
Journal of Autonomous Intelligence (2024) Volume 7 Issue 5 

doi: 10.32629/jai.v7i5.1518 

1  

Original Research Article 

HardMix: Considering Difficult Examples in Mixed Sample Data 

Augmentation 
A. F. M. Shahab Uddin1, Md Delowar Hosen1, Md. Nasim Adnan1, Syed Md Galib1, Md. Alam Hossain1, 

Sung-Ho Bae2,* 

1 Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, 

Bangladesh 

2 School of Computing, Kyung Hee University, Seoul 17104, Republic of Korea 

* Corresponding author: Sung-Ho Bae, shbae@khu.ac.kr 

ABSTRACT 

Mixed sample data augmentation (MSDA) techniques enhance the generalization ability of deep learning models 

where the training samples and their labels are mixed to generate new samples. Those mixed (augmented) samples 

increase data diversity and combined with mixed labels, offer better localization and generalization ability of the model. 

The performance of MSDA highly depends on the selection of source patch to be mixed. Consequently, several methods, 

from random to careful selection of source patch using prior knowledge have been studied, to propose better augmentation 

strategy. We argue that besides the careful selection of the source patch, selecting the source sample from where the 

source patch will be cut, also plays an important role. Based on that, we propose HardMix that selects the source patch 

from hard samples (which are frequently being miss-classified by a model) to let the model better learn the feature of hard 

samples. We conduct comprehensive experiments on image classification task on several benchmark datasets using 

various state-of-the-art architectures to verify the effectiveness of the proposed method. HardMix achieves the best known 

top-1 error of 3.62%, and 3.54% for ResNet-18 and ResNet-50 architectures on CIFAR-10 classification dataset, 

respectively. Also, it achieves the best known top-1 error of 19.33%, 18.31%, and 16.21% for ResNet-18, ResNet-50, and 

WideResNet architectures on CIFAR-100 classification dataset, respectively. Moreover, the proposed HardMix data 

augmentation strategy outperforms state-of-the-art methods with a best known top-1 error of 21.20% and 20.01% on 

ImageNet validation dataset when applied using ResNet-50 and ResNet-101 architectures, respectively. 

Keywords: HardMix; data augmentation; hard sample based data augmentation; generalization; mixed sample data 

augmentation; MSDA 

1. Introduction 

Deep learning models have shown outstanding performance in 

numerous fields, especially in vision based tasks such as image 

classification[1–3], object detection[4,5], and semantic segmentation[6–8], 

etc. With the advent of modern devices for parallel computing and 

improved training algorithms, it has become possible to increase 

models’ depth significantly. As a result, today’s Convolution Neural 

Networks (CNNs) typically have 10 to 100 million of learnable 

parameters. Such a huge number of parameters enable the deep CNNs 

to solve complex problems. However, besides the powerful 

representation ability, a huge number of parameters increase the 

probability of overfitting when the number of training examples is 

insufficient, which results in poor generalization of the model. 

Moreover, collecting and labeling data is an expensive and tedious 
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job. As an alternative, advanced data augmentation strategies have widely been studied. 

Random feature removal is one of the widely used methods which directs the CNNs to avoid focusing on 

certain tiny areas of the input images or on particular portions of internal activations, thereby improves the 

robustness of the model. Dropout[9,10] is a well-known feature-level training strategy which randomly disables 

some internal activations of a network to avoid overfitting. To enjoy similar benefits, regional dropout, an 

image-level data augmentation method known as Cutout[11], has been proposed that introduces the dropout 

effect by eliminating or modifying random regions of the input image. Cutout[11] guides a model to learn the 

full object region rather than focusing on a small part or activation and increase the model’s generalization. 

However, the feature removal is undesirable since it eliminates informative pixels of the training images. 

After regional dropout, several MSDA strategies have been proposed e.g., Mixup[12], CutMix[13], 

SaliencyMix[14], PuzzleMix[15], etc. MSDA techniques have shown impressive performance in enhancing 

models’ generalization ability by generating more diverse samples. This technique mixes two or more training 

samples in order to increase data diversity. Besides that, since the augmented samples result in the occlusion 

of various portions of the mixed objects, it guides the model to learn the less discriminative part of an object 

instead of always learning the most important features such as the head of a dog, the face of a human, etc. As 

a result, it enhances the generalization and localization ability. Also, it improves model robustness to 

adversarial attacks[16]. 

Mixup[12] is a data augmentation technique that involves creating a new sample by linearly interpolating 

a pair of training samples to enhance data diversity. Although this approach enhances the generalization ability 

of a model, the augmented image seems locally ambiguous and unnatural[13]. However, it introduces a new set 

of data augmentation techniques and numerous methods have been proposed since then. 

