
Journal of Autonomous Intelligence (2024) Volume 7 Issue 5

doi: 10.32629/jai.v7i5.1484

1

Original Research Article

A virtual machine-based e-malpractice mitigation strategy in e-

assessment and e-learning using system resources and machine

learning techniques
Osamuyimen Odion Amadasun1,*, Bukola Onasoga2, Ahmed Aliyu3, Kingsley Eghonghon Ukhurebor4,*,

Adeyinka Oluwabusayo Abiodun1,5, Moses Ashawa6

1 Africa Centre of Excellence on Technology Enhanced Learning (ACETEL), National Open University of Nigeria

(NOUN), Abuja 900001, Nigeria

2 Department of Computer Science, Federal University of Agriculture Abeokuta, Abeokuta 111101, Nigeria
3 Department of Computer Science, Bauchi State University, Bauchi 751105, Nigeria

4 Department of Physics, Edo State University Uzairue, Auchi 312001, Edo State, Nigeria
5 Department of Computer Science, National Open University of Nigeria (NOUN), Abuja 900001, Nigeria

6 Department of Computer Science, Glasgow Caledonian University, G4 0BA Glasgow, UK

* Corresponding authors: Osamuyimen Odion Amadasun, oamadasun@noun.edu.ng; Kingsley Eghonghon

Ukhurebor, ukeghonghon@gmail.com, ukhurebor.kingsley@edouniversity.edu.ng

ABSTRACT

Since the introduction of online learning and the widespread use of AI-proctored examination systems, protecting

the integrity of assessments has faced new difficulties. The development of reliable methods for detecting electronic

cheating, notably the use of virtual machines (VMs) during examinations, has become essential with the rise of advanced

cheating methods. Hence, in this research, a thorough methodology for identifying virtual machine usage in an AI-

proctored test system is presented. In order to uncover suspicious activities connected with the use of VMs, the study

offers a unique model that makes use of system resource parameters and cutting-edge machine learning techniques.

Extensive experiments using simulated datasets are used to show the efficiency of the suggested model. The findings

indicate accurate electronic cheating detection that is likely to improve academic evaluation integrity.

Keywords: academic evaluation; e-learning; examination systems; machine learning techniques; virtual machines

1. Introduction

There are now more chances for academic evaluation thanks to

the growing acceptance of online learning and remote testing

platforms[1–3], but there are also new difficulties in maintaining the

validity of examinations[4]. The creation of AI-proctored test systems

was prompted by the infeasibility of using conventional non-person

proctoring techniques in distant settings[4–6]. These methods have

made it easier to remotely monitor and certify examinations, but they

are also open to electronic fraud, such as the use of virtual machines

(VMs)[4,6].

Users can utilize VMs to run various operating systems and

applications inside a host system in a sandboxed environment[2]. VMs

are a desirable option for students looking to gain unfair advantages

during examinations due to their flexibility and seclusion[7]. Students

can get around the monitoring features of AI-provisioned systems and

engage in dishonest behaviour by executing unauthorized software or

ARTICLE INFO

Received: 13 December 2023

Accepted: 3 January 2024

Available online: 10 April 2024

COPYRIGHT

Copyright © 2024 by author(s).

Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/

2

accessing forbidden resources inside a virtual computer[8].

Hence, this research intends to create a reliable detection model that can spot instances of virtual machine

utilization in the context of AI-proctored examinations in order to address this problem. According to Lin et

al.[9] and Bejawada[10], we can find trends and abnormalities that are indicative of VMs by examining different

system resource parameters, such as CPU utilization, memory utilization, network activity, disk usage, and

power consumption. The methodology of the suggested model, including the selection and collection of

pertinent system resource parameters, is thoroughly examined in this study. With the use of a synthetic dataset

resembling an AI-proctored examination system, we describe the model’s training and testing processes[11].

The performance indicators and assessment metrics used to gauge how well the model performs in accurately

recognizing virtual machine utilization were also considered[9].

