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ABSTRACT 

The ever-increasing volume of medical images greatly strains clinicians who are in the process of reviewing it and 

writing reports. It would be more efficient and cost-effective if an image captioning model could automatically create 

report drafts from matching photos, thereby relieving physicians from this tedious work. The Internet of things (IoT) has 

switched its emphasis from its initial binary concept to that of the Internet of multimedia things (IoMT) because of the 

explosive rise of multilingual-on-demand data in various sound, footage, picture forms. This work proposed a deep 

learning-based image caption network (DL-ICN) for healthcare domain. The work originality is shown using DL to 

identify various class labels of the patient X-ray and ECG images. With the help of bilateral encoder representations from 

transformers (BERT) method for captioning pictures, a detailed written summary of a person’s medical picture may be 

generated automatically. Results of simulations showed that the proposed model achieved good compression performance, 

good quality reconstruction and good classification results for image captioning. 

Keywords: Bidirectional Encoder Representations from Transformers (BERT); Deep Learning (DL); Image Caption 

Network (ICN); Internet of things (IoT); Self-Control Differential Evolution (SCDE) 

1. Introduction 

Nowadays Hospitals generate massive volumes of medical 

images from various modalities due to the rapid development of 

digital health technology based on IoT[1]. One of ambient assisted 

living (AAL) foundations is remote patient monitoring. In this case, 

data from various sensors is collected and analyzed to conclude a 

person’s health[2]. Innovative IoT (IIoT) based technologies and 

services are needed to improve the quality of life for older people[3]. 

The patient’s health may be better understood and predicted if all the 

medical data obtained from these devices is properly pooled and 

analysed[4]. It is shown how remote healthcare software using a deep 

learning classifier may identify anomalies in electrocardiogram 

(ECG) patterns. Many disorders may be quickly diagnosed and 

screened for with medical images. They contain useful information 

regarding several diseases and might be used to spot anomalies. 

Manual information extraction and description can be time-

consuming and laborious because of the complexity and variety of 

alternative interpretations that may be attributed to a single medical 

picture[5]. As a result, it is difficult and expensive to process all 

hospital-generated images promptly. This has a major effect on the 

team’s ability to meet deadlines for submitting reports and ensure they 
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are correct. One option is automated captioning of images, a computer-generated textual description of an 

image’s subject matter written in everyday language[6]. Computer vision (for analysing images) and natural 

language processing (for writing captions) come together in automatic image captioning[7]. Image captioning 

is used for several purposes including automated image annotation and labelling, video transcription, security 

detection, and medical image interpretation[8]. This helps professionals in their everyday jobs and is crucial in 

computer-aided diagnostic systems, decision-making, and treatment of diseases. 

However, captioning medical images is not a simple task. There are several problems with automatically 

produced reports, including typos and inadequate language explanations. In addition, these reports must 

conform to stringent clinical standards, which require much knowledge and experience. Such reports, in 

general, need to adhere to predetermined formats, use specialized medical terminology, and emphasize 

therapeutically relevant information by providing visual proof instead of just describing the things shown. 

Notably, traditional captioning algorithms still require refinement to be clinically appropriate since they have 

trouble generating correct descriptions of medical pictures. Automatically creating text to describe the contents 

of a picture is the primary focus of the topic of study known as image captioning. In this field, researchers 

combine techniques from computer vision with natural language processing[9]. Image captioning has several 

uses, including helping the visually handicapped, assisting with image search, and facilitating interactions 

between humans and robots. Retrieval-based, template-based, and deep learning-based approaches are some 

techniques developed for picture captioning[10]. Many studies have lately used deep learning models to 

categorize individuals with certain conditions[11]. 

Encoder-decoder architectures with attention mechanisms have been employed in most deep-learning 

research efforts. A new model where the encoder is a Convolutional Neural Network (CNN) and the decoder 

is either a Long Short-Term Memory (LSTM) or a transformer. As a result, there is a lot of enthusiasm for 

applying DL models to the problem of medical picture captioning, which necessitates development of novel 

methodologies. This has the potential to aid in the rapid exploitation of medical material, prompt delivery of 

more precise interpretations of results, essential support provided to physicians by reducing their workloads 

and speeding up clinical processes. Most importantly, this study contributes: DL-ICN was developed for 

clinical captions to enhance the quality and precision of medical images. 

i) The proposed DL-ICN used the BERT approach for image captioning to provide a comprehensive textual 

analysis of an individual’s clinical picture. 

ii) It has been shown numerically that the proposed DL-ICN outperforms competing approaches in terms of 

accuracy and throughput. 