Yun et.al. proposed a successful MSDA technique called CutMix[13] that cuts a patch of a training sample 

(known as target image) in a random fashion and then instead of keeping it blank, replaces that region with a 

patch (known as source patch) from another training sample (known as source image). In addition, they suggest 

to mix the labels of the target and source images based on the ratio of the mixed patches. However, the random 

selection may select uninformative image regions e.g., a background patch and when mixing the image labels, 

it introduces label error since the background patch does not represent the corresponding object[14]. In order to 

solve that problem researchers have suggested to use some prior information when selecting the source patch 

and also several studies have been conducted to find the optimal mixing strategy[14,15]. 

SaliencyMix[14] proposed to select the source patch based on the most salient part of an image and then 

mix it to the target image. It prevents the method from selecting any uninformative patch and helps to solve 

the label error problem. PuzzleMix[15] proposed a very similar approach but solved a dual optimization problem 

to maximize the saliency information in the augmented image. Although this strategy also performs well, it 

increases the computational complexity due to the dual optimization problem. ResizeMix[17] proposed not to 

cut any patch from the source image but rather to down-sample the source image and mix it to the target image 

and also mix their labels in order to avoid label error. All of the abovementioned works focused on better 

selection of the source patch and their mixing location. 

Following the success of MSDA, some of the recent works applied MSDA in semi-supervised learning, 

especially, in medical image domain[18,19]. Wang et al.[18] proposed a semi supervised learning framework for 

3D medical image detection where they proposed to mix a labeled image with a pseudo labeled image 

segmentation for a better training. Since, the actual labels for detection tasks in medical imaging are bounding 

boxes, it is not possible to get something as meaningful as soft classes in classification by taking the linear 

interpolation of two sets of boxes. As a result, they used image level and object level mixing strategy with 

focal loss for training the model. Similarly, Qiao et al.[19] also used MSDA for the semi-supervised Computed 

Tomography (CT) lesion segmentation in medical image domain. Similar to Wang et al.[18], the authors 
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proposed to make a pair of labeled and pseudo labeled images based on an uncertainty score predicted by 

Monte Carlo method and then used an existing MSDA method called SwapMix. Both of the above-mentioned 

works utilized MSDA for semi-supervised medical image domain to increase the labeled segmentation map 

information in the training data with a predicted pseudo label. 

However, in this study, we find that besides selecting an optimal source patch it is also important to 

carefully select the source images from where the patch will be cut. It is well known that some samples within 

a dataset are challenging for machine learning models to predict or classify accurately, which are called hard 

samples[20–25]. We propose considering those hard samples of a mini-batch as the source images in an MSDA 

technique and guiding a model to learn a better feature representation of those samples and enhance the model’s 

performance. This more effective data augmentation strategy is what we call “HardMix”. 

To evaluate the effectiveness of the proposed HardMix data augmentation, we perform extensive 

experiments on image classification task on various benchmark datasets, using state-of-the-art CNN 

architectures. In summary, the proposed method has obtained the top-1 error of 3.62%, and 3.54% for ResNet-

18 and ResNet-50 architectures on CIFAR-10 classification dataset, respectively. Also, it achieves the top-1 

error of 19.33%, 18.31%, and 16.21% for ResNet-18, ResNet-50, and WideResNet architectures on CIFAR-

100 classification dataset, respectively. All of these results clearly indicate the effectiveness of the proposed 

HardMix data augmentation strategy. The contributions of this paper can be summarized as follows: 

⚫ To the best of our knowledge, we are the first to investigate the effect of source image selection in Mixed 

Sample-based Data Augmentation (MSDA). 

⚫ We propose HardMix, which suggests using only hard samples (that are difficult for a model to predict 

accurately) as source images to cut patches in MSDA. This technique helps to increase the appearance 

frequency of hard samples and enhances the feature representation learning of a model. 

⚫ The proposed method outperforms state-of-the-art data augmentation methods. 

The rest of this paper is organized as follows. Section 2 presents related works including traditional data 

augmentations and MSDAs. Section 3 explains the proposed method. In section 4, we verify the proposed data 

augmentation method by performing experiments on image classification task. Section 4.7 discusses the 

strengths and weaknesses of the proposed method. Finally, section 5 summarizes the importance of proposed 

method and future opportunities. 

2. Related works 

2.1. Data augmentation 

Data augmentation has become one of the most useful training strategies to enhance generalization ability 

of deep learning methods[11–15,17]. Traditional data augmentation techniques include horizontal and vertical 

flipping, rotation, random cropping and resizing, contrast changing, translation, random noise addition, etc. 

Those traditional data augmentation techniques have widely been used in training deep neural networks to 

enhance their generalization ability. Considering their effectiveness, several advanced data augmentation 

techniques have been studied since then[11–15,17]. 