The implications and rationale for consideration of this study are: the need to preserve academic integrity;

the need for robust cheating detection; maintaining fairness in assessments (cheating not only undermines the

integrity of assessments but also puts honest test-takers at a disadvantage); and the need to advance AI

proctoring technology[12]. The purpose of this research work is to create a reliable detection model for detecting

electronic cheating in an AI-proctored test system that uses VMs. In the course of this study, in order to pursue

and fulfil the goal of the study, an attempt will be made to identify important system resource metrics (during

examination sessions that indicate virtual machine activity), create a model for VM detection, gather and

prepare datasets (gather representative datasets from a model of an AI-powered proctored examination system),

and develop and assess the model (create training and test sets from the pre-processed datasets).

The following research questions will direct the investigation and give a thorough understanding of the

utility, constraints, and consequences of the proposed model.

1) What are the essential system parameters that can be used to identify virtual machine usage during a test

session?

2) How can machine learning methods be efficiently used in an AI-proctored test system to identify the use

of VMs?

3) How can a detection model be created for identifying electronic cheating as compared to current

techniques?

4) How accurate is the model and how can false positive and false negative rates be reduced?

Consequently, this research paper hopes to make a contribution to the field of AI-proctored examination

systems by offering a thorough and efficient method for identifying electronic cheating while using VMs. By

achieving these goals and objectives, this research paper hopes to make a contribution to the field of AI-

proctored examination systems by offering a thorough and efficient method for identifying electronic cheating

while using VMs.

2. Literature review

Several studies like Noorbehbahani et al.[13]; Alyoussef[14]; Asanga et al.[15]; Atoum et al.[16]; Basar et al.[17];

Beust et al.[18]; Butler-Henderson and Crawford[19]; Dendir and Maxwell[20]; Draaijer et al.[21]; Friatma and Anhar[22];

Furby[23]; Golden and Kohlbeck[24]; Hou et al.[25]; Kamalov et al.[26]; Li et al.[27]; Pandey et al.[28] have recently

focused on the detection of electronic cheating with outstanding findings, but there is a dearth of research on

the usage of VMs for cheating in AI-proctored examination systems. This review of the literature gives a

general overview of the field’s body of work and emphasizes its major discoveries and methodological

approaches.

2.1. Virtual machine detection

Several instructors have looked at the use of system resource criteria to determine which virtual machine

is used in testing and presented a method for recognizing patterns of virtual machine usage based on patterns

3

of CPU and memory usage[29]. Very accurate virtual computers were identified by their method, depending on

the number of resources used. A similar study was conducted by Wang et al.[30] on how to identify virtual

computers by analysing network traffic patterns. By monitoring traffic and IP addresses, they were able to

identify unusual network activity associated with virtual computing.

2.2. Machine learning techniques

The detection of electronic cheating has seen widespread application of machine learning methods.

Support vector machine (SVM) technology was used by Wang et al.[30] to differentiate between typical system

behaviour and virtual machine activity. Based on CPU and memory usage, their model had a high accuracy

rate for identifying virtual machine usage. Decision tree methods were used by Zhang et al.[31] to examine

system resource parameters and spot cheating. Their model successfully detected VMs with high precision and

recall rates.

2.3. Feature engineering

For the purpose of identifying virtual machine usage, feature engineering is essential. In their feature

engineering technique, it is suggested analysing the amount of CPU, memory, and disk consumption as well

as the length of the inspection. Their research revealed that combining numerous parameters increased the

virtual machine detection system’s precision. To capture dynamic behaviours related to virtual machine usage,

Zhang et al.[31] proposed time-based features, such as abrupt resource spikes or abrupt shifts in utilization.

According to their research, temporal features considerably improve detection accuracy.

2.4. Gaps identified in the study

The existing literature has primarily focused on technical aspects, overlooking the broader societal, ethical,

and legal implications of AI proctoring.

Furthermore, there is a dearth of research addressing the rapidly evolving landscape of sophisticated

cheating tactics and the countermeasures required to detect and prevent them effectively[13]. This literature gap

necessitates a more in-depth exploration of emerging cheating techniques, such as the use of VMs for cheating

in AI-proctoring examination systems. Understanding these novel cheating methods and their prevalence will

enable the development of more robust and adaptive cheating detection mechanisms.

