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ABSTRACT 

Olive anthracnose (OA) is the most damaging fungal disease of the olive tree worldwide. In the context of 

integrated pest management, the development of predictive models could be used for early diagnosis and control. In the 

current study, a dataset consisting of 58 cases, coming from 5 locations and 12 olive cultivars, was used to study the 

relationship between ΟΑ incidence (OAI) and 35 heterogeneous variables. These variables include orchard 

characteristics, olive fruit parameters, foliar and soil nutrients, soil parameters and soil texture classes. The Random 

Forest-Recursive Feature Elimination with Cross Validation (RF-RFECV) feature selection method identified Location, 

water content, P, Ca, Mg, exchangeable Mg, trace Zn, trace Cu as possible new indicators associated with OAI. The 

objective of this study was to investigate whether these variables have a predictive value for OAI. Six different machine 

learning classification algorithms, namely decision tree (DT), gradient boosting (GB), logistic regression (LR), random 

forest (RF), k-nearest neighbors (KNN) and support vector machine (SVM), were developed for predicting conditions 

leading to OAI > 0% and 10%. Grid search hyperparameter optimization was employed to optimize model parameters. 

The final models were evaluated in terms of several standard metrics, such as accuracy, sensitivity, specificity and ROC 

AUC score. Findings suggested that GB performance was superior compared to the other models for the prediction of 

the occurrence of OA disease (OAI > 0%) with an accuracy of 86.7%, a sensitivity of 100%, a specificity of 75% and a 

ROC-AUC score of 93%, while for the prediction of the spread of the disease (OAI > 10%), DT stood out with an 

accuracy of 86.7%, a sensitivity of 81.8%, a specificity of 100% and a ROC-AUC score of 91%. 
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1. Introduction 

Olive anthracnose (OA) caused by Colletotrichum species is a 

major fungal disease in olive oil producing countries, including 

Greece[1]. The first OA incidence in Greece was reported in 1920 in 

Corfu. In recent years, OA has become a grave concern for Greek 

olive oil production[2]. The most affected regions are the 

Peloponnese and Crete. In fact, in the harvest year 2022–2023, the 

incidence was so high in the Messinia region of the Peloponnese that 

olive mills often refused to process the damaged olive fruit, many 

shutting down their operations a month earlier than usual[3]. It is 

estimated that OA inflicts an annual loss of 300 million euros upon 

the olive oil sector in Greece[2]. Olive Anthracnose has a detrimental 

effect on the quality of olive oil as it affects its physicochemical and 

sensory properties[4]. A strong positive linear relationship has been 

found between OA incidence and acidity[5]. Furthermore, sensory 
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defects are present even at a low level of disease incidence[6]. The disease cycle begins with the infection of 

inflorescences and developing fruit through water-splashed conidia during the spring and summer seasons[7]. 

The infections in the developing fruit remain dormant until the fruit reaches maturity stage in autumn and 

winter. Severe infections can lead to rapid rotting and mummification of fruits. If mummified fruits over 

winter on the tree, they serve as a source of infection for new outbreaks. Olive anthracnose incidence 

depends on factors including cultivar susceptibility[8], environmental conditions and the virulence of the 

pathogen[9]. A significant increase in OA is anticipated when warm and moist conditions coincide with 

ripened fruit of susceptible olive cultivars[10]. Multiple Colletotrichum species also make disease control 

more challenging, as one or more species may be present in infected orchards[11]. Finally, the ability to 

persist and multiply without exhibiting noticeable symptoms may explain why anthracnose fungi often result 

in unforeseen losses in olive crops[12]. The complexity of anthracnose epidemiology highlights the necessity 

of ongoing research into disease management. 

Many researchers[13–16] have emphasized the importance of cultural management practices for the 

control of OA. These practices include irrigation, sanitation, pruning and balanced nutrition. It is well known 

that plants suffering from nutrient stress are more susceptible to pests and diseases[16]. However, while 

balanced nutrition is recommended as a cultural practice, there is limited research on the role of soil and 

foliar amendments between fruit set and harvest as a control strategy for OA[15]. The objective of this study is 

to investigate whether soil and foliar parameters have an effect on the incidence of OA and thus, can be used 

for the early detection of the disease. To this end, we develop and compare predictive models based on high-

dimensional and heterogeneous data. 

Our dataset includes soil and foliar nutrients in combination with soil characteristics, the location of the 

orchard, olive cultivar, fruit maturity index and water content of fruit. Providing a data-driven tool can 

enable olive oil growers and agronomists to make better informed decisions regarding control strategies and 

preventative measures against olive anthracnose. In this study, the Random Forest-Recursive Feature 

Elimination with Cross Validation (RF-RFECV) method is used to select the important features from the 

original dataset. Six different classification algorithms, including decision tree (DT), gradient boosting (GB), 

logistic regression (LR), random forest (RF), k-nearest neighbors (KNN) and support vector machine (SVM), 

are developed for predicting conditions leading to OAI > 0% and 10%. Grid search hyperparameter 

optimization was employed to optimize model parameters. The final models are evaluated in terms of several 

standard metrics, such as accuracy, sensitivity, specificity and ROC AUC score. 

1.1. Related work 

The typical methods for diagnosing a plant disease are often untimely and may not always produce 

reliable results. The adoption of advanced technologies like machine learning (ML) and deep learning (DL) 

can address these challenges and facilitate early detection[17]. Over the last decade, there has been an increase 

in the number of studies relevant to this field. These studies can be divided into three categories of forecast 

models based on[18]: 1) image processing, 2) weather data and, 3) distinct types of data coming from 

heterogeneous sources. Most research is either image or weather based, with very few studies belonging to 

the third category. 

Studies in the first category include DL forecast models based on image analysis of symptomatic fruit. 

Alruwaili et al.[19] proposed an enhanced convolutional neural network for the early detection and 

classification of 14 olive diseases (including anthracnose), based on 120 RGB images of plant leaves 

selected from the PlantVillage dataset, achieving an overall accuracy of 99.11%. Their model was successful 

in predicting anthracnose disease scoring 100% at all performance metrics (accuracy, precision, recall, F1-

measure, sensitivity and specificity). Fazari et al.[20] used hyperspectral images and advanced modelling 

techniques of deep learning and convolutional neural networks to detect OA disease in early stages. They 
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achieved a very high sensitivity ratio, ranging from 85% to 100% depending on the disease progress stage 

after inoculation. 

The research of Alves et al.[21] is among the studies that have based their models on weather data. They 

demonstrated that random forest had the best overall accuracy of 99.8%, compared to other classification 

algorithms (IBK, Naїve Bayes and SMO), when applied to predict olive anthracnose. The dataset included 

2800 instances, of which 330 instances had the disease and 2470 did not. In another research, Romero et 

al.[13] incorporated 12-year weather data with the levels of susceptibility of nine cultivars. They developed 

three binary logistic models for predicting conditions leading to OAI > 0, 1 and 5% with overall accuracy of 

81%, 86%, and 85%, respectively. 

One study that has used heterogenous data for disease prediction is by Olivares et al.[22]. They applied 

the supervised machine learning methods of Orthogonal Least Squares Discriminant Analysis and Random 

Forest to identify the soil properties potentially associated with Banana Wilt disease incidence in Venezuela. 