2.2. Regional dropout 

Dropout[9,10] is another effective approach to prevent overfitting problem. This technique randomly erases 

some neural connections of a network in order to restrain the model from memorising the training data 

distribution. In order to enjoy similar benefit as dropout, regional dropout methods have been proposed which 

offer similar mechanism of dropping internal connections but at the input space. Specifically, regional dropout 

randomly makes some portion of the input training samples blank to restrict information flow from that region. 

Cutout[11] is a regional dropout technique which randomly removes a region from the input image which makes 
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the model not to focus on a small part of the internal activation, i.e., instead of focusing only on the important 

parts of an image, it lets the model to learn other less import features. As a result, it prevents overfitting, 

enhances the generalization ability and localization ability of the model. 

2.3. MSDA 

MSDA methods[12–15,17,26–29] have drawn much attention due to their promising augmentation 

performance. We divide them into two groups: (i) basic MSDA[12–14,17] and (ii) dual optimization based 

MSDA[15,26–29]. 

2.3.1. Basic MSDA 

Mixup[12] is one such methods that suggests to mix two training samples instead of removing some 

regions, so that there is no blank pixels in the augmented image like as in regional dropout methods. It also 

proposed to mix the labels of the two samples which have been mixed up. The mixing ratio is controlled by a 

hyper-parameter λ. 

However, the augmented image produced by Mixup[12] looks locally ambiguous. To solve the 

uninformative pixel problem caused by Cutout[11] and local ambiguity problem caused by Mixup[12], CutMix[13] 

proposed to cut a source patch and then mix it to the target image. The patch size is controlled by a mixing 

ratio λ. Then their labels are also mixed based on λ. This approach shown very promising performance in 

various tasks including image classification, object detection, and adversarial robustness. The source patch has 

been selected in a random fashion. However, SaliencyMix[14] has shown that the random selection of the source 

patch may introduce a severe problem of selecting a background region as a source patch and mixing the labels 

based on that patch introduces label error. Since the background patch may not represent the source object, it 

may mislead the classifier. 

As a remedy, SaliencyMix[14] suggests selecting the source patch based on the most salient region of the 

source image instead of random selection. Specifically, a saliency map is extracted from the source image 

using an existing saliency detection algorithm and then the location of the most salient part of that map is 

determined to crop the source patch. It guarantees that source patch represents the object. This strategy 

enhances the generalization ability of a model. 

However, we argue that besides the sophisticated selection of the source patch, it is also very crucial to 

select the appropriate source images from where the patches would be cut. As a result, we propose to select 

the hard samples from a training mini batch and use them as source images. Our method shows promising 

performance in various tasks. 

2.3.2. Dual optimization based MSDA 

This kind of augmentation methods[15,28,29] aim to minimize two loss functions, one is to maximize the 

saliency region in an image and another is to perform the actual task. PuzzleMix[15] proposed to maximize the 

saliency information in the augmented image and in order to do that, it solved a dual optimization problem. 

AutoMix[28] focused to build a bridge between the mixup generation and classification task with a unified 

optimization framework to improve the mixup training efficiency. AutoMix reformulates the mixup 

classification into two sub-tasks i.e., (i) mixed sample generation and (ii) mixup classification, with 

corresponding sub-networks and solves them in a bi-level optimization framework. For the generation, a 

learnable lightweight mixup generator is designed to generate mixed samples by modeling patch-wise 

relationships under the direct supervision of the corresponding mixed labels. SuperMix[29] proposed a 

supervised mixing augmentation method which exploits the salient regions within input images to construct 

mixed training samples. This work also applied a dual optimization framework and a knowledge distillation 

approach to maximize the saliency information in the augmented sample to obtain rich visual features. 

Although this strategy performs well, it increases the computational complexity due to the dual optimization 
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problem. 

2.4. Hard samples 

Several works have been proposed to generate hard samples or investigate the effect of hard samples in 

various tasks[30–33]. Hu et al.[30] found out that the number of negative samples is larger than that of positive 

ones in a limited training set sample in Voice Spoofing Detection, which can bias the loss function. As a result, 

they proposed to exclude those hard samples (non-informative) from the training losses to alleviate the 

imbalance between simple and hard samples. Feng et al.[31] investigates different data augmentation techniques 

that can be used to generate sufficient data for training CNN-based facial landmark localization systems. First, 

they prepared the augmented samples by applying two types of augmentation as (i) textural augmentation: 

Gaussian blur, noise, jitter, and occlusion; (ii) geometric transformation: Flip, and bounding box perturbation. 

Those samples are generated by applying random textural and geometric variations to the original labeled 

training images. Some augmented samples may be harder and more effective for the training of a deep neural 

network and some may be less effective. To select the most effective augmented training samples, they 

proposed to select the hard samples which largely contribute to the loss. 

In self-supervised image anomaly detection, augmenting samples is a promising approach. Usually, 

geometric transformation and adding noise are the commonly used methods to generate images with anomalies. 