2.5. Limitations and challenges

There are some restrictions and difficulties in the current research on virtual machine detection in AI-

provisioned test systems. The use of predetermined thresholds or rules, which may not generalize well across

various locations or examination scenarios, is a typical drawback. Adaptive models that can recognize new

tactics are required due to the dynamic nature of cheating approaches. False positives and false negatives are

a potential problem that could affect the detection system’s dependability and efficiency. Implementing

detection mechanisms that require access to system resource data or network traffic also raises privacy and

ethical issues.

3. Methodology

To effectively detect electronic cheating facilitated by VMs in AI-proctored examination systems, a

comprehensive methodology was established. This section outlines the key steps involved in the detection

process represented in Figure 1, which is followed by explanations.

4

Figure 1. Key steps involved in the detection process.

Figure 2. Data collection.

3.1. Data collection

The initial step in the examination procedure is to gather pertinent data. This includes recording system

logs, seeing screen and browser activity, and recording audio and video recordings of the test-taker.

Additionally, data on virtual machine activity, including network traffic and changes in virtual machine state,

was gathered (see Figure 2).

3.2. Data pre-processing

To identify pertinent features and remove noise, preprocessing of the collected data is required. Frame

extraction from video recordings, speech-to-text conversion for audio recordings, and filtering out pointless

browser or system log activity are all examples of preprocessing techniques (see Figure 3).

3.3. Feature extraction

The pre-processed data is then used to extract features that represent various facets of the test-takers

behaviour. These characteristics may include changes in the state of VMs, network activity, resource utilization,

mouse movements, keyboard dynamics, and facial expressions, as shown in Figures 4–7. Feature extraction

methods can change based on the particular data types and analysis needs.

5

Figure 3. Data pre-processing.

Figure 4. Descriptive statistics of CPU and memory utilisation.

Figure 5. Inferential statistics measuring correlation between CPU and memory utilisation.

6

Figure 6. Moving average.

Figure 7. Plot of CPU utilization and memory over time.

3.4. Machine learning and rule-based algorithms

Models that distinguish between honest and dishonest behaviour were created using machine learning

methods such as logistic regression, random forests, or deep learning methods like convolutional neural

networks for supervised learning (see Figures 8–10). Specific patterns of cheating, for example, irregular

mouse movements or frequent window switches, can be detected by rule-based algorithms.

7

Figure 8. Decision tree classifier.

Figure 9. Logistic regression classifier.

Figure 10. Modelling and evaluation of datasets.

3.5. Training and testing

Training and testing sets were created using the gathered and pre-processed data and the retrieved features.

Machine learning models like random forest, logistic regression, etc. were trained using the training set, and

their performance was assessed using the testing set. To guarantee robustness and prevent overfitting, cross-

validation techniques were utilized, such as k-fold cross-validation, as shown in Figure 10.

8

3.6. Validation and fine-tuning

The validated models were used to generate a mathematical model that can be tested on different datasets

or in real-world scenarios. This procedure aids in evaluating the model’s F1 score, recall, accuracy, and

precision. Based on the validation results, the models can be improved by adding new features, modifying

hyperparameters, or both to increase the detection accuracy, as shown in Figure 11.

Figure 11. Screenshot of the mathematical model equation.

3.7. Integration with AI-proctored examination systems

The detection models were incorporated into AI-proctored test systems as they have been created and

validated. Implementing the detection algorithms into the testing platform, enabling real-time monitoring, and

producing alerts or messages when cheating behaviour is discovered are all part of this integration using Python

programming, as shown in Figure 12.

Figure 12. The integration using python programming.

9

4. Proposed solutions

This solution suggests some remedies to lessen the problem of virtual machine-facilitated electronic

cheating. These include utilizing machine learning techniques to identify patterns of cheating behaviour,

developing improved monitoring algorithms, especially those created to detect virtual machine usage, or

putting additional security measures in place to stop unauthorized VM usage during tests. In order to create

effective solutions, cooperation between academic institutions, providers of test systems, and AI experts is

essential.

4.1. Model name: Virtual machine detection using behaviour analysis (VMDBA)

Data collection:

• Video recordings: Capture the test-taker’s facial expressions, gaze patterns, and general behaviour during

the examination.