Their dataset included 16 soil variables of 78 soil samples, 29 with low incidence and 49 with high incidence 

of the disease. The analysis of the receiver operating characteristics curves by random forest revealed that the 

combination of Zn, Fe, Ca, K, Mn and clay was able to accurately differentiate 84.1% of the banana lots with 

89.80% sensitivity and specificity of 72.40%. 

To our knowledge, no research has investigated whether soil nutrients are potentially associated and can 

be included in a predictive model for OA incidence. 

2 Materials and methods 

2.1. Field design 

This dataset is part of a larger EU-funded research project on olive anthracnose in the region of the 

Peloponnese. The administrative region of the Peloponnese includes five prefectures, namely Messinia, 

Laconia, Argolida, Corinthia, Arcadia. The number of olive groves participating in EU-funded project was 

determined according to the volume of the olive oil production per prefecture. Twenty-six olive orchards 

were from Messinia, 19 from Laconia, 6 from Argolida, 5 from Corinthia and 2 from Arcadia. All orchards 

were mono-cultivars and privately-owned by single producers. The olive varieties included ten Greek ones 

(Koroneiki, Megaritiki, Kalamon, Manaki, Mavrolia, Asprolia, Myrtolia, Koutsourelia, Athenolia and 

Nemoutiana) and two Spanish (Arbequina and Picual). The collection of olive fruit was carried out during 

the harvest period from October 2021 to January 2022 and the maturity index of each sample was calculated 

immediately at the time of receipt[23]. 

2.2. Disease assessment 

Detection of latent anthracnose disease infection was conducted on asymptomatic and macroscopically 

healthy detached olive drupes. Olive fruits were washed under running tap water, surface sterilized by 

immersion in a 5% solution of sodium hypochlorite (bleach) for 20 min, rinsed five times with sterile water 

and air-dried for 1 h in a laminar cabinet before wounded with a sterile needle. An aliquot of 10 μL of 

sterilized distilled water was inoculated on the surface of each artificial wound. Olives from each sample 

were then transferred into plastic containers to maintain high relative humidity and stored in a well-ventilated 

cabinet at 25 °C for 6 days. A completely randomized design with three replicates per treatment and 20 fruit 

per replicate was used. 

After six days of incubation, the number of infected olive fruit was recorded, and disease incidence 

(OAI) was calculated according to Equation (1)[24]. 

𝑂𝐴𝐼(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑜𝑙𝑖𝑣𝑒 𝑓𝑟𝑢𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑙𝑖𝑣𝑒 𝑓𝑟𝑢𝑖𝑡𝑠
× 100 (1) 
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Fruits were considered affected by Colletotrichum spp. when typical symptoms of anthracnose disease 

appeared like round and ocher or brown lesions, with profuse production of orange masses of conidia or fruit 

rot. The average of the three replicates was used to calculate the OAI (%) per orchard. 

2.3. Soil sampling and analysis 

Soil samples were collected from fifty eight olive orchards from the prefectures of Messinia, Laconia, 

Argolida, Corinthia and Arcadia of the Peloponnese region. Each soil sample was taken from the zone of 

maximum root activity, about 25 to 40 cm deep. The density of subsampling was 1–2 points per 

approximately 1000 m2. The sampling points were random, and samples were taken by pressing a hand auger 

combination type (Eijkelkamp, the Netherlands) into the soil. Dry leaves, stems and other vegetal residuals 

on the soil surface were removed prior to sampling. Every sampling area contained similar soil types with 

trees of roughly uniform size and vigor. Subsamples of each orchard were thoroughly mixed in a plastic 

bucket in order to form a composite sample, which was then placed into a labeled bag until determination in 

the laboratory. 

Soil samples were dried using forced air at ambient temperatures < 36 °C to constant weight and then 

passed through a 2 mm sieve (fine earth). Samples were saturated with deionized water and saturation 

percentage was determined[25]. Values of pH were measured in the soil/water slurry[26] using a Consort C835 

multichannel analyzer. The exchangeable cations (Ca, Mg, K) were extracted with a 1 M NH4OAc solution 

at pH 7.00[27] and their concentration was determined by a Shimadzu ΑΑ6200 atomic absorption 

spectrophotometer in an air-acetylene flame. Calcium and magnesium were measured by adding La2O3 to 

both the standards and sample extraction to reach a concentration of 4500 mg L−1 La[28]. Phosphorus was 

determined colorimetrically using a Shimadzu UV-1700 UV-visible spectrophotometer according to the 

Olsen method[29]. Organic matter concentration was measured according to the Walkley-Black method[30]. 

The particle size analysis (sand, silt and clay) was performed by the hydrometer method[31]. 

2.4. Leaf sampling and analysis 

A sample of approximately 300 leaves per orchard were collected in July 2022. Each sample was 

comprised of mature healthy leaves from the middle portion of nonbearing current season shoots, selected 

randomly and peripherally from the tree. The leaves were placed in paper bags, stored in a portable ice 

cooler, and transported to the laboratory. 

Once in the laboratory, the leaves were pulverized in a grinder and 1 g of each sample was heated in a 

dry oven at 550 ℃ for 4 h in porcelain stoneware. The inorganic elements were extracted using 15 mL of 10% 

HCl solution and distilled water was added to up to 100 mL. The foliar nutrients Ca, Mg, K, Fe, Mn, Zn and 

Cu were determined using an atomic absorbance spectrophotometer Shimadzu ΑΑ6200. Total P[32] and B[33] 

were determined colorimetrically. 

2.5. Dataset 

The dataset had a total of 58 cases and 35 features, including numeric and categorical. The predictive 

targets were a) the occurrence of OA disease (OAI = 0%, OAI > 0%), where 0 indicated no occurrence (OAI 

= 0%) and 1 indicated occurrence (OAI > 0%) and b) the incidence of OA (OAI < 10%, OAI > 10%), where 

0 indicated disease incidence lower than 10% and 1 greater than 10%. 

The predictor variables (Table 1) included olive orchard characteristics (olive cultivar, location of the 

orchard), olive fruit parameters (olive fruit maturity index, water content of olive fruit), foliar nutrients (total 

N, P, Ca, Mg, K, Fe, Mn, Zn, Cu and B), soil parameters (saturation percentage, pH, electrical conductivity, 

organic matter, Olsen P), soil macronutrients, divided into exchangeable cations (Ca, Mg, K, Na) and water-

soluble cations (water soluble Mg, water soluble K), soil micronutrients or trace elements (B, Fe, Mn, Zn, Cu) 

and soil texture indicators (sand, silt, slay and soil textural class). 
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Table 1. Predictor variables used in this study. 