Following a contrastive learning framework, Wang et al.[33] proposed to destroy the global semantic 

information of the original image for this task but keep the local semantic information intact, so that the model 

can learn the local underlying feature of those images. They denote those non-semantic information as hard 

negative samples. All of the above-mentioned works used the concept of hard samples. Among them, Hu and 

Zhou[30], Feng et al.[31], Wang et al.[32] proposed to filter out hard samples in some scale to prevent data 

imbalance problems. On the other hand, Wang et al.[33] proposed another augmentation process that destroys 

the global semantic information and produces non-semantic hard samples. 

We focus on preparing a better source batch to cut source patches for Mixed Sample based Data 

Augmentation (MSDA). Recent studies suggest that the mixing strategy plays an important role in MSDA 

methods i.e., how to cut a patch from a source sample and how to mix it into a target image to make the data 

augmentation more effective. However, we argue that, besides the mixing strategy, preparing a better source 

sample pool is also important to make an MSDA method more effective. To do that, we proposed to use the 

hard samples to prepare the source batch and then apply the existing state-of-the-art (SOTA) mixing strategy. 

Instead of filtering out the hard samples to prevent data imbalance problem as in the abovementioned works, 

our method utilizes the hard samples to cut patches and then mix them to the original images to prepare more 

effective samples for image classification tasks. 

2.5. Tricks for training deep networks 

Since deep networks need a lot of computation power and data, efficient network training is one of the 

most crucial challenges facing the computer vision community. To effectively train deep networks, techniques 

like weight decay[34], dropout[9,10], and batch normalization[35] are frequently employed. Recent techniques to 

improve models’ performance include adding noise to CNNs’ internal features[35–37] or adding new paths to the 

architecture[38,39]. On the other hand, MSDA techniques, including the proposed HardMix, operate at the data 

level without modifying internal representations or architecture while significantly enhancing the models’ 

performance and generalization ability. 

2.6. Label smoothing 

The class labels in object classification are often represented by a one-hot code, meaning that the true 

labels are anticipated to have a probability of precisely 1, while the others are anticipated to have a probability 

of exactly 0. In other words, it implies that the model is too sure of itself, which leads to overfitting to the 
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training set. As a result, the models perform poorly on an unknown test dataset as a result. Label smoothing 

offers a solution to this issue by allowing the model confidence in the correct label to be relaxed by lowering 

the class probability to a little lower value, such as less than 1. It thus directs the model to be more adaptable 

rather than overconfident and eventually enhances the model’s resilience and performance[40]. The proposed 

data augmentation method and other MSDA techniques offer label smoothing since they blend the class labels 

of the mixed samples. 

3. Proposed method 

The proposed data augmentation strategy follows the principle of MSDA techniques. In addition, we 

suggest to find to out the hard samples from a training mini-batch and use them as source images so that the 

underlying model can better learn the features of those difficult samples. Figure 1 graphically presents the 

proposed method. We explain the proposed data augmentation strategy in this section. 

 
Figure 1. The proposed HardMix data augmentation. We first extract the hard samples of a minibatch to create a source batch. We 
call the original input batch “target batch” and the hard samples based batch as “source batch”. Then cut a patch from the source 
image and mix it to the target image to generate an augmented image. We also mix their labels according to the ratio of the mixed 

patches. 

3.1. Selecting the hard samples 

Nowadays, deep learning models are highly capable of learning high dimensional complex data 

distribution, which is a key to their success. It becomes possible due to the sophisticated training process and 

the available training data. However, it is well known that not all the training samples are equally 

understandable by the models[20–25,41,42]. The samples which are difficult for the models to learn are known as 

“hard samples”. Several approaches have been introduced to solve this problem. In this study, we reconsider 

this problem from the perspective of data augmentation technique. Our hypothesis is that if the hard samples 

are presented to the model at a higher frequency than easy samples, the model can gain more attention to those 

hard samples. As a result, this selective attention may enhance the model’s performance. So, we propose to 

cut the source patches from hard samples of a mini-batch and mix them to the target images in order to increase 

the frequency of those hard samples to the model. 

Suppose, we have an image classification model that needs to be trained on a dataset D. Our goal is to 

prepare a source mini-batch Is
h containing only hard samples from where we shall cut the patches. In order to 
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do that, we pass a mini-batch I to model M and find out the wrongly classified images denoted by Ih. Then, we 

apply refinement to correct the labels. We call it hard-sample mini-batch and denote it by Is
h. This process can 

bedefined as follows: 

ŷ=M(I), 𝐼ℎ = 𝐼�̂�=𝑦  (1) 

It is worth noting that the number of instances in I and Is
h should be the same to apply augmentation. 

However, the number of samples in Is
h may be smaller than the number of samples in I. So, we randomly 

duplicate the hard samples in the mini-batch Is
h and shuffle them. 