• Keystroke dynamics: Record typing patterns, including keystroke timing and rhythm.

• System logs: Collect system-level information such as CPU usage, memory utilization, and network

activity.

• Virtual machine state: Monitor virtual machine state changes, including start-up, shut-down,

suspending/resuming, VM Metadata (timestamp or time clock), VM OS, registry and file system, etc.

Pre-processing:

• Extract frames from video recordings and apply face detection and recognition algorithms to track the

test-taker’s facial features.

• Convert audio recordings to text using speech-to-text conversion techniques for further analysis.

• Filter out irrelevant system logs and browser activities, focusing on the virtual machine-related data.

Feature extraction:

• Facial expressions: extract facial landmarks and analyse changes in expressions using techniques like the

facial action coding system (FACS).

• Gaze patterns: Determine the test-taker’s gaze direction and track eye movements using eye-tracking

algorithms.

• Keystroke dynamics: Analyse keystroke timing, rhythm, and patterns to establish a unique typing profile

for each test-taker.

• System resource usage: calculate metrics such as CPU utilization, memory consumption, and network

traffic patterns.

• Virtual machine state transitions: identify start-up, shut-down, and suspension events to track VM usage.

Machine learning model:

• Supervised learning: we utilize a classification algorithm, the random forest, to distinguish between

legitimate and cheating behaviours based on the extracted features.

• Training: Train the model using a labelled dataset of examples representing both legitimate usage and

cheating instances.

• Testing and Validation: Evaluate the model’s performance using a separate dataset or real-world test cases,

assessing accuracy, precision, recall, and F1 score.

Real-time monitoring and alerts:

• Integrate the detection model into the AI-proctored examination system to enable real-time monitoring of

test-taker behaviour.

• Continuously analyse the extracted features during the examination and compare them to the trained

model’s predictions.

10

• Generate alerts or notifications when the model detects suspicious behaviour associated with virtual

machine usage.

4.2. Model equation

y = sigmoid(b0 + b1 × FacialExpressions + b2 × GazePatterns + b3 × KeystrokeDynamics + b4 ×

SystemResources + b5 × VMState)
(1)

In Equation (1); ‘y’ represents the output or probability of the test-taker engaging in electronic cheating

facilitated by VMs; ‘sigmoid()’ is the sigmoid activation function that maps the linear combination of the

features to a probability between 0 and 1; ‘b0, b1, b2, b3, b4, b5’ are the regression coefficients that represent

the weights associated with each feature; ‘FacialExpressions, GazePatterns, KeystrokeDynamics,

SystemResources, VMState’ are the extracted features representing the test-takers behaviour and virtual

machine usage (note: SystemResources is our main focus for the detection of VM presence).

The values of the regression coefficients (‘b0, b1, b2, b3, b4, b5’) are learned during the training phase

of the logistic regression model using labelled data, where the features are associated with binary labels

indicating whether the behaviour corresponds to legitimate usage or electronic cheating using VMs.

During real-time monitoring, the feature values are computed for each test-taker, and the equation is used

to calculate the probability ‘y’. If the probability exceeds a predefined threshold, it can be interpreted as an

indication of potential electronic cheating facilitated by VMs.

Note: The logistic regression model equation provided above is just an example. The actual model

equation and coefficients may vary depending on the specific features, dataset, and machine learning algorithm

used.

When considering system resources in the equation for virtual machine detection in AI-proctored

examination systems, you can include a range of parameters that provide insights into the usage and behaviour

of the underlying system. Here is a list of exhaustive parameters that can be considered for system resources:

CPU utilization:

• Average CPU usage (%)

• Peak CPU usage (%)

• CPU load balancing across cores

• Number of active threads or processes

Memory utilization:

• Average memory usage (%)

• Peak memory usage (%)

• Available memory (in bytes or percentage)

• Memory page faults or swapping activity

Network activity:

• Incoming network traffic (bytes/sec or packets/sec)

• Outgoing network traffic (bytes/sec or packets/sec)

• Network latency or response time

• Open network connections or ports

Disk I/O:

• Disk read/write rate (bytes/sec)

• Disk latency or response time

• Number of read/write operations

• Disk space usage (free/available space)

11

Power consumption:

• Power usage (wattage)

• Battery level (if applicable)

• Power-saving mode activation

Process activity:

• List of active processes or applications

• CPU and memory usage by each process

• Detection of unauthorized or prohibited processes

• Abnormal process behaviour (e.g., rapid creation or termination)

System events:

• System boot-up or restart events

• Device attachment or removal events

• Software installations or updates

• System error logs or alerts

Operating system information:

• Operating system version and patch level

• System architecture (32-bit/64-bit)

• Security updates or patches applied

• Presence of virtualization technologies (e.g., VM detection tools)

4.3. A programme to train and test dataset

A programme to train and test dataset below:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

Read the dataset from a CSV file

dataset = pd.read_csv(‘exam_system_dataset.csv’)

Separate the features (system resource parameters) and target variable

X = dataset.drop([‘System Boot Event’], axis=1)

y = dataset[‘System Boot Event’]

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

Train the decision tree classifier

model = DecisionTreeClassifier()

model.fit(X_train, y_train)

Make predictions on the test set

y_pred = model.predict(X_test)

Calculate accuracy

accuracy = accuracy_score(y_test, y_pred)

print(‘Accuracy:’, accuracy)

4.4. Continuous improvement

• Collect user and proctor feedback to enhance the effectiveness and precision of the model.

• Regularly update the model to account for new cheating patterns, evasion techniques, or developments in

virtual machine technology.

12

• To improve detection performance, incorporate additional elements, or alter hyperparameters.

In order to promote honest and secure online examinations, AI-proctored examination systems can

employ the VMDBA model to identify and stop electronic cheating made feasible by VMs.

4.5. Evaluation and validation (results)

The effectiveness of proposed solutions must be evaluated after extensive testing and validation. This

section covers the methods for putting cheating detection systems to the test, including real-world case studies,

made-up examination scenarios, and benchmarking against past cheating instances. The benefits and

downsides will be made clear by thorough validation.

Let’s solve an example using the provided mathematical model equation:

Mathematical model equation:

The mathematical model equation generated by the code in Figure 10. Can be explained as follows:

Cheating detected = (0.35 × CPU utilization) + (0.23 × Memory utilization) + (0.02 × Virtual machine) +

(−32.38)
(2)

1) “Cheating detected”: This is the predicted output or probability of cheating being detected. In logistic

regression, the output is usually interpreted as the probability of an event occurring, in this case, the likelihood

of cheating being detected.

2) “(0.35 × CPU utilization)”: This term represents the contribution of the ‘CPU utilization’ feature to the

predicted probability of cheating being detected. The coefficient ‘0.35’ is the weight assigned to the ‘CPU

utilization’ feature, indicating how much this feature influences the output.

3) “(0.23 × Memory utilization)”: Similarly, this term represents the contribution of the ‘memory

utilization’ feature to the predicted probability. The coefficient ‘0.23’ is the weight associated with the

‘memory utilization’ feature.

4). “(0.02 × Virtual machine)”: This term represents the contribution of the ‘virtual machine’ feature to

the predicted probability. The coefficient ‘0.02’ is the weight associated with the presence of a ‘virtual

machine’. Note that this coefficient is positive, indicating that the model considers the presence of a virtual

machine as a factor that increases the likelihood of cheating being detected.

5) “−32.38”: This is the intercept term, representing the constant or baseline value when all the features

are zero. It helps to shift the predicted probabilities along the probability scale.

In summary, the equation combines the weighted contributions of the three input features (‘CPU

utilization’, ‘memory utilization’, and ‘virtual machine’) along with the intercept to calculate the predicted

probability of cheating being detected. The logistic regression model has learned the values of the coefficients

during the training process, optimizing them to best fit the provided dataset and make accurate predictions

about cheating detection based on the given features. Let’s assume we have the following values for the

predictor variables:

CPU utilization = 70, memory utilization = 60, virtual machine = 1

We can substitute these values into the equation to calculate the predicted likelihood of cheating being

detected:

Cheating detected = (0.35 × 70) + (0.23 × 60) + (0.02 × 1) + (−32.38) (3)

Simplifying the equation:

Cheating detected = 24.5 + 13.8 + 0.02 − 32.38 (4)

Cheating detected = 6.94

The predicted likelihood of cheating being detected based on the given values for CPU utilization,

13

memory utilization, and virtual machine, is approximately 6.94.

