 1020 s 

6.1.4. MR-Block ciphers decryption time 

The Table 4 provided below illustrates the decryption time in seconds for the proposed MR-Block Cipher 

algorithms across a spectrum of file sizes ranging from 1 Megabyte to 1000 Megabytes. This presentation 

offers an insightful view into how the decryption process performs with differing data sizes, shedding light on 

the algorithm’s efficiency and scalability. 

Table 4. MR-Block Ciphers Decryption time in seconds. 

Ciphers File size 

 1 MB 64 MB 128 MB 256 MB 512 MB 1 GB 

MR-AES(CBC) 57 s 207 s 246 s 395 s 1085 s 1997 s 

MR-NOEKEON 53 s 103 s 132 s 228 s 305 s 589 s 

MR-Skipjack 46 s 98 s 143 s 249 s 512 s 945 s 

MR-XTEA 44 s 210 s 238 s 337 s 593 s 997 s 

6.2. Comparative analysis of MR-stream ciphers with standard AES(CTR) 

The performance comparison of MR-Stream ciphers with the standard AES(CTR) algorithm provides 

valuable insights into their efficiency and suitability for different file sizes within the MapReduce framework. 

The focus lies on three key aspects: encryption/decryption time, memory allocation, and CPU usage. 

6.2.1. MR-AES vs. MR-Chacha20 

When assessing the performance of Chacha20 against AES(CTR) in Figure 4, it is evident that 

Chacha20 consistently outperforms AES(CTR) in terms of encryption/decryption time across various file 

sizes. Chacha20 demonstrates faster processing times, achieving a considerable reduction in time 

requirements. Notably, Chacha20 proves its efficacy in handling small files (1MB), showcasing a consistent 
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advantage over AES(CTR) in terms of speed. 

 
Figure 4. Encryption time AES(CTR) Vs chacha20. 

6.2.2. MR-AES vs. MR-RABBIT 

The Figure 5 Compare AES(CTR) with RABBIT reveals RABBIT’s competitive advantage in 

encryption/decryption time. RABBIT consistently outperforms AES(CTR) across all file sizes, 

demonstrating its efficiency in processing data within the MapReduce framework. Particularly notable is 

RABBIT’s capability to handle larger files (512MB and 1GB) with notably shorter processing times 

compared to AES(CTR). 

 
Figure 5. Encryption time AES(CTR) Vs Rabbit. 

6.2.3. MR-AES vs. MR-HC128 

The comparison between AES(CTR) and HC128 in Figure 6 highlights HC128’s higher 

encryption/decryption times, indicating its relatively slower processing speed. AES(CTR) consistently 

outperforms HC128 across all file sizes, showcasing its efficiency in terms of encryption/decryption time. 

This discrepancy in performance suggests that HC128 may not be the optimal choice for applications 

prioritizing rapid data processing within the MapReduce framework. 
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Figure 6. Encryption time AES(CTR) Vs HC-128. 

6.2.4. Conclusion 

In the context of MR-Stream ciphers, Chacha20 and RABBIT emerge as strong contenders against the 

standard AES(CTR) algorithm in terms of encryption/decryption time. Both Chacha20 and RABBIT exhibit 

enhanced efficiency across various file sizes, with Chacha20 excelling in small files and RABBIT 

demonstrating competence in handling larger files. HC128, on the other hand, lags AES(CTR) in terms of 

processing speed, indicating a trade-off between its advanced features and processing efficiency. 

These findings emphasize the need for a nuanced selection process when choosing MR-Stream ciphers, 

considering factors such as data size, processing speed, and resource allocation. Ultimately, the choice of cipher 

should align with the specific demands of the MapReduce framework and the intended data processing tasks. 

6.3. Comparative analysis of MR-Block ciphers with standard AES 

6.3.1. MR-AES vs. MR-NOEKEON 

 

Figure 7. Encryption time of MR-AES vs. MR-NOEKEON. 

The comparison between MR-AES and MR-NOEKEON in Figure 7 reveals notable differences in 

encryption/decryption time across various file sizes. For smaller files (1MB), MR-NOEKEON demonstrates 
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faster encryption/decryption times compared to MR-AES, showcasing its efficiency in handling lightweight 

data processing tasks. This advantage diminishes with larger file sizes, where MR-NOEKEON still maintains 

its efficiency but narrows the gap with MR-AES. 