The remainder of the article is organized as follows: section 2, covers the literature review; section 3, 

details the methodology used; section 4, deposit the findings and discussion; and section 5, provides the 

conclusion. 

2. Literature review 

In medical image segmentation network model using Atrous Multi-Scale (AMS) convolution, named 

AMSUnet[12]. AMSE reimagines the reduction encoder that takes advantage of the AMS neural concentration 

block’s atrous and multiple habitats inversion. To enhance feature fusion, design a residual attention 

mechanism module (i.e., RSC) and apply it to the skip connection. Compared with existing models, proposed 

model only needs 2.62 M parameters to achieve the purpose of lightweight. Kvasir-SEG dataset, which has a 

large amount of data and stable experimental results, is selected as the preferred dataset for ablation 

experiment, and experiments are conducted on two innovative modules, AMSE and RSC, to verify their 

necessity and excellence. Experimental findings across many datasets show that the developed model performs 

better in segmenting targets of all sizes. 

https://www.sciencedirect.com/topics/computer-science/image-segmentation
https://www.sciencedirect.com/topics/computer-science/feature-fusion
https://www.sciencedirect.com/topics/computer-science/attention-machine-learning
https://www.sciencedirect.com/topics/computer-science/attention-machine-learning
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Simple and effective explainable artificial intelligence (XAI) technique for image text[13]. Deep-learning-

based methods address the complexity and difficulties in picture captioning, results have been relatively 

positive. Azure cognitive service and open-source image captioning model to get image caption. Also, 

implement XAI image captioning (image to text) using Shapley additive explanations (SHAP). Applies cosine 

similarity by spaCy and term frequency & inverse document frequency (TF-IDF) to evaluate the sentence 

similarity. Proposed research 9·ork found that azure cognitive services provides better descriptions for images 

compared to the open-source image captioning model. 

An explainable module for medical image captioning that provides a sound interpretation of attention-

based encoder-decoder model by explaining the correspondence between visual features and semantic 

features[14]. Encoder-decoder models, which consist of two parts working together to create new captions for 

pictures, are widely used in deep learning-based captioning. Exploit for that, self-attention to compute word 

importance of semantic features and visual attention to compute relevant regions of the image that correspond 

to each generated word of the caption in addition to visualization of visual features extracted at each layer of 

the CNN encoder. Proposed medical image captioning model evaluation, ImageCLEFmed 2021 dataset, which 

includes three sets: training set composed of 2756 medical images; validation set and test set consisting of 500 

and 444 radiology images, respectively. Also, calculate BiLingual Evaluation Understudy (BLEU score) using 

Python NLTK package. BLEU some visualizations of correctly and wrongly generated captions for the 

ImageCLEF dataset. 

Build an optimized model for histopathological captions of stomach adenocarcinoma endoscopic biopsy 

specimens[15]. For the image feature extraction subsystem, two evaluations; first, tested 5 different vision 

models (VGG, ResNet, PVT, SWIN-Large, ConvNEXT-Large) using (LSTM, RNN, bidirectional-RNN) and 

then compare vision models with (LSTM-without augmentation, LSTM-with augmentation, BioLinkBERT-

Large as an embedding layer-with augmentation) to find accurate one. Second, tested 3 different 

concatenations pairs of vision models (SWIN-Large, PVT_v2_b5, ConvNEXT-Large) to extracted feature 

vector of the image. For caption generation lingual subsystem, tested a pre-trained language embedding model 

which is BioLinkBERT-Large compared to LSTM in both evaluations, to select from them most accurate 

model. Dataset used 34.000 images for training and 5700 images for testing. The performance evaluation 

metrics are BLEU score and FLOPS. The experiments showed that the best results were obtained when a 

captioning system was built using the Conv NEXT-Large and PVT_v2_b5 models as an image feature 

extractor and the Bio-Link BERT-Large language embedding model. 