It’s important to note that this example is for illustration purposes only, and the actual interpretation and

prediction should be done in the context of the specific dataset and study. The interpretation of the predicted

value would depend on the threshold or criteria set to classify an observation as cheating or non-cheating.

In the context of logistic regression, the predicted value represents the estimated likelihood or probability

of an event occurring. In this case, it represents the estimated likelihood of cheating being detected based on

the given values of CPU utilization, memory utilization, and virtual machine.

To determine whether cheating is detected or not, a threshold or cutoff value needs to be established. This

threshold represents a decision boundary or criteria for classifying an observation as cheating or non-cheating.

For example, if a threshold of 0.5 is set, any predicted probability above 0.5 can be considered as detecting

cheating, while values below 0.5 can be considered as not detecting cheating. However, the specific threshold

value can vary depending on the requirements of the study or the desired balance between sensitivity and

specificity.

Therefore, the interpretation of the obtained value would depend on the established threshold or decision

rule. If the threshold is set at 0.5, and the obtained value is above 0.5, it would imply that cheating is predicted

to be detected. However, if the obtained value is below 0.5, it would imply that cheating is predicted to not be

detected.

It’s important to determine an appropriate threshold and interpret the predicted probabilities in the context

of the specific study and its requirements.

4.6. Discussion of findings

This paper presents an investigation into the detection of electronic cheating using virtual machine

technology in an AI-proctored examination system. Through extensive analysis and experimentation, we have

first developed our proposed detection model based on machine learning algorithms, which showed promising

results in accurately identifying instances of cheating during the examination process. By considering various

parameters such as CPU utilization, memory utilization, and virtual machine usage, we were able to develop

a model that effectively classified instances of cheating with a high level of accuracy.

Secondly, the simulation-based datasets provided valuable insights into the behaviour of candidates and

the relationship between system resources and cheating patterns. The generated datasets allowed us to evaluate

the effectiveness of our detection model and understand the impact of different factors on cheating behaviours.

Furthermore, our analysis revealed the importance of monitoring and analysing system resources, such as

CPU and memory utilization, as potential indicators of electronic cheating. By monitoring these parameters

and applying appropriate thresholds, proctors can identify suspicious activities and take the necessary actions

to maintain the integrity of the examination process.

5. Conclusion and recommendations

For accurate and effective detection, the works under evaluation emphasize the importance of feature

engineering, machine learning techniques, and system resource parameters for the detection of virtual

machines being used for e-malpractice.

However, with online learning and the widespread use of AI-proctored examination systems, protecting

the integrity of assessments is still facing some new difficulties. The development of reliable methods for

detecting electronic cheating, notably the use of VMs during examinations, has become essential with the rise

of advanced cheating methods, so as to mitigate this problem; hence, this study stands out in this regard.

This research paper aims to contribute to the body of knowledge previously accessible by proposing a

14

novel detection model using resource parameters that circumvents some of these problems and provides a

detailed way for detecting electronic cheating using VMs in AI-proctored exam systems. In conclusion, our

study demonstrates the potential of virtual machine-based detection systems for identifying electronic cheating

during AI-proctored examinations. The findings contribute to the ongoing efforts to develop robust and reliable

examination systems that ensure fairness and uphold academic integrity.

It is, however, suggested that future research should:

• Focus on refining the model, expanding the dataset, and conducting real-world experiments to further

validate and enhance the proposed approach.

• Additionally, it is believed and suggested that future research studies should show the impact of the

research in the practical field.