In general, MR-NOEKEON offers a competitive edge for small to medium-sized files, making it an 

attractive choice for applications with stringent time constraints and limited computational resources. On the 

other hand, MR-AES exhibits a more consistent performance as the file size increases, making it a dependable 

option for processing larger datasets. 

6.3.2. MR-AES vs. MR-Skipjack 

 

Figure 8. Encryption time MR-AES vs. MR-Skipjack. 

The comparison between MR-AES and MR-Skipjack in Figure 8 highlights distinct performance 

characteristics based on file size. For smaller files (1MB), MR-Skipjack demonstrates faster 

encryption/decryption times compared to MR-AES, showcasing its efficiency in handling lightweight data 

processing tasks. This advantage holds true for medium-sized files as well (64MB to 256MB), underscoring 

MR-Skipjack’s suitability for relatively modest data sizes. 

However, as the file size increases further (512MB to 1000MB), MR-AES outperforms MR-Skipjack, 

demonstrating its ability to handle larger datasets efficiently. This trade-off suggests that MR-Skipjack shines 

in scenarios where smaller to medium-sized data processing is required, while MR-AES excels when dealing 

with more substantial amounts of data. 

6.3.3. MR-AES vs. MR-XTEA 

The comparison between MR-AES and MR-XTEA in Figure 9 offers insights into their respective 

performance profiles across different file sizes. For smaller files (1MB), MR-XTEA showcases faster 

encryption/decryption times compared to MR-AES, emphasizing its efficiency in processing lightweight data. 

This advantage extends to medium-sized files (128MB), where MR-XTEA continues to perform favorably. 

However, as the file size further increases (256MB to 1000MB), MR-AES begins to exhibit superior 

encryption/decryption times compared to MR-XTEA. This suggests that MR-XTEA is an optimal choice for 

smaller to medium-sized data processing tasks where speed is essential. Conversely, MR-AES maintains its 

efficiency as data sizes expand, positioning it as a robust option for handling larger datasets. 
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Figure 9. Encryption time of MR-AES vs. MR-XTEA. 

6.3.4. Conclusion 

In this comparative analysis, MR-NOEKEON, MR-Skipjack, and MR-XTEA display advantages in 

specific scenarios based on file sizes. Each algorithm has its strengths and trade-offs, making them suitable for 

various data processing requirements within the MapReduce framework. The choice between MR-AES and 

these alternative algorithms depends on factors such as data size, speed requirements, and available 

computational resources. By understanding these nuances, researchers and practitioners can make informed 

decisions to optimize their encryption processes in the context of MapReduce. 

6.4. Discussion of performance trade-offs 

The comprehensive evaluation of MR-Stream and MR-Block ciphers reveals various performance trade-

offs that impact their suitability for different applications within the MapReduce framework. This discussion 

highlights key findings related to encryption/decryption time, memory allocation, and CPU usage, shedding 

light on the nuances of selecting an optimal cipher based on specific performance priorities. 

6.4.1. MR-Stream ciphers category  

The results showed that for small files encryption/decryption (1MB), that Chacha20 consumes least 

encryption/decryption time, being fast because of its short initialization phase. On the other hand, HC-128 

takes the longest time to encrypt and decrypt small data because of the initialization overhead, when small files 

are processed, the performance is degraded. 

Therefore, Chacha20 can be the best candidate used for applications when only small data needs to be 

processed.  

For large amounts of data (1Go) the lowest encryption/decryption time was achieved by Rabbit due to the 

simplicity of its design, it is the most suitable stream cipher to be used in Big Data environment since it has 

the lowest encryption/decryption time, because it generates a keystream based on a 128-bit key and a 64-bit 

initialization vector (IV) using simple operations such as bitwise XOR and addition. This enables Rabbit to 

generate the keystream quickly and with minimal computational overhead. 

Additionally, Rabbit is designed to be highly parallelizable, which means that it can encrypt and decrypt 

data on multiple processing cores simultaneously. This feature enables Rabbit to take advantage of modern 

multi-core processors and can significantly reduce the time it takes to encrypt and decrypt large amounts of 



 

23 

data. 

On the other hand, the highest encryption/decryption time was achieved by HC-128, Because it uses two 

secret tables, which are essentially arrays of numbers that are used to perform calculations on the data being 

encrypted or decrypted.  