Automatically creating illustrative phrases to accompany a picture is called image captioning[16]. Four 

different types of learning models were used in this research: First, an image segmentation-based binary 

classifier called a discriminator; second, an autoencoder; third, a various classes extractor that uses 

characteristics from both the discriminator and autoencoder to produce keyword labels; and third, a neural 

network that learns to pair these phrase values with natural language descriptions of skin imaging pathologies. 

Four, Siamese network learning the textual similarity matching between colloquial description sentences of 

skin imaging pathology and keywords produced from the multi-class classifier. The experimental results show 

that the proposed method yields a highest accuracy for the testing data in terms of colloquial language of skin 

images. The proposed method can significantly relieve the shortage of training personnel and assist hospitals 

that lack resources for conducting case studies. The results are expected to be feasible and can be applied in 

actual clinical teaching. The training and testing datasets were collected from DermNet. The performance 

evaluation metrics are accuracy, Jaccard index (JI), DICE (DSC), sensitivity, specificity, mean squared error 

(MSE) and mean absolute error (MAE). For medical education in dermatology, findings of this study 

contribute to the practical value of quantitative indicators and assessments for learning outcomes of medical 

students. 

The autonomous creation of medical imaging reports is where deep learning has recently shown 
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considerable promise [17]. This research looks at current trends and future directions for creating medical 

imaging reports using deep learning. The dataset, architecture, application, and evaluation of deep learning-

based medical imaging report production are all discussed in depth throughout this work. Focus on the deep 

learning architectures used for generating the diagnostic reports. 

3. Proposed methodology 

Wearable health monitoring devices based on IoT can track and record the whereabouts and vitals of 

confined persons in real-time. The terminal monitor can show the current health status of several patients in 

real-time and alert doctors to potential problems. Research on natural picture captioning has not focused much 

on the challenge of captioning medical images. Most existing image captioning techniques rely on contextual 

information from the image itself to create descriptions. However, this cannot be done with medical images 

because of the need to provide detailed, clinician-style descriptions of the images’ contents. Motivated by this, 

this article suggests generating new captions by exploiting medical notions already connected with photos 

based on their visual characteristics. The components of the proposed re-trainable network include an EBRT 

CNN, a long short-term memory (LSTM) model that outputs text and a visual feature encoder that employs a 

multi-label classifier to classify medical concepts in images. Self-control differential evolution (SCDE) brings 

about the evolutionary process. 

The suggested system has three distinct layers. The IoT devices and the users/patients are separated on 

the foundational layer. The multi-access edge computing (MEC) node sits smack in the middle, while the 

cloud’s nerve center occupies the opposite extreme. A trustworthy third party (TTP), or entirely reliable outside 

source, is stationed in the cloud data center. The TTP is a hub for user registration and supplies devices and 

people with the necessary security measures and access regulations. The edge sends requests to the MEC node, 

which sends them to the cloud data center. The necessary security information is sent to the MEC node and 

then provided to the requestors when the cloud service provider has been verified. Specifically, this procedure 

may be broken down into the six phases listed below (Figure 1). 

 
Figure 1. Remote monitoring of patients in 5G: Six practical actions. 
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• Step 1: Registration: In this step, physicians and patients create profiles on the TTP. These profiles will 

include information such as the doctor’s specialties, affiliated hospitals, and patient information such as 

allergies and blood types. This means that both the user’s end (on their phone or smartcard) and the TTP’s 

end have copies of the user’s identity, private key, public key, and certificate. 

• Step 2: Checking in during the start-up phase: A new analysis profile must be created with associated 

patient identifier of the analysis (IDa) and timestamp (Ta) before monitoring with one or more IoT devices 

may begin for a patient with identification IDp. Two random parameters, representing the device’s 

dynamic identification DIDi and secret shared key DKi, are sent between the patient and each IoT device 

that will participate in the study. The patient sets these two settings and logs their installation time, Ti, 

under the IDa of IDp analysis in the TTP. Additionally, the patient may fill in access characteristics to 

assist the access control mechanism for the whole analysis profile or particular IoT devices. 