Algorithm 1 Pseudo code of HardMix 

1: 𝐃𝐚𝐭𝐚: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝒟 

2: 𝐎𝐮𝐭𝐩𝐮𝐭: 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝐼 

3: 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝑀𝑜𝑑𝑒𝑙 ℳ 

4: 𝐟𝐨𝐫 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐝𝐨 

5: 𝐢𝐟  𝑚𝑜𝑑𝑒𝑙 == 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐭𝐡𝐞𝐧 
6: input I, target y = get_minibatch(𝒟); 
7: model_prediction �̂� = model_forward ℳ(𝐼); 
8: hard_samples 𝐼ℎ = miss_classified_samples 𝐼�̂� ≠ 𝑦; 

9: 𝐢𝐟  𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼ℎ < 𝐼 𝐭𝐡𝐞𝐧 
10:  length_diff 𝑑 = length(𝐼) − length(𝐼ℎ); 
11:  𝐼𝑠

ℎ = randomly repeat 𝑑 samples in 𝐼ℎ ;  
12: 𝐞𝐧𝐝 
13: 𝐼𝑠

ℎ , 𝑦𝑠
ℎ = shuffle_minibatch(𝐼𝑠

ℎ, 𝑦𝑠
ℎ); 

14: 𝜆~𝑈(0,1); 
15: 𝑃𝑥~𝑈(0, 𝑊); 
16: 𝑃𝑦~𝑈(0, 𝐻); 

17: 𝑃𝑤~√(1 − 𝜆; 

18: 𝑃ℎ~√(1 − 𝜆; 

19: 𝑥1 = round(clip((𝑃𝑥 − 𝑃𝑤)/2), min = 0)); 
20: 𝑥2 = round(clip((𝑃𝑥 + 𝑃𝑤)/2), max = 𝑊)); 
21: 𝑦1 = round(clip((𝑃𝑦 − 𝑃ℎ)/2), min = 0)); 

22: 𝑦2 = round(clip((𝑃𝑦 + 𝑃ℎ)/2), max = 0)); 

23:  
24: /∗  Create the augmented samples I_a  by mixing source and target samples  ∗/ 
25: generate 𝐼𝑎 as follows: 
26: 𝐼[: , ∶, 𝑥1: 𝑥2 , 𝑦1: 𝑦2] = 𝐼𝑠

ℎ[: , ∶, 𝑥1: 𝑥2 , 𝑦1: 𝑦2]; 
27:  
28: /* Adjust lambda to the exact ratio of the mixed areas.  */ 
29: 𝜆 = 1 − (𝑥2 − 𝑥1) ∗(𝑦2 − 𝑦1)/(𝑊 ∗ 𝐻); 
30: 𝑦𝑎 = 𝜆 ∗ 𝑦 + (1 − 𝜆) ∗ 𝑦𝑠

ℎ ; 
31: 𝐞𝐧𝐝 
32: output = model_forward(𝑖𝑛𝑝𝑢𝑡); 
33: loss = compute_loss(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡); 
34: model_update(); 
35: 𝐞𝐧𝐝 

3.2. Applying augmentation 

Let 𝐼𝑠 ∈ ℝ𝑊×𝐻×𝐶 denote a randomly selected training (source) image taken from the mini-batch Is
h from 

where a source patch will be cut and 𝑦𝑠 denote its label. Also, let 𝐼𝑡 ∈ ℝ𝑊×𝐻×𝐶be another randomly selected 

training (target) image with label 𝑦𝑡, to where the source patch will be mixed. The goal is to partially mix 𝐼𝑡  

and 𝐼𝑠 to produce a new training sample 𝐼𝑎, the augmented image, with label 𝑦𝑎. The mixing of two images 

can be defined as follows: 

𝐼𝑎 =  𝑀⨀𝐼𝑠  +  𝑀′⨀𝐼𝑡 (2) 

where 𝐼𝑎  denotes the augmented image, 𝑀 ∈ {0,1}𝑊×𝐻 represents a binary mask, M′ is the complement of M 

and ⨀ represents element-wise multiplication. In doing so, first, a source patch location is randomly selected 

based on the size of the patch defined by a mixing ratio λ, where λ is sampled from the beta distribution 
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𝐵𝑒𝑡𝑎(𝛼, 𝛼). Following CutMix[13] and SaliencyMix[14], α is set to 1 for all experiments. Then the corresponding 

location of the mask M is set to 1 and others to 0. The element-wise multiplication of M with the source image 

removes everything except the selected region. In contrast, M′ does the opposite of M, i.e., the element-wise 

multiplication of M′ with the target image keeps all the regions except the selected patch. Finally, the addition 

of those two creates a new training sample that contains the target image with the selected source patch in it 

(see Figure 1). Besides mixing the images we also mix their labels based on the size of the mixed patches as 

follows. 