Variable Type 

Olive orchard characteristics 

Olive cultivar Categorical 

Location Categorical 

Olive fruit parameters 

Maturity index (%) Numerical 

Water content (%) Numerical 

Foliar nutrients 

Total N (%) Numerical 

P (%) Numerical 

Ca (%) Numerical 

Mg (%) Numerical 

K (%) Numerical 

Fe (ppm) Numerical 

Mn (ppm) Numerical 

Zn (ppm) Numerical 

Cu (ppm)  Numerical 

B (ppm) Numerical 

Soil parameters 

SP (%) Numerical 

pH (0–14) Numerical 

EC (mS/cm) Numerical 

OM (%) Numerical 

P Numerical 

Soil macronutrients 

Exchangeable cations (ppm) mg/kg 

Ca Numerical 

Mg Numerical 

K Numerical 

Na Numerical 

Water soluble elements (ppm) mg/L 

Mg Numerical 

K Numerical 

Soil micronutrients (trace elements) (ppm) mg/kg 

B Numerical 

Fe Numerical 

Mn Numerical 

Zn Numerical 

Cu Numerical 

Soil texture indicators (%) 

Sand Numerical 

Clay Numerical 

Silt Numerical 

Soil textural class Categorical 
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2.6. Data preprocessing and feature selection 

The dataset did not contain any missing values or user entry errors, so no imputation or data cleaning 

techniques were needed. Data scaling was applied to the numerical input features by rescaling the 

distribution of the values so that the mean of observed values was 0 and the standard deviation was 1. One-

hot encoding was used to convert categorical variables into a format that could be readily used by the 

machine learning algorithms[34].  

To overcome the problems associated with the high dimensionality and the multicollinearity between 

variables, we reduced the number of features of the original dataset by employing the Random Forest-

Recursive Feature Elimination with Cross Validation (RF-RFECV) method[35]. 

Random forest is an ensemble method that combines multiple decision trees to create a robust model. 

RF typically performs well with high dimensional and heterogeneous data and can identify significant 

predictors without making assumptions about an underlying model. According to Reif et al.[36], the recursive 

partitioning process of random forests allows them to capture complex interactions between features. The 

trees in the ensemble consider multiple attributes simultaneously and identify interactions that may not be 

apparent in isolated feature evaluations. 

However, the presence of correlated predictors, which is a common problem of high-dimensional data 

sets, impacts RF’s ability to identify the strongest predictors by decreasing the estimated importance scores 

of correlated variables. A suggested solution is the RF-RFECV algorithm which was first developed for the 

gene selection process using the SVM classifier[37]. RF-RFECV utilizes the inherent feature importance 

scores from Random Forest to rank features based on their contribution to the model’s accuracy. 

RFE is a wrapper-type feature selection method[38] which follows a greedy optimization approach to 

find a subset of features by first looking at all features in the training dataset and then successfully removing 

features one at a time until the appropriate number of features is left. This is accomplished by first fitting the 

core model’s machine learning algorithm, then ranking the features according to relevance, eliminating the 

least important features, and finally re-fitting the model. This process is repeated until a specified number of 

features remains. 

To find the optimal number of features 5-fold cross-validation was used with RFE to score different 

feature subsets and select the best scoring collection of features. To avoid overfitting and biased performance 

estimations due to data leakage, feature selection was only performed on the training data and not the 

complete dataset[39]. 

2.7. Proposed methodology 

The aim of the current study was to optimize six classification machine learning algorithms, namely 

decision tree (DT), gradient boosting (GB), logistic regression (LR), random forest (RF), k-nearest neighbors 

(KNN) and support vector machine (SVM), to develop prediction models for the occurrence of OA disease 

(OAI > 0%) and its incidence level (OAI > 10%). 

To evaluate a model’s performance, some data (input) with known ground truth (labels) are required. In 

our case these labels were the values of the two binary target variables, (a) OA occurrence (0: OAI = 0%, 1: 

OAI > 0%), and (b) OA incidence (0: OAI < 10%, 1: OAI > 10%). The idea was to train the models on the 

data, for which the labels were known, and evaluate their performance on data, for which labels were 

unknown (unseen data to the model)[40]. For this purpose, the new dataset, after data preprocessing and 

feature selection, was split into 75% training data (known labels) to train the models and 25% testing data 

(unknown labels) to evaluate the models. 

The approach involved training the models on data with known labels and evaluating them on unseen 

data, where labels were unknown. Following data preprocessing and feature selection, the new dataset was 



7 

divided into 75% training data (with known labels) for model training and 25% testing data (with unknown 

labels) for model evaluation. 

Grid search with 5-fold cross validation was applied on the 75% training data for hyperparameter tuning 

and model selection among the six candidate models. The values of the hyperparameters, which are the 

parameters that control the model’s learning process, have a significant impact on the predictive performance 

of the machine learning model[41]. The hyperparameters of the models (e.g., number of features to consider 

when looking for the best split for gradient boosting, number of trees in the forest for random forest, etc.) 

were optimized through an internal 5-fold cross-validation by grid search over a range of user-specified 

values and the parameters that generated the best accuracy score were selected. GridSearchCV function that 

comes in the Scikit-learn’s model_selection package was used. 

Standard 5-fold cross-validation was employed to address the overfitting issue, deal with the small 

sample size and increase the precision of the estimates, while still maintaining a small bias[42]. The 5-fold 

cross-validation was performed in the following steps: (a) the training dataset was split into 5 equal parts 

(folds). (b) 4 parts were used to train the model and the remaining one part to validate the model, (c) step (b) 

was repeated until each part was used for both the training and validation set, and (d) the performance of the 

model was finally computed as the average performance of the 5 estimations. 

The hyperparameter setting achieving the highest 5-fold cross-validation score for each of the six 

learning algorithms (DT, GB, LR, RF, KNN, SVM) was used to develop the final prediction models. The 

final models were fitted to the entire training dataset (75% of the original data) and then tested on the held-

out 25% of the data. 

This methodology is summarized into 4 steps (Figure 1)[43]: (Step1): the original dataset was divided 

into a training set and an independent test set, with the test set being saved for the final model evaluation step. 

(Step 2): grid search was used in the second step to experiment with different hyperparameter settings. 5-fold 

cross-validation was employed on the training set to generate several models and performance estimates for 

each hyperparameter configuration. (Step 3): the entire training set was used for model fitting by selecting 

the hyperparameter values that corresponded to the best-performing model. (Step 4): the independent test set 

that was withheld in step 1 was used to evaluate the model that was obtained from step 3. 

 
Figure 1. This image depicts model selection using grid search hyperparameter optimization with 5-fold cross-validation[44]. 
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2.8. Machine learning models 

Following the data collection and preprocessing steps, six machine learning algorithms (DT, GB, LR, 

RF, KNN, SVM) were developed. All machine learning algorithms were run by the open-source Jupyter 

Notebook App in python 3.9.12. 

Decision tree (DT)[45] is a non-parametric supervised learning method used both for classification and 

regression. Classification trees are generally applied to output variables which are categorical and mostly 

binary in nature. The objective is to learn straightforward decision rules derived from the data features in 

order to build a model that predicts the value of the target variable. Three different node types—a root node, 

a child node, and a leaf node—make up the tree. The procedure begins by selecting a root node from the 

relationships between each input and output variable that are the strongest. The selection of a child node is 

then made by computing Information Gain (IG), which is given by Equation (2). 

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) − [𝑝(𝑐1) × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐1) + 𝑝(𝑐2) × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐2) … ] (2) 

where Entropy(𝑐𝑖) = −𝑝(𝑐𝑖) × log𝑝(𝑐𝑖)  and 𝑝(𝑐𝑖)  is a probability of child node i. The parent for the 

following generation will then be the node with the highest IG. The process will continue until all children 

nodes are pure, or until the IG is 0. 