• Step 3: Authentication: The IoT and MEC nodes must agree on an authentication method and a shared 

key. IoT and MEC nodes must first authenticate each other and agree on a new session key before sending 

encrypted data over the public wireless channel. Therefore, the IoT device requests the MEC node, which 

transfers it to the cloud hub for verification. In such cases, the cloud data center will relay the necessary 

protective data to the MEC node. After that, the deduced shared hidden code will allow you to talk to the 

IoT gadget securely. It is important to note that the cloud center includes the analysis identification IDa 

in its response to the MEC node so that the MEC node may aggregate data from several devices that 

belong to the same analysis/patient. 

• Step 4: Information evaluation: The MEC node already knows the identification code of the analysis to 

which it must add incoming data, thanks to the shared key established between the devices and the MEC 

node in the previous step. Therefore, IDa devices may begin sending data to the MEC node in a safe 

manner so that it can be processed, filtered, collected, aggregated, and interpreted. 

• Step 5: Request from the user: The study results may be retrieved by any user, whether patients or doctors, 

so long as they have the proper access attributes. To do so, the user must first contact the MEC node, 

which will then transfer the request to the cloud data center. After the cloud service provider verifies the 

request, it retransmits the necessary security data to the MEC node so that the node and the user may 

generate a shared secret. 

• Step 6: Crisis: If the MEC node’s analysis reveals an urgent situation, it will send an alert to the cloud 

data center, which will then transfer the necessary security resources to the MEC node so it may create a 

shared key with all relevant parties. 

The user uses public key material for the registration, as mentioned above in step 2, and the IoT device 

holds key material to permit only symmetric key-based activities, as described above in step 1. This is because 

public-key cryptography is more resource-intensive than symmetric-key techniques in processing and 

communication. This change is less noticeable since the user can utilize a more capable smartphone or tablet 

computer. However, minimising security-related expenditures for small IoT devices, like most medical 

sensors, is important. 

This work proposes a deep convolutional network (DCNet) ensemble. The proposed system is created 

using the VGG16, ResNet152V2, and DenseNet201 models. The Evolving DCNet (EDC-Net) is shown in 

(Figure 2), together with a gated recurrent unit. Over-fitting may be avoided by model assemblage, leading to 

improved outcomes. It also enhances the performance of controlled models and the effectiveness of identifying 

features. The input dense layer has 128 neurons. VGG16, ResNet152V2, and DenseNet201 are models used 

to glean candidate features. These frameworks were initially developed with a large batch of 8 throughout 20 

epochs. Researchers have used fully linked layers of size 128 neurons to address memory issues with 

competitive models with dropouts of 0.2 and 0.25. The learning rate of 0.001 has been used. 
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Figure 2. A gated recurrent component in a deep transmit group. 

a. Connected recurrent unit with gates: 

Each recurrent unit may automatically gain multi-scale connections with the help of gated recurrent unit 

(GRU). GRU employs gating units, similar to LSTM’s storage units, to control the flow of information inside 

the unit. At every given time 𝑢, the probability of GRU activation (𝛼𝑥
𝑎) is an interpolation between the 

probabilities of applicant activity (�̃�𝑥
𝑎 ) and subsequent activation (𝛼𝑢−1

𝑎 ). The Equation (1) for 𝛼𝑥
𝑎  is as 

follows: 

𝛼𝑥
𝑎 = (1 − 𝛽𝑥

𝑎)𝛼𝑢−1
𝑎 + 𝛽𝑥

𝑎�̃�𝑥
𝑎 (1) 

here, the activation is monitored and controlled by a status report gateway 𝛽𝑥
𝑎. One way to assess a status report 

gates is given in Equation (2): 

𝛽𝑥
𝑎 = 𝜎(𝑇𝑣𝛾𝑥 + 𝐸𝑣𝛼𝑢−1)𝑎 (2) 

The reinforced matrix is denoted here by 𝑇𝑠𝛾𝑥. The degree of exposure to which GRU’s state is subjected 

is beyond its control. However, the whole state may be revealed at each cycle. A potential activation �̃�𝑥
𝑎 may 

be calculated in the following Equation (3): 

�̃�𝑥
𝑎 = tan 𝑔(𝑇𝑠𝛾𝑥 + 𝐸(𝑠𝑥⨀𝛼𝑢−1))

𝑎
 (3) 