Each of these secret tables contains 512 elements, and each element in the table is 32 bits long. During 

the encryption and decryption process, HC-128 relies heavily on looking up values in the two secret tables.  

This can be a time-consuming process, especially if the tables are large, or if the data being encrypted or 

decrypted requires a significant number of table lookups. 

In general, the larger the tables and the more table lookups required, the longer it will take to perform 

encryption and decryption using HC-128. 

Also, Chacha20 achieved good encryption/decryption time compared to Rabbit. Besides, traditional 

encryption is not practical to encrypt massive data, although we can see that AES(CTR) refute the theory, it 

was noted that the AES(CTR) algorithm ranked second for the lowest encryption time after Rabbit. 

The results showed that Chacha20 was the fastest for small files (1MB) due to its short initialization phase, 

while Rabbit was the most suitable for large files (1GB) due to its simplicity and ability to generate a keystream 

quickly with minimal computational overhead. Additionally, Rabbit is highly parallelizable and can take 

advantage of multi-core processors.  

In contrast, HC-128 had the highest encryption/decryption time due to its reliance on large secret tables 

for calculations. These findings are consistent with previous studies that have evaluated the performance of 

different stream ciphers on large datasets, where Rabbit was found to be the most suitable for Big Data 

environments due to its simplicity and parallelizability.  

Several studies support the findings of this study. Wang et al.[38] evaluated the performance of different 

stream ciphers on large datasets and found Rabbit to be the fastest cipher, highly parallelizable and suitable for 

Big Data environments.  

Shen et al.[39] also found Rabbit to be the best-performing cipher for Big Data environments due to its 

simplicity and parallelizability.  

Kaushal and Sondhi[40] evaluated the performance of Chacha20 on small datasets and found it to be a fast 

and secure cipher.  

Sharma et al.[41] analyzed the performance of several stream ciphers on different datasets and found Rabbit 

to perform well on large datasets while Chacha20 was suitable for small datasets.  

These studies reinforce the results of the present study, indicating that Rabbit is an ideal cipher for Big 

Data environments, while Chacha20 is a fast and secure cipher for small data. 

6.4.2. MR-Block ciphers category 

The results showed that for small files encryption/decryption (1MB), Skipjack and XTEA achieved the 

lowest encryption/decryption time, and the highest encryption/decryption time was achieved by NOEKEON.  

For large amounts of data (1Go), we can notice that NOEKEON achieved the lowest encryption/decryption 

time, and the highest encryption/decryption time was achieved by AES (CBC).  

Finally, we can notice that Skipjack and AES (CBC) suffer from lengthy encryption/decryption process. 

Apparently, this is undesirable when handling massive data, when Big Data paradigm demands for faster and 

efficient encryption process. 

The findings of this study are consistent with several other studies conducted in the same area, indicating 
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that these results are not unique and are in line with previous research on the performance of symmetric key 

ciphers on small and large files.  

In a study by Zhang et al.[42], it was found that Skipjack and XTEA demonstrated faster 

encryption/decryption times on small files, corroborating the current study’s results. 

Similarly, the study by Liu et al.[43] observed that NOEKEON had a longer encryption/decryption time 

for small files, aligning with the findings of this study. For large files, the research conducted by Wang et al.[44] 

concluded that NOEKEON achieved the lowest encryption/decryption time, supporting the current study’s 

results.  

Additionally, the study by Chen et al.[45] confirmed that AES (CBC) had a longer encryption/decryption 

time for large files, further strengthening the findings of this study.  

These studies collectively emphasize the significance of efficient encryption processes in the context of 

handling massive data, validating the relevance of the current study’s results for researchers and practitioners 

in choosing suitable ciphers for data size and processing requirements. 

7. Conclusion and future work 

7.1. Conclusion 

Our analysis and comparative examination of experimental data underscored the inherent strengths and 

weaknesses of each cryptographic algorithm. Consequently, the choice of cryptographic algorithm should be 

guided by the specific requirements of the intended application. 

Notably, Rabbit stream cipher and NOEKEON block cipher showcased proficiency in terms of CPU and 

memory allocation. Algorithms such as AES and Chacha20 emerged as strong contenders for applications 

prioritizing confidentiality and integrity. 

Similarly, Rabbit stream cipher and NOEKEON block cipher demonstrated their mettle for applications 

necessitating high-speed performance. 