Gradient boosting (GB)[46] is an ensemble algorithm—a combination of weak individual models that 

together create a more powerful new model—based on decision trees, that is used in both regression and 

classification tasks. It is one of the most powerful algorithms in the field of machine learning because of its 

high prediction speed and accuracy. The weak learners are the individual decision trees which are connected 

in series and each tree tries to minimize the error of the previous tree. Boosting focuses on building up these 

weak learners successively and removing the observations that a learner correctly understands at each level. 

In essence, the emphasis is on creating new weak learners to manage the difficult observations at each step. 

The objective of the GB algorithm is to minimize the loss function i.e., the difference between the actual 

class and the predicted class, by using a gradient descent procedure. Classification algorithms frequently use 

logarithmic loss function whereas regression algorithms use squared errors. 

Random forest (RF)[47] is an ensemble supervised machine learning algorithm that is used widely in 

both classification and regression problems. The random forest classifier creates a set of decision trees from 

a randomly selected subset of the training set and then it collects the votes from different decision trees to 

decide the final prediction. Basically, each model is trained independently, and the final output is based on 

majority voting after combining the results of all models. By developing several decision-tree models, RF 

takes use of the decision tree algorithm’s great speed and accuracy while dealing with classification 

problems. There is no link between the multiple decision trees, and errors are mutually reduced, leading to 

more precise and reliable classification findings. 

K-nearest neighbors (KNN)[48] is a non-parametric lazy learning algorithm that works well with 

nonlinear data since it makes no assumptions about the input. It is a simple and easy to implement supervised 

machine learning algorithm that can be used to address both classification and regression tasks. KNN 

Classifier tries to predict the correct class for the test data by calculating the distance between the test data 

and all the training points. It finds the nearest neighbors ranking points by increasing distance and finally 

votes on the predicted class labels based on the classes of the k nearest neighbors. The distance function and 

the value of k are the only two parameters necessary to implement KNN. The most common distance 

function that is used to measure similarity is the Euclidian distance and it is defined by Equation (3). 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑖

 (3) 

Logistic regression (LR)[49] is a supervised learning classification algorithm used to predict the 
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probability of a target variable. The nature of the target variable is dichotomous, which means there can be 

only two possible classes (i.e., 0: uninfected, 1: infected). The function used by logistic regression to map 

predictions to probabilities is the sigmoid function (Equations (4) and (5)). 

𝜎(𝑦) =
1

(1 + 𝑒−𝑦)
 (4) 

𝑦 = 𝑏0𝑥0 + 𝑏1𝑥1 … + 𝑏𝑛𝑥𝑛 (5) 

where (𝑥0, 𝑥1, … , 𝑥𝑛) is an instance of the dataset and bi are the coefficients values, which are estimated and 

updated by stochastic gradient descent. The sigmoid function returns a probability value between 0 and 1. In 

order to map this probability value to a discrete class (0/1, true/false), a threshold value, called ‘decision 

boundary’ is selected. The probability values above this threshold level are mapped into class 1 and below 

are mapped into class 0. Generally, the decision boundary is set to 0.5. 

Support vector machine (SVM)[50] is a supervised machine learning algorithm which is used in both 

regression and classification tasks. However, it is mostly employed to solve classification problems. The 

SVM algorithm’s objective is to establish the decision boundary (hyperplane) that can divide a n-

dimensional space into classes, allowing new data points to be easily and correctly classified. SVMs are 

effective in high dimensional spaces as well as in cases where the number of dimensions is greater than the 

number of samples. SVM algorithms use a set of mathematical functions (kernels) to transform data input 

into the required form. Gaussian radial basis function, linear, sigmoid and polynomial are several common 

kernel functions. Besides the kernel function, another important hyperparameter of SVM is the penalty 

parameter C which adds a penalty for each misclassified data and trades off correct classification of training 

examples against maximization of the decision function’s margin. 

2.9. Performance evaluation 

The considered classification models were evaluated by calculating the metrics: the number of correctly 

recognized class examples (TP: true positives), the number of correctly recognized examples that do not 

belong to the class (TN: true negatives), and examples that either were incorrectly assigned to the class (FP: 

false positives) or were not recognized as class examples (FN: false negatives). Based on these metrics, the 

following performance measures were used to evaluate the classification models[51]: 

Accuracy is the ratio of the number of correct predictions to the total number of input samples and 

reflects the overall effectiveness of a classifier (Equation (6)). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (6) 

Specificity is the ratio of the correctly classified negative samples to the total number of negative 

samples and describes the effectiveness of a classifier to identify negative labels (Equation (7)). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

Sensitivity is the ratio of the correctly classified positive samples to the total number of positive 

samples and indicates the effectiveness of a classifier to identify positive labels (Equation (8)). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

While sensitivity and specificity are both important metrics in evaluating the performance of machine 

learning models, they represent different aspects of the model’s accuracy. As sensitivity increases, specificity 

decreases, and vice versa. This implies that both measurements cannot be optimized at the same time. 

However, to choose the optimum machine learning model, it is critical to consider both sensitivity and 

specificity. Depending on the task at hand, one measure could be more crucial than another. In disease 

diagnosis, which is our case as well, it may be more important to have high sensitivity to avoid missing any 
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true positive cases, even if it means a higher rate of false positives[52]. 

In order to evaluate the performance of our machine learning models, we utilized additional common 

metrics known as receiver operating characteristic (ROC) curve[53] and area under the ROC curve (AUC)[54]. 

These metrics are widely used in the field of machine learning to assess the effectiveness of classifiers. The 

ROC curve illustrates the balance between sensitivity (the ability to correctly identify positive cases) and 

specificity (the ability to correctly identify negative cases). AUC, on the other hand, condenses the ROC 

curve into a single value, by measuring the entire two-dimensional area underneath the ROC curve. AUC 

values indicate the overall ability of the model to discriminate between classes, and range from 0 to 1, where 

1 is a perfect score and 0.5 means the model is as good as random. 

To deal with the small amount of data available in the current study, we employed permutation tests, a 

statistical method assessing classifier competence beyond accuracy[55]. These tests determine the likelihood 

of the observed statistic (e.g., accuracy) occurring by chance. Permutation tests assume independence 

between features and labels, reshuffling labels to create a null distribution. Its p-value represents the fraction 

of random datasets where the classifier performed as well as or better than in the original data[56]. Our study 

employed permutation tests on the training data to ascertain whether models with optimized hyperparameters 

truly captured underlying class structures, establishing a genuine connection between the data and class 

labels. 

Following hyperparameter optimization, the final models with the best hyperparameters were fitted to 

the entire training dataset and evaluated on the hold-out set by measuring accuracy, specificity, sensitivity 

and AUC scores. 

3. Results 

3.1. Statistical analysis on the initial dataset 

A quick overview of the dispersion and central tendency of the OA incidence (OAI) raw data is 

provided by the frequency distribution histogram in Figure 2. 

 
Figure 2. The frequency distribution histogram of OAI. 

A relatively balanced class distribution was observed in the data, with around 47% of the total cases 

having OA disease (OAI > 0%) and roughly 34% having an OAI of more than 10%. 