⨀ displays a multiplication by elements here. There is a series of reset gates in 𝑠𝑥 . As 𝑠𝑥
𝑎 decreases toward 0; 

by ignoring the previous evaluated state, the reset switch may make the device behave as if it were utilizing 

the first signal in the supplied series. By comparing the update gate to the reset gate 𝑠𝑥
𝑎, we may calculate in 

the following Equation (4): 

𝑠𝑥
𝑎 = 𝜎(𝑇𝑠𝛾𝑥 + 𝐸𝑠𝛼𝑢−1)𝑎  (4) 

The proposed DCNet has a problem with the tuning of its hyper-parameters. The suggested model is 

evolved in this work using a differential evolution version. The BLUE Multilingual Assessment Understudy 

serves as the criterion for evaluation. Differential evolution (DE) is a popular method for solving optimization 

problems because of its many benefits, including high resilience, high performance, and a straightforward 

structure. 

The success of DE relies heavily on the experimental vector generation approach (crossover or mutation) 

and selection of regulating variables (crossover rate 𝑉𝑆, relative magnitude 𝐾, and quantity of people 𝐼𝐽). 

These settings should be chosen for optimal optimization outcomes based on the kind of issue at hand. 

Parameter setup is a difficult process for any issue. This problem is addressed using DE (SCDE) with self-



7 

adaptive parameter control. The theory holds that good qualities should be handed down from generation to 

generation, while undesirable ones should pick up lessons from the best. Both the solution populations and the 

variable populations are used in SCDE. Parameters may be used to fine-tune every solution. Population 

parameters also change over time. SCDE is a hybrid technique that utilizes traditional DE and self-adaptive 

variable regulation. 

Let’s assume that DCNet’s basic component community is denoted as 𝑉0 = {𝑉1
0, 𝑉2

0, … , 𝑉𝐼𝐽
0 } where 𝑉𝑛

0 =

{𝐾𝑛,1
0 , 𝑉𝑆𝑛,2

0 } and 𝐼𝐽  is the population size. The equation denotes the initial population of solutions 𝑅0 =

𝑅1
0 , 𝑅2

0 , … , 𝑅𝐼𝐽
0  where 𝑅𝑛

0 = 𝑟𝑛,1
0 , 𝑟𝑛,2

0 , … , 𝑟𝑛,𝐴
0  where 𝐴 is the number of independent variables. There will be 𝐿𝑥  

total generations. Parameters followed the same pattern of evolution as solutions do in DE. At first, a 

continuously randomized population of parameters is produced between the range [0, 0] and [1, 1]. This is 

followed by the generation of a mutation parameter 𝐶𝑉𝑛
𝐿𝑥  for each 𝑉𝑛

𝐿𝑥 through a mutation operator like in 

Equations (5) and (6): 

𝐶𝑉𝑛
𝐿𝑥 = 𝑉𝑠1

𝐿𝑥 + 𝑉𝐾(𝑉𝑠2
𝐿𝑥 − 𝑉𝑠3

𝐿𝑥) (5) 

𝐶𝑉𝑛
𝐿𝑥 = 𝑉𝑠1

𝐿𝑥 + 𝑉𝐾(𝑅𝑉𝑎
𝐿𝑥 − 𝑉𝑠2

𝐿𝑥) (6) 

In this case, choose 𝑉𝑠1, 𝑉𝑠2, and 𝑉𝑠3 at random from the pool of available parameters. 𝑅𝑉𝑎
𝐿𝑥  represents a 

randomly chosen, beneficial parameter. Then, a crossover operator is used to produce a tail parameter 𝑊𝑉𝑛
𝐿𝑥  

in Equation (7): 

𝑊𝑉𝑛
𝐿𝑥 = {

𝐶𝑉𝑛,𝑚
𝐿𝑥 , if (𝑟𝑎𝑛𝑑𝑛,𝑚 ≤ 𝑉𝑉𝑆 or 𝑚 == 𝑚𝑟𝑎𝑛𝑑)

𝑉𝑛,𝑚
𝐿𝑥 , Otherwise

 (7) 

where 𝑛 is an integer between 1 and 𝐼𝐽 and 𝑚 is an even number between 1 and 2. The range of uniform 

random numbers is [0, 1] and is denoted by 𝑟𝑎𝑛𝑑𝑛,𝑚. 𝐼𝑉𝑆 ∈ [0, 1] represents the current ratio. Ultimately, it 

uses the selection operator to choose the excellent benchmark for the future. In SCDE, a good parameter of 

individual 𝑉𝑛
𝐿𝑥 is one that aids the 𝑅𝑉𝑛

𝐿𝑥  in creating superior progeny 𝑊𝑅𝑛
𝐿𝑥 . If not, then 𝑉𝑛

𝐿𝑥  is a poor choice 

for the control parameter. If 𝑛 is a good parameter, then 𝑉𝑛
𝐿𝑥  is the selection operator for a good parameter in 

Equations (8) and (9). 