In essence, the selection of a cipher hinges on the prerequisites of the application ranging from security 

levels to desired encryption/decryption speeds and available hardware resources. By meticulously weighing 

these factors, one can aptly select the most suitable cryptographic algorithm for their application, thereby 

fostering an amalgamation of heightened security and enhanced system performance. 

Throughout this study, we’ve unveiled substantial achievements and pivotal insights. Our journey into 

integrating lightweight cryptography within the intricate Hadoop ecosystem has paved the way for advanced 

data security without compromising operational efficiency.  

Through the meticulous navigation of cryptographic techniques, key management strategies, and 

algorithmic compatibility, we’ve illuminated a trajectory toward a more fortified and adaptable Hadoop 

environment.  

These achievements underscore the symbiosis between security and efficiency, exemplifying the potential 

of lightweight cryptography to bolster data protection within expansive data processing frameworks.  

Furthermore, the insights garnered have cast a spotlight on the intricate interplay between security potency 

and algorithm intricacy.  

This recognition of trade-offs encompassing security, performance, and algorithm lifespan provides the 

compass for prudent decisions aligning with the distinctive requisites of the Hadoop ecosystem.  

These insights serve as the cornerstone for well-informed choices, streamlined implementations, and the 
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continued evolution of secure and efficient data processing within Hadoop’s domain. 

As this study reaches its culmination, it is evident that the journey of exploring lightweight cryptography’s 

integration within the Hadoop ecosystem is far from over. Several intriguing avenues beckon further research 

and development, offering opportunities to push the boundaries of knowledge and innovation in the realm of 

secure and efficient data processing. 

7.2. Identifying areas for further research and development 

7.2.1. Hybrid cryptosystems 

Delve into the potential of hybrid cryptographic systems that combine the strengths of lightweight and 

traditional cryptographic algorithms. Investigate how such amalgamations could strike an optimal balance 

between security and performance, addressing the shortcomings of individual approaches. 

7.2.2. Resource-Aware Cryptography 

Develop resource-aware cryptographic algorithms that dynamically adjust their security and performance 

parameters based on the available computational resources. This can further optimize data protection in 

fluctuating environments while maximizing efficiency. 

7.2.3. Quantum-resistant lightweight cryptography 

Given the rise of quantum computing, explore the integration of lightweight cryptographic techniques 

with quantum-resistant principles. Investigate algorithms that can withstand the potential threats posed by 

quantum computers while remaining lightweight. 

7.2.4. Scalable key management 

Expand the exploration of key management strategies that accommodate Hadoop’s scalability. Investigate 

approaches that ensure seamless key distribution, rotation, and storage across an ever-growing number of 

distributed nodes. 

7.2.5. Real-time monitoring and response 

Develop real-time monitoring and response mechanisms that harness lightweight cryptography for 

immediate threat detection and mitigation. Investigate techniques to integrate these mechanisms seamlessly 

into Hadoop’s existing infrastructure. 

7.2.6. Automated algorithm selection 

Explore the feasibility of automated cryptographic algorithm selection based on contextual factors such 

as data sensitivity, computational resources, and application requirements. Develop decision-making 

frameworks that adapt to changing conditions. 

7.2.7. Energy-efficient cryptography 

Investigate the interplay between lightweight cryptography and energy efficiency, particularly in 

resource-constrained environments. Develop algorithms that optimize security while minimizing energy 

consumption. 

7.2.8. Integration with advanced Hadoop features 

Explore the integration of lightweight cryptography with advanced Hadoop features, such as data lineage 

tracking, data provenance, and secure data sharing across clusters. Investigate how cryptographic techniques 

can enhance these aspects. 

7.2.9. Blockchain-Hadoop synergy 

Examine the synergy between lightweight cryptography and blockchain technology within Hadoop 
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environments. Explore ways to enhance data security, transparency, and auditability using cryptographic 

techniques. 

7.2.10. Usability and accessibility 

Research ways to enhance the usability and accessibility of lightweight cryptography within Hadoop. 

Develop user-friendly interfaces, guidelines, and documentation to facilitate adoption and implementation. 

In conclusion, while this study marks a significant milestone in exploring the nexus of lightweight 

cryptography and the Hadoop ecosystem, it serves as a stepping stone for further discovery. These suggested 

areas for future research and development underscore the dynamic nature of the field and the myriad 

opportunities to shape the future of secure and efficient data processing in the digital age. 
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