𝑦𝑎 = 𝜆𝑦𝑡 + (1 − 𝜆)𝑦𝑠 (3) 

where ya denotes the label for the augmented sample and λ is the combination ratio. Following CutMix[13], we 

sample the binary mask M by randomly selecting a source patch region P defined by the bounding box 

coordinates P = (Px, Py, Pw, Ph). Here, Px and Py denote the starting point of the bounding box on the x-axis 

and y-axis, respectively and Pw and Ph denote the width and height of the bounding box, respectively. The box 

coordinates are sampled from a uniform distribution. A source patch cropped from the source image Is based 

on P and mixed with the target image It, on the same location as specified by P. An algorithm of the proposed 

data augmentation strategy is presented in Algorithm 1. 

4. Experiments and analysis 

The effectiveness of the proposed data augmentation strategy has been evaluated for image classification 

using popular state-of-the-art (SOTA) architectures on benchmark datasets. Two NVIDIA GeForce RTX 2080 

Ti GPUs have been used to perform all the experiments using PyTorch deep learning framework. 

4.1. Datasets and models 

We conduct comprehensive experiments using a variety of well-known models and image classification 

datasets to demonstrate the efficacy of our data augmentation technique. We choose ResNet[43] architectures 

including ResNet-18, ResNet-50, ResNet-101, and WideResNet[44]. Considering that they offer a wide range 

of architectural concepts, we choose these specific architectural designs. We evaluate the approach across 

various depths/sizes of each architecture with the help of the unique variants in each architecture. We pick 

CIFAR-10, CIFAR-100[45] and ImageNet[46] as the image classification datasets since they are well-known 

benchmarks that can be used to measure the effectiveness of different techniques. 

4.2. Experimental setup 

To avoid having any pretraining bias effect on the outcomes of our evaluation, we train each model from 

scratch. We train the baselines using the hyperparameter setups following their original publications. In 

addition, the proposed method is trained following the same training setup as the baselines. Given that our 

primary goal is to compare our data augmentation technique to others rather than to achieve state-of-the-art 

results, all data augmentation techniques for a specific architecture and dataset are run for a fixed number of 

epochs, which is sufficient for the models to converge. Specifically, we train the models using Stochastic 

Gradient Descent (SGD) with weight decay of 5 × 104, and Nesterov momentum of 0.9, for 200 epochs. The 

learning rate was primarily set to 0.1 and after 60, 120, and 160 epochs, the learning rate was decreased by a 

factor of 0.2 from its initial value of 0.1. Using the per-channel mean and standard deviation, the images are 

normalized. We conduct tests both with and without the use of a conventional data augmentation technique, 

which includes zero-padding, random cropping, and horizontal flipping. The Pytorch[47] framework is used to 

implement all the models, and to evaluate all data augmentation techniques. Top-1 and top-5 errors are used 

as performance metrics for comparison where the lower value represents better performance. 

4.3. Results on CIFAR-10 

CIFAR-10 dataset consists of 6000 images per class in 10 different classes. Those 60,000 color images 
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are of size 32 × 32. The 10 classes include airplane, ships, trucks, frogs, horses, deer, cats, birds, cats, and cars. 

The dataset contains 10,000 test images and 50,000 training images. 1000 randomly chosen images from each 

class make up the test set. 

Experimental results on CIFAR-10[45] dataset is presented in Table 1 where the top-1 error is reported for 

all the methods in comparison. “CIFAR-10” and “CIFAR-10+” columns in the table represents the top-1 error 

of the corresponding methods with and without traditional data augmentation, respectively. For a better 

comparison, the results are reported on five-runs average. “CIFAR-10” in Table 1 represents the results that 

have been reported when the methods were trained without applying any traditional data augmentation 

technique. On the other hand, “CIFAR-10+” in Table 1 represents the results that have been reported when 

the methods were trained with traditional data augmentation techniques such as rotation, flipping, etc. It can 

be seen that for each of the architectures, the proposed HardMix data augmentation strategy outperforms all 

other methods in comparison. For ResNet-18 architecture, the proposed HardMix achieves the best known top-

1 error of 8.51% and 3.62% when trained with and without traditional data augmentation, respectively. 

Similarly, for ResNet-50 architecture which is deeper than ResNet-18 architecture, the proposed method 

achieves a top-1 error of 8.78% and 3.54%, respectively. Finally, for a wider network WideResNet, our method 

achieves a top-1 error of 5.21% and 2.72% when trained with and without traditional data augmentation, 

respectively. 

Table 1. Performance comparison of the SOTA data augmentation methods for image classification task on CIFAR-10 and CIFAR-
100 datasets. The results are reported on five runs average. The dataset name followed by an extra “+” sign denotes that standard data 
augmentation methods were also applied during training. 