A correlation heatmap (Figure 3) was plotted to visualize the strength of the relationships between 

numerical variables. From the color-coding of the cells, it is obvious that variables such as exchangeable Ca 

& pH, organic matter & SP, exchangeable Na & EC, water soluble Mg & EC had strong positive correlation 

while variables such as trace Fe & pH and silt & sand had strong negative correlations. Relative strong or 

medium correlations also existed between other variables in the dataset. 
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Figure 3. Heatmap correlation matrix of numeric features. 

 
Figure 4. Boxplots visualizing statistically significant differences in (A) water content, Ca, Mg, Mn and exchangeable Mg between 
infected (OAI > 0%) and non-infected (OAI = 0%) orchards; and (B) water content, Ca, Mg, exchangeable Mg, exchangeable Na and 
trace Zn between orchards with OAI < 10% and orchards with OAI > 10%. 
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The univariate non-parametric Mann-Whitney U test was used to explore if there are statistically 

significant differences in the numerical predictor variables between infected (OAI > 0%) and not infected 

(OAI = 0%) cases, as well as between cases with OAI lower than 10% and those with OAI greater than 10%. 

According to our findings, water content was statistically considerably higher in infected orchards 

(OAI > 0%) compared to non-infected (OAI = 0%), whereas Ca, Mg, Mn, and exchangeable Mg were 

statistically significantly lower in infected orchards compared to not infected (Figure 4A, Table 2). 

Additionally, Mann-Whitney results indicated statistically significantly higher values of water content in 

orchards with OAI > 10% compared to those with OAI < 10%, as well as significantly lower values of Ca, 

Mg, Mn and exchangeable Mg in orchards with OAI > 10% compared to those with OAI < 10% (Figure 4B, 

Table 2). 

Table 2. Five number summary statistics and Mann-Whitney U tests results of statistically significant features for a) infected (OAI > 

0%) and non-infected (OAI = 0%) orchards and b) orchards with OAI < 10% and OAI > 10%. 

Features Classes Min* Lower quartile (Q1) Median (Q2) Upper quartile (Q3) Max* p** 

A. 

Water content OAI = 0% 49.39 57.71 62.93 65.70 72.07 0.045 

OAI > 0% 56.38 61.38 64.36 67.56 75.67 

Ca OAI = 0% 0.62 1.22 1.40 1.72 2.16 0.005 

OAI > 0% 0.46 0.95 1.06 1.37 1.93 

Mg OAI = 0% 0.08 0.12 0.15 0.17 0.24 0.007 

OAI > 0% 0.06 0.08 0.12 0.14 0.22 

Mn OAI = 0% 17.50 28.00 35.50 43.50 64.50 0.043 

OAI > 0% 14.50 21.75 27.50 35.50 48.50 

Exch. Mg OAI = 0% 53.00 115.50 154.00 274.00 472.00 0.001 

OAI > 0% 53.00 81.00 103.00 134.00 180.00 

Β. 

Water content OAI < 10% 49.39 58.17 62.38 65.84 72.07 0.012 

OAI > 10% 58.53 63.50 66.13 67.84 70.66 

Ca OAI < 10% 0.62 1.19 1.36 1.67 2.16 0.019 

OAI > 10% 0.46 0.92 1.04 1.41 1.93 

Mg OAI < 10% 0.06 0.12 0.14 0.17 0.23 0.007 

OAI > 10% 0.08 0.08 0.10 0.14 0.18 

Exch. Mg OAI < 10% 53.00 114.75 148.50 270.50 472.00 0.8 × 10−4 

OAI > 10% 53.00 75.75 94.00 108.75 142.00 

Exch. Na OAI < 10% 10.00 15.00 27.50 53.75 77.00 0.037 

OAI > 10% 9.00 13.75 17.50 25.50 34.00 

Trace Zn OAI < 10% 0.58 1.65 2.80 4.05 6.02 0.048 

OAI > 10% 0.86 1.43 1.92 2.60 3.10 

*Outliers were excluded, **Statistically significant at the 0.05 level. 

Furthermore, we conducted a Chi-square test to investigate the association between the location of olive 

orchards and the occurrence of OA disease (OAI = 0%, OAI > 0%). To meet the assumptions of the Chi-

square test and address small sample size concerns, the categories Argolida, Corinthia, and Arcadia were 

merged into a single category named “other locations”. The Chi-square test revealed a significant association 

between the location of olive orchards and the occurrence of olive anthracnose disease (χ2 = 14.921, df = 2, p 

= 0.001) (Table 3). Examining the adjusted residuals provided additional insights into the individual cells 
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within the contingency table (Table 4) that played a significant role in the observed associations. Adjusted 

residuals highlighted that the categories “Messinia” and “other locations” showed higher prevalence of 

infected orchards, with adjusted residuals of 3.7 and 0.7, respectively. Conversely, “Laconia” had less 

infected orchards than expected, with an adjusted residual of −3.3. The Chi-square test results, and the 

adjusted residuals support the conclusion that the distribution of olive anthracnose disease significantly 

varies across different locations, with Messinia showing a notably higher prevalence of the disease (Figure 

5A). 

Table 3. Chi-square test results for the association between a) the location and OA occurrence and b) the location and OA incidence. 

Categorical variables Association Test statistic Degrees of freedom (df) P-value 

A) Location & OA occurrence Significant 14.921 2 0.001 

B) Location & OA incidence Significant 8.216 2 0.016 

Table 4. Contingency tables of a) location *OA occurrence and b) location *OA incidence. 

A. OA occurrence OAI = 0% OAI > 0% 

Location Messinia Count 7 19 

Expected count 13.9 12.1 

Adjusted residual −3.7 3.7 

Laconia Count 16 3 

Expected count 10.2 8.8 

Adjusted residual 3.3 −3.3 

Other locations Count 8 5 

Expected count 6.9 6.1 

Adjusted residual 0.7 −0.7 

B. OA incidence OAI < 10% OAI > 10% 

Location Messinia Count 12 14 

Expected count 17 9 

Adjusted residual −2.8 2.8 

Laconia Count 16 3 

Expected count 12.4 6.6 

Adjusted residual 2.1 −2.1 

Other locations Count 10 3 

Expected count 8.5 4.5 

Adjusted residual 1.0 −1.0 

 
Figure 5. Distribution of (A) olive anthracnose occurrence across different locations; and (B) olive anthracnose incidence across 
different locations. 



14 

Similarly, we explored the association between the location of olive orchards and the incidence of olive 

anthracnose disease (OAI < 10%, OAI > 10%). The Chi-square test was conducted to examine the 

relationship between the variables, revealing a statistically significant association (χ2 = 8.002, df = 2, p = 

0.018) (Table 3). “Messinia” exhibited a negative adjusted residual of −2.8 for “OAI < 10%” indicating 

fewer orchards than expected in this category. Conversely, “Laconia” showed a positive adjusted residual of 

2.1 for “OAI < 10%”, suggesting a higher prevalence. The “other locations” category displayed a positive 

adjusted residual of 1.0 for “OAI < 10%”, indicating that the number of orchards in this category was 

slightly higher than the expected (Table 4). The observed deviations, along with the statistical significance 

of the Chi-square test, emphasize that the incidence of olive anthracnose disease varies significantly across 

different locations. Specifically, “Messinia” demonstrated a relatively higher prevalence of orchards with 

disease incidence greater than 10%, while “Laconia” showed fewer orchards in the same category (Figure 

5B). 