Author contributions

Conceptualization, OOA; methodology, OOA; software, OOA; validation, OOA, BO, AA and KEU;

formal analysis, OOA and KEU; investigation, OOA and KEU; resources, OOA, BO, AA and KEU; data

curation, OOA and KEU; writing—original draft preparation, OOA and KEU; writing—review and editing,

OOA, BO, AA, KEU, AOA and MA; visualization, OOA and KEU; supervision, BO, AA and KEU; project

administration, AOO and KEU; funding acquisition, OOA, BO, AA, KEU, AOA and MA. All authors have

read and agreed to the published version of the manuscript.

Acknowledgments

The authors appreciate the authors and publishers, whose articles were used as guides for this study. Also,

the authors express gratitude to their respective institutions and the Africa Centre of Excellence on Technology

Enhanced Learning (ACETEL), National Open University of Nigeria, Abuja, for supporting this study.

Conflict of interest

The authors declare no conflict of interest.

References

1. Nneji CC, Urenyere R, Ukhurebor KE, et al. The impacts of COVID-19-induced online lectures on the teaching

and learning process: An inquiring study of junior secondary schools in Orlu, Nigeria. Frontiers in Public Health.

2022, 10. doi: 10.3389/fpubh.2022.1054536.

2. Aalam Z, Kumar V, Gour S. A review paper on hypervisor and virtual machine security. Journal of Physics:

Conference Series. 2021, 1950(1): 012027. doi: 10.1088/1742-6596/1950/1/012027.

3. Hussaini AR, Ibrahim S, Ukhurebor KE, et al. The Influence of Information and Communication Technology in
the Teaching and Learning of Physics. International Journal of Learning, Teaching and Educational Research.

2023, 22(6): 98-120. doi: 10.26803/ijlter.22.6.6.

4. Ndunagu JN, Ukhurebor KE, Adesina A. Virtual Laboratories for STEM in Nigerian Higher Education: The

National Open University of Nigeria Learners’ Perspective. In: Elmoazen R, López-Pernas S, Misiejuk K, et al.

(editors). Proceedings of the Technology-Enhanced Learning in Laboratories Workshop (TELL 2023). 2023. pp.

38-48.

5. Sathyanarayanan R, Dhir A. Detecting student cheating in online exams using computer vision techniques. Journal

of Educational Technology Systems. 2020; 49(2): 214-235.

6. Schmid RF, Dehghantanha A. A Comprehensive Study of Machine Learning Techniques for Cheating Detection

in E-learning Environments. Computers in Human Behavior. 2020; 105: 106219.

7. Newton PM, Essex K. How Common is Cheating in Online Exams and did it Increase During the COVID-19
Pandemic? A Systematic Review. Journal of Academic Ethics. Published online August 4, 2023. doi:

10.1007/s10805-023-09485-5.

8. Efe A. An assessment over the intrusion detection and prevention systems for mis in the cloud computing

environment. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi. 2020.

9. Lin W, Xiong C, Wu W, et al. (2022). Performance Interference of Virtual Machines: A Survey. ACM Computing

Surveys. do: 10.1145/3573009.

10. Bejawada, S. An Analysis to Identify the Factors that Impact the Performance of Real-Time Software Systems A

15

Systematic mapping study and Case Study. 2019. Available online: https://www.diva-

portal.org/smash/get/diva2:1422467/FULLTEXT02 (accessed on 10 December 2023).

11. Khomami N. How a virtual assistant could stop students cheating in exams. Available online:

https://www.theguardian.com/education/2018/may/21/how-a-virtual-assistant-could-stop-students-cheating-in-

exams (accessed on 10 December 2023).

12. Perkins M. Academic integrity considerations of AI Large Language Models in the post-pandemic era: ChatGPT

and beyond. Journal of University Teaching and Learning Practice. 2023, 20(2). doi: 10.53761/1.20.02.07.

13. Noorbehbahani F, Mohammadi A, Aminazadeh M. A systematic review of research on cheating in online exams
from 2010 to 2021. Education and Information Technologies. 2022, 27(6): 8413-8460. doi: 10.1007/s10639-022-

10927-7.

14. Alyoussef IY. Acceptance of e-learning in higher education: The role of task-technology fit with the information

systems success model. Heliyon. 2023, 9(3): e13751. doi: 10.1016/j.heliyon.2023.e13751.