Method 
Top 1 Error (%) 

CIFAR-10 CIFAR-10+ CIFAR-100 CIFAR-100+ 

ResNet-18 (Baseline) 10.63 ± 0.26 4.72 ± 0.21 36.68 ± 0.57 22.46 ± 0.31 

ResNet-18 + Cutout 9.31 ± 0.18 3.99 ± 0.13 34.98 ± 0.29 21.96 ± 0.24 

ResNet-18 + CutMix 9.44 ± 0.34 3.78 ± 0.12 34.42 ± 0.27 19.42 ± 0.23 

ResNet-18 + SaliencyMix 8.63 ± 0.17 3.77 ± 0.08 33.89 ± 0.23 19.47 ± 0.21 

ResNet-18 + HardMix 8.51 ± 0.17 3.62 ± 0.08 33.74 ± 0.23 19.33 ± 0.21 

ResNet-50 (Baseline) 12.14 ± 0.95 4.98 ± 0.14 36.48 ± 0.50 21.58 ± 0.43 

ResNet-50 + Cutout 8.84 ± 0.77 3.86 ± 0.25 32.97 ± 0.74 21.38 ± 0.69 

ResNet-50 + CutMix 9.16 ± 0.38 3.61 ± 0.13 31.65 ± 0.61 18.72 ± 0.23 

ResNet-50 + SaliencyMix 8.90 ± 0.35 4.01 ± 0.15 30.33 ± 0.43 18.42 ± 0.22 

ResNet-50 + HardMix 8.78 ± 0.35 3.54 ± 0.15 30.16 ± 0.43 18.31 ± 0.22 

WideResNet-28-10 (Baseline) 6.97 ± 0.22 3.87 ± 0.08 26.06 ± 0.22 18.80 ± 0.08 

WideResNet-28-10 + Cutout 5.54 ± 0.08 3.08 ± 0.16 23.94 ± 0.15 18.41 ± 0.27 

WideResNet-28-10 + AutoAugment - 2.60 ± 0.10 - 17.10 ± 0.30 

WideResNet-28-10 + PuzzleMix (200 epochs) - - - 16.23 

WideResNet-28-10 + CutMix 5.18 ± 0.20 2.87 ± 0.16 23.21 ± 0.20 16.66 ± 0.20 

WideResNet-28-10 + SaliencyMix 5.35 ± 0.09 2.82 ± 0.09 22.43 ± 0.13 16.34 ± 0.14 

WideResNet-28-10 + HardMix 5.21 ± 0.09 2.72 ± 0.09 22.26 ± 0.13 16.21 ± 0.14 

4.4. Results on CIFAR-100 

The CIFAR-100 dataset consists of 60,000 32 × 32 color images divided into 100 classes with 600 images 

each. Per class, there are 500 training images and 100 test images. There are 50,000 training images and 10,000 

test images. 

Experimental results on CIFAR-100[45] dataset is presented in Table 1 where the top-1 error is reported 
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for all the methods in comparison. For a better comparison, the results are reported on five-runs average. 

“CIFAR-100” in Table 1 represents the results that have been reported when the methods were trained without 

applying any traditional data augmentation technique. On the other hand, “CIFAR-10+” in Table 1 represents 

the results that have been reported when the methods were trained with traditional data augmentation 

techniques such as rotation, flipping, etc. It can be seen that for each of the architectures, the proposed HardMix 

data augmentation strategy outperforms all other methods in comparison. For ResNet-18 architecture, the 

proposed HardMix achieves the best known top-1 error of 33.74% and 19.33% when trained with and without 

traditional data augmentation, respectively. Similarly, for ResNet-50 architecture which is deeper than ResNet-

18 architecture, the proposed method achieves a top-1 error of 30.16% and 18.31%, respectively. Finally, for 

a wider network WideResNet, our method achieves a top-1 error of 22.26% and 16.21% when trained with 

and without traditional data augmentation, respectively. 

4.5. Results on ImageNet 

ImageNet[46] contains 1.2 million training images and 50,000 validation images of 1000 classes. To 

perform experiments on ImageNet dataset, we apply the same settings as used in the study of Yun et al.[13], for 

a fair comparison. We have trained our HardMix for 300 epochs with an initial learning rate of 0.1 and decayed 

by a factor of 0.1 at epochs 75, 150, and 225, with a batch size of 256. Also, the traditional data augmentation 

techniques such as resizing, cropping, flipping, and jitters have been applied during the training process. Table 

2 presents the ImageNet experimental results where the best performance of each method is reported. HardMix 

outperforms all other methods in comparison. It drops top-1 error for ResNet-50 by 1.76%, 1.38%, 0.20%, 

0.06% and 0.04% over Cutout[11], Mixup[12], CutMix[13], SaliencyMix[14] and PuzzleMix[15] data augmentation, 

respectively. For ResNet-101 architecture, the proposed HardMix achieves the new best result of 20.01% top-

1 error and 5.09% top-5 error and outperforms all state-of-the-art data augmentation methods. 