Finally, Chi-square tests were employed to explore the potential associations between olive cultivar and 

OA occurrence and incidence, as well as between soil textural class and OA occurrence and incidence. The 

results were found to be not statistically significant, suggesting that there is no strong evidence of a direct 

relationship between the examined categorical variables and the presence or incidence of OA in the olive 

orchards. 

3.2. Identification of important features 

Six of the original thirty-three features—exchangeable Mg, Ca, Mg, location, water content, trace Cu—

were selected as the final predictor variables to accurately differentiate between infected (OAI > 0%) and 

non-infected (OAI = 0%) orchards, based on the results of the RF-RFECV approach (Figure 6A). Similarly, 

seven features, including exchangeable Mg, water content, P, trace Cu, trace Zn, Ca and Mg were chosen as 

potential predictors for the distinction between the orchards with OAI < 10% and OAI > 10% (Figure 6B). 

 
Figure 6. Recursive Feature Elimination with Cross-Validation (RFECV) to find optimal features for random forest classification of 
(A) OA occurrence (0: OAI = 0%, 1: OAI > 0%); and (B) OA incidence (0: OAI < 10%, 1: OAI > 10%). 

Despite P and trace Cu being recognized as critical factors for the prediction of OAI, they were not 

found to be statistically significant, and hence not incorporated in the boxplots depicted in Figure 4. 

Supplementary boxplots (Figure 7) and five number summary statistics (Table 5) were generated to 

illustrate the intraclass dispersion of trace Cu among infected and non-infected samples and that of P and 

trace Cu among samples with OAI greater and less than 10%. 
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Figure 7. Boxplots visualizing differences in dispersion of (a) trace Cu data between infected (OAI > 0%) and non-infected (OAI = 
0%) orchards; and (b) P data between orchards with OAI < 10% and orchards with OAI > 10%; and (c) trace Cu data between 
orchards with OAI < 10% and orchards with OAI > 10%. 

Table 5. Five number summary statistics for P and trace Cu by OAI classes. 

Features  Min Lower quartile (Q1) Median (Q2) Upper quartile (Q3) Max 

Trace Cu OAI = 0% 0.58 3.33 10.56 14.54 18.80 

OAI > 0% 1.48 3.09 6.80 16.17 32.60 

P OAI < 10% 0.23 0.26 0.29 0.31 0.37 

OAI > 10% 0.19 0.25 0.29 0.32 0.40 

Trace Cu OAI < 10% 0.58 2.86 8.55 13.86 18.80 

OAI > 10% 1.48 4.06 7.07 17.47 36.80 

Table 6. The machine learning models hyperparameter configuration space. 

Model Hyperparameter Search space Best parameters 

OAI > 0% OAI > 10% 

DT criterion 
max_depth 

ccp_alpha 
max_features 
min_samples_leaf 
min_samples_split 

[‘gini’, ‘entropy’] 
[None, 1, 2, 3, 4, 5] 

[0, 0.01, 0.1, 0.3, 1, 2] 
[‘auto’, ‘sqrt’, ‘log2’, None] 
[1, 2, 3, 4] 
[2, 3, 4] 

‘entropy’ 
None 

0.01 
‘sqrt’ 
3 
2 

‘gini’ 
None 

0.1 
‘auto’ 
1 
2 

GB n_estimators 
learning_rate 
max_features 
max_depth 
min_samples_leaf 
min_samples_split 
subsample 

[15, 20, 22, 25] 
[0.1, 0.5, 0.8, 1] 
[‘auto’, ‘sqrt’, ‘log2’, None] 
[None, 4, 5] 
[1,2,3,4] 
[0.5, 6, 7] 
[0.8, 1] 

25 
0.5 
sqrt 
None 
2 
6 
0.8 

20 
0.1 
sqrt 
None 
2 
0.5 
0.8 

LR penalty 
C 

solver 
max_iter 

[‘l1’, ‘l2’] 
[0.01, 0.1, 0.5, 1, 2] 

[‘lbfgs’, ‘liblinear’] 
[25, 30, 50, 100] 

‘l2’ 
0.1 

‘liblinear’ 
30 

‘l1’ 
0.5 

‘liblinear’ 
25 

RF n_estimators 
criterion 
max_depth 
min_samples_split 
min_samples_leaf 
max_features 

[10, 30,100] 
[‘gini’, ‘entropy’] 
[None, 1, 2, 3] 
[2, 3, 4, 5, 10] 
[1, 2, 3, 4] 
[‘auto’, ‘sqrt’, ‘log2’, None] 

100 
‘gini’ 
None 
10 
1 
‘sqrt’ 

100 
‘gini’ 
2 
2 
2 
‘auto’ 

KNN n_neighbors 
weights 
metric 

[3, 4, 5, 6, 7, 8, 9] 
[‘uniform’, ‘distance’] 
[‘euklidean’, ‘manhattan’] 

4 
‘distance’ 
‘manhattan’ 

7 
‘uniform’ 
‘manhattan’ 

SVM C 
gamma 
kernel 

[0.1, 0.5, 1, 2, 3] 
[‘scale’, 0.1, 1, 10, 100] 
[‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’] 

0.1 
1 
‘linear’ 

0.1 
10 
‘poly’ 
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3.3. Performance of classifiers 

The grid search optimization method was used to fine-tune the parameters for each model in order to 

optimize the accuracy score. Table 6 shows the basics of the configuration space for the machine learning 

models developed for the prediction of OA occurrence (OAI > 0%) and OA incidence (OAI > 10%). 

Table 7 presents the 5-fold cross-validation accuracy scores of the optimized machine learning models, 

used for predicting the occurrence (OAI > 0%) and incidence of OA (OAI > 10%). The results show that 

SVM (0.76) and GB (0.74) had the highest accuracy scores for predicting the occurrence of OA, followed by 

RF (0.73), DT (0.73), KNN (0.72), and LR (0.72). For predicting the incidence of OA, RF (0.81) and GB 

(0.77) were the models with the highest cross-validated scores, followed by KNN (0.74), DT (0.72), SVM 

(0.72), and LR (0.72). 

Table 7. The 5-fold cross-validation accuracy of the optimized models for the prediction of OA occurrence (class 0: OAI = 0%, class 

1: OAI > 0%) and incidence (class 0: OAI < 10%, class 1: OAI > 10%). 

 Accuracy 

 DT GB LR RF KNN SVM 

ΟΑΙ > 0% 0.73 0.74 0.72 0.73 0.72 0.76 

ΟΑΙ > 10% 0.72 0.77 0.72 0.81 0.74 0.72 

After the grid search hyperparameter optimization, the models with the best hyperparameters were 

retrained on the complete training set (75% of the original data) and evaluated on the hold-out set (25% of 

the original data), using standard performance metrics (accuracy, specificity, sensitivity, AUC) (Table 8). 

Table 8. Classification report of predictive models for OA occurrence (class 0: OAI = 0%, class 1: OAI > 0%) and OA incidence. 
(class 0: OAI < 10%, class 1: OAI > 10%). 