15. Asanga MP, Essiet UU, Ukhurebor KE, et al. Social Media and Academic Performance: A Survey Research of

Senior Secondary School Students in Uyo, Nigeria. International Journal of Learning, Teaching and Educational

Research. 2023, 22(2): 323-337. doi: 10.26803/ijlter.22.2.18.

16. Atoum Y, Chen L, Liu AX, et al. Automated Online Exam Proctoring. IEEE Transactions on Multimedia. 2017,

19(7): 1609-1624. doi: 10.1109/tmm.2017.2656064.

17. Basar ZM, Mansor AN, Jamaludin KA, et al. The Effectiveness and Challenges of Online Learning for Secondary

School Students—A Case Study. Asian Journal of University Education. 2021, 17(3): 119. doi:

10.24191/ajue.v17i3.14514.
18. Beust P, Duchatelle I, Cauchard V. Exams taken at the student’s home. Available online: https://hal.science/hal-

02129191 (accessed on 10 December 2023).

19. Butler-Henderson K, Crawford J. A systematic review of online examinations: A pedagogical innovation for

scalable authentication and integrity. Computers & Education. 2020, 159: 104024. doi:

10.1016/j.compedu.2020.104024.

20. Dendir S, Maxwell RS. Cheating in online courses: Evidence from online proctoring. Computers in Human

Behavior Reports. 2020, 2: 100033. doi: 10.1016/j.chbr.2020.100033.

21. Draaijer S, Jefferies A, Somers G. Online proctoring for remote examination: A state of play in higher education in

the EU. Communications in Computer and Information Science. 2018, 829: 96108. doi: 10. 1007/978-3-319-

97807-9_8.

22. Friatma A, Anhar A. Analysis of validity, reliability, discrimination, difficulty and distraction effectiveness in
learning assessment. Journal of Physics: Conference Series. 2019, 1387: 012063. doi: 10.1088/1742-

6596/1387/1/012063.

23. Furby L. Are You Implementing a Remote Proctor Solution This Fall? Recommendations From NLN Testing

Services. Nursing Education Perspectives. 2020, 41(4): 269-270. doi: 10.1097/01.nep.0000000000000703.

24. Golden J, Kohlbeck M. Addressing cheating when using test bank questions in online Classes. Journal of

Accounting Education. 2020, 52: 100671. doi: 10.1016/j.jaccedu.2020.100671.

25. Hou M, Zhu S, Wang Y, Chen Y. A Two-Step Authentication Approach for Online Proctoring. In Proceedings of

the 11th International Conference on Educational Data Mining (EDM), Athens, Greece. 2022.

26. Kamalov F, Sulieman H, Santandreu Calonge D. Machine learning based approach to exam cheating detection.

Saqr M, ed. PLOS ONE. 2021, 16(8): e0254340. doi: 10.1371/journal.pone.0254340.

27. Li J, Zhang R, Li M, Xie Y. An Anti-Cheating Mechanism Based on Behavior Analysis for Online Examinations.
IEEE Access. 2021; 9: 44222-44232.

28. Pandey AK, Kumar S, Rajendran B, et al. e-Parakh: Unsupervised Online Examination System. 2020 IEEE

REGION 10 CONFERENCE (TENCON). Published online November 16, 2020. doi:

10.1109/tencon50793.2020.9293792.

29. Zia Ullah Q, Hassan S, Khan GM. Adaptive Resource Utilization Prediction System for Infrastructure as a Service

Cloud. Computational Intelligence and Neuroscience. 2017, 2017: 1-12. doi: 10.1155/2017/4873459.

30. Wang J, Gu H, Yu J, et al. Research on virtual machine consolidation strategy based on combined prediction and

energy-aware in cloud computing platform. J Cloud Comp 11, 50 (2022). https://doi.org/10.1186/s13677-022-

00309-2.

31. Zhang C, Hu C, Xie S, Cao S. Research on the application of Decision Tree and Random Forest Algorithm in the

main transformer fault evaluation. Phys.: Conf. Ser. 2021, 1732 012086, doi:10.1088/1742-6596/1732/1/012086.