Table 2. Performance comparison (the best performance) of SOTA data augmentation strategies on ImageNet classification with 
standard model architectures. 

Method Top-1 Error (%) Top-5 Error (%) 

ResNet-50 (Baseline) 23.68 7.05 

ResNet-50 + Cutout 22.93 6.66 

ResNet-50 + StochasticDepth 22.46 6.27 

ResNet-50 + Mixup 22.58 6.40 

ResNet-50 + Manifold Mixup 22.50 6.21 

ResNet-50 + AutoAugment 22.40 6.20 

ResNet-50 + DropBlock 21.87 5.98 

ResNet-50 + CutMix 21.40 5.92 

ResNet-50 + PuzzleMix 21.24 5.71 

ResNet-50 + SaliencyMix 21.26 5.76 

ResNet-50 + HardMix 21.20 5.69 

ResNet-101 (Baseline) 21.87 6.29 

ResNet-101 + Cutout 20.72 5.51 

ResNet-101 + Mixup 20.52 5.28 

ResNet-101 + Cutmix 20.17 5.24 

ResNet-101 + SaliencyMix 20.09 5.15 

ResNet-101 + HardMix 20.01 5.09 
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4.6. Comparison with Dual Optimization based MSDA: 

We also compare the image classification performance of the proposed HardMix data augmentation with 

dual optimization based MSDA methods. Table 3 presents the performance comparison with dual optimization 

based data augmentation methods for image classification on benchmark datasets using standard architectures. 

It can be seen that the proposed method shows competitive performance with dual optimization based data 

augmentation methods which are computationally expensive. While the proposed HardMix achieves SOTA 

performance with a lower computational complexity as discussed in section 4.8. 

Table 3. Performance comparison of the proposed data augmentation method with dual optimization based MSDA for image 
classification task on CIFAR-10, CIFAR-100, and ImageNet datasets. 

Dataset Baseline model PuzzleMix[15] AutoMix[28] SuperMix[29] HardMix 

CIFAR-10 ResNet-18 2.9 2.66 - 3.62 

ResNet-50 2.73 2.35 - 3.54 

CIFAR-100 ResNet-18 18.87 17.96 - 19.33 

ResNet-50 17.15 16.14 - 18.31 

ImageNet ResNet-50 21.14 20.75 22.4 21.20 

ResNet-101 19.33 19.02 - 20.01 

4.7. Discussion 

The experimental results show that the proposed method outperforms existing MSDA methods in terms 

of classification accuracy on every dataset. This performance enhancement can be attributed to the fact that 

the proposed HardMix guides a model to improve the implicit representation for the samples that were 

previously difficult to predict by the model. Specifically, when applying the augmentation, source patches are 

sampled from the hard samples for mixing into the target images. As a result, HardMix increases the 

appearance frequency of the hard samples during the training process and thereby helps the model to better 

learn the representation of hard samples. This phenomenon enhances the overall performance of the model. 

4.8. Computational complexity 

We inspect the computational complexity of all data augmentation methods in comparison, in terms of 

training time. The experiments are performed on CIFAR-10 dataset, where all the models were trained over 

200 epochs using the ResNet-18 architecture. The time complexity comparison is shown in Table 4. The 

results suggest that the training time of the proposed HardMix is lower than SaliencyMix[14] and slightly higher 

than CutMix[13] due to finding out the difficult samples. However, it could be negligible considering the 

performance improvement compared to CutMix[13]. 

Table 4. On the CIFAR-10 dataset, a comparison of the training times for several data augmentation strategies utilizing the ResNet-

18 architecture. 

Time complexity 

Method ResNet-18 (Baseline)[43] Mixup[12] CutOut[11] CutMix[13] SaliencyMix[14] Proposed method 

Time (hour) 0.83 0.87 0.84 0.89 0.90 0.91 

5. Conclusion 

MSDA has shown promising performance in enhancing generalization and localization ability of deep 

learning models. Following the success of MSDA techniques, we have proposed HardMix to cut patches only 

from hard samples in the augmentation process. Specifically, we consider the fact that some samples are 

challenging for machine learning models to predict or classify accurately, including data points that are 

outliers, have low-quality data, or have ambiguous labels. Considering this fact, HardMix finds the hard 
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samples in a mini-batch based on a model’s prediction, cuts patches from those hard samples, and then mixes 

them with the target samples to create augmented samples. Incorporating hard samples into the augmentation 

strategy can help the model to learn a better representation of those samples and improves overall performance. 

Extensive experiments on several tasks using a various state-of-the-art architectures, verifies the effectiveness 

of the proposed method. HardMix outperforms other SOTA methods in terms of top-1-error on image 

classification task using various standard architectures on several benchmark datasets. 
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