Model Accuracy Specificity Sensitivity AUC 

OAI > 0% 

DT 0.80 0.86 0.75 0.65 

GB 0.87 1.00 0.75 0.93 

LR 0.73 0.86 0.62 0.86 

RF 0.80 0.86 0.75 0.93 

KNN 0.73 1.00 0.50 0.90 

SVM 0.80 0.86 0.75 0.86 

OAI > 10% 

DT 0.87 1.00 0.81 0.91 

GB 0.80 0.75 0.81 0.77 

LR 0.73 0.50 0.81 0.66 

RF 0.87 0.75 0.91 0.84 

KNN 0.87 0.75 0.91 0.77 

SVM 0.73 0.75 0.73 0.68 

As shown in Table 8, GB classifier performed the best among all the models examined for the 

occurrence of OA (OAI > 0%), with an accuracy of 87%, specificity of 100%, sensitivity of 75% and AUC 

score of 93%. RF also had an AUC score of 93%, indicating the classifier’s excellent ability to distinguish 

between infected and non-infected orchards, with an accuracy of 90%, a specificity of 86% and a sensitivity 

of 75%. Following GB and RF, SVM displayed an overall good performance, with an accuracy of 80%, a 

specificity of 86%, a sensitivity of 75% and an AUC score of 86%. KNN showed a remarkable specificity of 

100%, indicating the classifier’s excellent ability to correctly classify non-infected samples, however due to 
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its poor sensitivity of 50%, it was not considered effective for the identification of the disease. The low 

sensitivity of LR (62%) also indicated that the classifier was not useful in picking up the disease. DT 

classifier’s AUC score (0.65) indicated a poor discrimination capacity to distinguish between infected and 

non-infected samples. 

Among the classifiers examined for the prediction of the OA incidence (OAI > 10%), DT had the 

highest specificity (100%) and AUC score (91%), the highest accuracy (87%) together with RF and KNN 

and a sensitivity of 81%. Both RF and KNN demonstrated the highest sensitivity (91%) and the same 

accuracy (87%) and specificity (75%), although RF had a higher AUC score (84%) than KNN (77%). These 

classifiers managed to identify 91% of the orchards with OA larger than 10%. GB had a fairly good 

performance with an accuracy of 80%, a specificity of 75%, a sensitivity of 81% and an AUC score of 77%. 

LR and SVM were the least effective classifiers with poor discrimination ability indicated by their low AUC 

scores (66% and 68% respectively) and a low specificity (50%) of LR, which made it inappropriate for the 

classification of the non-infected samples. 

Figure 8 shows the receiver operating characteristic (ROC) curves for the outputs of the classification 

models about OA occurrence (OAI > 0%) and prediction of OA incidence (OAI > 10%). 

 
Figure 8. The comparison of the considered (a) OA occurrence; (b) OA incidence models using AUC-ROC curves. 

As shown in Figure 8a, among the classifiers for the occurrence of OA (OAI > 0%), GB and RF 

achieved the highest AUC scores, equal to 0.93, demonstrating the models’ excellent ability to discriminate 

between the infected and non-infected samples. The classifiers DT and RF achieved the greatest AUC scores, 

equivalent to 0.91 and 0.84 respectively, when comparing the AUC scores of the classifiers developed for the 

prediction of OA incidence (OAI > 10%) (Figure 8b), demonstrating their superior capacity to distinguish 

between olive orchards with OAI10% and those with OAI > 10%. 

Summarizing, GB performance was superior compared to the other models for the prediction of the 

occurrence of OA disease (OAI > 0%) with an accuracy of 86.7%, a sensitivity of 100%, a specificity of 75% 

and a ROC-AUC score of 93%, while for the prediction of the spread of the disease (OAI > 10%), DT stood 

out with an accuracy of 86.7%, a sensitivity of 81.8%, a specificity of 100% and a ROC-AUC score of 91%. 

The RF classifier performed very well in both cases, with an accuracy of 80%, a sensitivity of 85.7%, a 

specificity of 75% and a ROC-AUC score of 93% for the prediction of the occurrence of the disease (OAI > 

0%), and an accuracy of 86.7%, a sensitivity of 90.9%, a specificity of 75% and a ROC-AUC score of 84% 

for the prediction of the spread of the disease (OAI > 10%). 

In order to verify that the best classifiers had in fact learned a significant predictive pattern in the data 

and that they were appropriate for the particular classification tasks, we conducted permutation tests. 

Specifically, we produced 1000 random permutations of the class labels for the training data sets used in the 

models’ training. We then carried out the same 5-fold cross-validation procedure to obtain a classification 

accuracy score for each randomized dataset and generated a non-parametric null-distribution of accuracy 
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values (Figure 9). 

 
Figure 9. Generated null distributions of accuracy values from permutation tests where the class labels are randomly shuffled 1000 
times and an accuracy value for each permutation is plotted. The vertical lines represent the observed accuracy values from the true 
class labels, (A, B) generated null‑distributions for the GB and RF classifications of infected (OAI > 0%) against non-infected (OAI 
= 0%) olive orchards; (C, D) generated null‑distributions for the DT and RF classification of olive orchards with OAI < 10% against 
orchards with OAI > 10%. 

Based on the results of the permutation tests for the classification of the infected against non-infected 

orchards, we concluded that the accuracy scores of the GB (0.74) and RF (0.72) classifiers were statistically 

significant. With p-values of 0.003 and 0.013 respectively, we rejected the null hypothesis that the accuracy 

scores were due to chance. This means that the models’ accuracy scores on the original data are likely to 

generalize to new unseen data. The permutation tests also provided evidence that the models were not 

overfitting to the training data. 

The results of the permutation tests for the classification of the olive orchards with OAI < 10% against 

those with OAI > 10% demonstrated that the accuracy scores of the DT and RF classifiers were statistically 

significant with scores of 0.77 and 0.81, respectively. The null hypothesis was rejected with p-values of 

0.005 and 0.001, suggesting that the accuracy scores were not due to chance. Thus, the accuracy scores for 

the original data are likely to be applicable to new unseen data. The results of the permutation tests indicated 

that the models were not overfitting to the training data. 

4. Discussion 

The results of this study suggested that the GB and RF showed a better performance in classifying olive 

orchards into infected and non-infected with OA. Moreover, when distinguishing between olive orchards 

with OAI values below 10% and those above 10%, the DT and RF classifiers displayed the greatest 

effectiveness. Previous studies in the field of agriculture have already established the efficacy of the GB[57], 

RF[58] and DT[59] classification algorithms. 

Every classification algorithm has its own characteristics that can influence its performance on different 

datasets. In our study, we compared six popular classification algorithms, namely decision tree (DT), 

gradient boosting (GB), logistic regression (LR), random forest (RF), k-nearest neighbors (KNN) and 

support vector machine (SVM). The analysis revealed notable differences in the performance metrics of 

accuracy, sensitivity, specificity, and AUC score. 
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Gradient boosting and random forest algorithms demonstrated superior performance across metrics. 

This is because they are ensemble learning methods which combine multiple base models to create a stronger 

predictive model. By aggregating the predictions of multiple models, they can capture complex relationships 

and reduce overfitting. The decision trees employed in RF and the boosting process in GB allow them to 

model intricate feature interactions and non-linearities, which can be particularly beneficial in cases where 

the relationships between features are complex, and the dataset is of limited size. 

Decision trees also performed well in our study. Despite not being an ensemble method, they 

recursively partition the feature space based on decision boundaries, creating tree-like structures. This 

provides DTs with the flexibility to capture complex relationships and non-linearities in the data. 

On the other hand, LR, KNN, and SVM exhibited comparatively lower performance in our study than 

the ones previously discussed. Logistic regression assumes a linear relationship between the features and the 

target variable. As a result, this algorithm is not suitable for capturing the non-linearities of our dataset. K-

nearest neighbors, which relies on the nearest neighbors for classification, is sensitive to dataset size and 

suffers from the curse of dimensionality. In small datasets as was the case with our study, KNN 

demonstrated difficulties in finding representative neighbors, leading to inferior performance. Furthermore, 

AUC score is a metric particularly sensitive to KNN’s inability to handle imbalanced data. In our dataset, 

34% of the instances had an OAI of more than 10% while 66% had an OAI less than 10%. This imbalance 

forced KNN to prioritize the majority class and did not allow it to distinguish accurately the minority class 

which in turn lowered the AUC score. Finally, support vector machines, while effective in many scenarios, 

can be sensitive to the choice of hyperparameters and the dataset size. 

Consequently, the ensemble-based algorithms, such as GB and RF, demonstrated superior performance 

in terms of accuracy, sensitivity, specificity, and AUC score, showcasing their ability to handle complex 

relationships and mitigate overfitting. 

Regarding the feature selection method, RF combined with the RFECV technique gave insights as to 

the importance of soil and foliar nutrient variables, considering their interactions and interdependencies. The 

high performance of the final models and the results obtained by the permutation tests revealed that the 

selected features (location, water content, Ca, Mg, exchangeable Mg, trace Cu) were effective at predicting 

the target class (OAI = 0%, OAI > 0%) for OA occurrence, while the chosen features (water content, P, Ca, 

Mg, exchangeable Mg, trace Zn, trace Cu) were able to accurately predict the target class for OA incidence 

(OAI < 10%, OAI > 10%). 

Many of the features which were selected as variables in this study have been already linked to OAI 

incidence. Firstly, our findings align with previous research[15,60] which has associated severe epidemic 

outbreaks of OA disease with high relative humidity and frequent rainfall during the flowering and fruit 

development stages. Specifically, we discovered that olive fruit from infected olive orchards had 

significantly higher water content (Median(IQR) = 64.36 (61.38%–67.56%)) compared to non-infected 

(Median(IQR) = 62.93 (57.71%–65.70%)). Similarly, olive fruit from orchards with OAI greater than 10% 

had significantly higher water content (Median(IQR) = 66.13 (63.50%–67.84%)) compared to those with 

OAI < 10% (Median(IQR) = 62.38 (58.17%–65.84%)) (Table 3, Figure 4). 

The location of the orchard emerged as another crucial factor for predicting OA disease, which is 

reasonable considering that different locations are associated with diverse microclimates and agronomical 

practices[7,9,10]. 

Furthermore, the results of this study agree with previous research, which suggests that resistance to OA 

is closely related to the health of plants and soil[11]. In another study, Talhinhas et al.[9] demonstrated that in 

certain regions of Portugal and southwest Spain, there seems to be a potential connection between increased 

OA occurrence and low soil pH, which in turn correlates with insufficient Ca levels. The statistical analysis 
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of this dataset also revealed that Ca values were significantly lower in the infected samples (Median(IQR) = 

1.06 (0.95%–1.37%)) and in the samples with OAI > 10% (Median(IQR) = 1.04(0.92%–1.41%)), compared 

to the non-infected (Median(IQR) = 1.40 (1.22%–1.72%)) and those with OAI < 10% (Median(IQR) = 1.36 

(1.19%–1.67%)), respectively (Table 3, Figure 4). 

Regarding the micronutrient Cu, our findings showed that almost all the samples from olive orchards 

with copper levels above ≈ 19 ppm were infected with OAI greater than 10% (Table 6, Figure 7). Previous 

research has shown that while the application of copper-based fungicides is the recommended measure for 

controlling anthracnose in olive groves, overuse can cause a build-up of copper in the soil and obstruct the 

uptake of other nutrients[61,62]. 

Finally, our results showed that P levels between 0.23 to 0.37% were present in samples with OAI 

values both below and above 10%. It is worth mentioning that P levels that fell below 0.23% or exceeded 

0.37% were only found in samples with OAI values greater than 10% (Table 6, Figure 7). Our research 

findings also showed that samples collected from orchards with OAI greater than 10% displayed 

significantly lower trace Zn values (Median(IQR) = 1.92 (1.43–2.60 mg kg−1)) compared to those collected 

from orchards with OAI < 10% (Median(IQR) = 2.80 (1.65–4.05 mg kg−1)) (Table 3, Figure 4B). 

Magnesium and exchangeable Mg were identified as two critical factors that could potentially be used 

to predict the onset of OA disease. Magnesium exhibited a significant decrease in samples obtained from 

infected orchards (Median(IQR) = 0.12 (0.08%–0.14%)), as opposed to non-infected ones (Median(IQR) = 

0.15 (0.12%–0.17%)). Similarly, samples from orchards with OAI > 10% displayed a lower Mg content 

(Median(IQR) = 0.10 (0.08%–0.14%)) than samples from orchards with OAI < 10% (Median(IQR) = 0.14 

(0.12%–0.17%)) (Table 3, Figure 4). With regard to exchangeable Mg, its concentrations demonstrated 

significant reduction in samples obtained from infected orchards (Median(IQR) = 103 (81–134 mg kg−1)), as 

opposed to non-infected (Median(IQR) = 154 (115.5–274 mg kg−1)). Likewise, samples from orchards with 

OAI > 10% (Median(IQR) = 94 (75.75–108.75 mg kg−1)) displayed lower exchangeable Mg contents relative 

to orchards with OAI < 10% (Median(IQR) = 148.5 (114.75–270.5 mg kg−1)) (Table 3, Figure 4). 

To our knowledge, there is no previous research exploring the relationship between P, Zn, Mg and OA 

disease. However, interactions among mineral nutrients occur frequently in the soil and at the plant level, 

leading to interdependencies. Consequently, a deficiency or excess of one nutrient can impact the absorption 

or utilization of another. The concentration of nutrients also affects plant tolerance or resistance to 

pathogens[63,64]. 

In this study, the classification algorithms selected features that confirmed that balanced nutrition is 

critical for the control and management of OA disease. These features could potentially have a predictive 

value for the determination of OA incidence. 

5. Conclusion 

Using machine learning methods, this study highlights the importance of balanced nutrition as a control 

strategy for olive anthracnose. Some of the selected features have already been shown to have an association 

with the disease, albeit individually. Our study proposed a model that incorporates a number of soil and 

foliar nutrients along with orchard and olive fruit parameters, implying their interdependency for the 

prediction of the disease. We acknowledge that the small dataset is a limitation of our study. However, to 

reduce the impact of this problem and the risk of overfitting, we applied cross-validation on the training set 

and evaluated the models’ generalization performance on a held-out test set. Additionally, permutation tests 

were conducted to assess the statistical significance of the best models. In addition to working with a larger 

dataset, the performance of the proposed models would benefit from the inclusion of more predictive 

variables, such as weather data and cultivar susceptibility level. 
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