𝑉𝑛
𝐿𝑥+1

= {
𝑉𝑛

𝐿𝑥 , if 𝑟𝑎𝑛𝑑(0,1) < 𝜆1

𝑊𝑉𝑛
𝐿𝑥+1 , Otherwise

 (8) 

Else 

𝑉𝑛
𝐿𝑥+1

= {
𝑊𝑉𝑛

𝐿𝑥+1 , if 𝑟𝑎𝑛𝑑(0,1) < 𝜆2

𝑉𝑛
𝐿𝑥 , Otherwise

 (9) 

where 𝜆1 and 𝜆2 choose which parameters to try out with their new values and which to maintain working with 

their old ones. Algorithm 1 demonstrates the core principles by which SCDE operates. Line 1 initially 

generates a population of solutions, whereas line 2 generates a population of parameters. The generation 

number 𝐿𝑥  is set to 1 on line 3. The symbol denotes the function evaluation count  𝐾𝑒𝑣𝑎𝑙 . When  𝐾max 

approaches 𝐾max, as shown on line 5, the algorithm terminates. LH remembers which people made up the 

excellent parameter (line 6). The value is set to 0 by default. From line 7 through line 16, a population of 

solutions is evolved. In line 7, apply the mutation operator to an individual 𝑉𝑛
𝐿𝑥  as a parameter to produce a 

mutant vector 𝑅𝐶𝑛
𝐿𝑥 . The Equation (10) is represented as following: 

𝑅𝐶𝑛
𝐿𝑥 = 𝑅𝑠1

𝐿𝑥 + 𝐾𝑛,1
𝐿𝑥 (𝑅𝑠2

𝐿𝑥 − 𝑅𝑠3
𝐿𝑥) (10) 

where 𝑅𝑠1, 𝑅𝑠2, and 𝑅𝑠3 are picked at will from the population of the solution. The notation denotes the factor 

of magnification 𝐾𝑛,1
𝐿𝑥 ∈ 𝑉𝑛

𝐿𝑥 . The 𝑉𝑛𝐿𝑥  trial vector 𝑊𝑅𝑛
𝐿𝑥  is obtained by applying the crossover operator in line 

8. The Equation (11) is represented as following: 
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𝑊𝑅𝑛
𝐿𝑥 = {

𝑅𝐶𝑛,𝑚
𝐿𝑥 , if (𝑟𝑎𝑛𝑑𝑛,𝑚 ≤ 𝑉𝑆𝑛,2 or 𝑚 == 𝑚𝑟𝑎𝑛𝑑)

𝑅𝑛,𝑚
𝐿𝑥 , Otherwise

 (11) 

where 𝑛 = [1, 2, . . . , 𝐼𝐽] and 𝑉𝑆𝑛,2 ∈ 𝑉𝑛
𝐿𝑥. The optimal answer is chosen using a selection operator (lines 10–

15). The associated 𝑉𝑛
𝐿𝑥  is a marked selection of regulating variables with a 1 (i.e., 𝑣𝑎𝑙 = 1) (line 9) if the 

fitness of 𝑊𝑅𝑛
𝐿𝑥  is higher than that of 𝑅𝑛

𝐿𝑥 . Line 10 of the 𝐿𝐻 also has the addition. The parameter 𝑉𝑛
𝐿𝑥  is 

marked as invalid if it is less than 1 (line 17). The next step is to use mutation, crossover, and selection 

operations to develop the parameter population (lines 19–36). To test out the new values, improper 

initializations of the parameters (line 31) are used if 𝐿𝐻 = 0. 

Algorithm 1 Self-control differential evolution ensemble model 

1: Create a prototype of the solution (𝑅0) and distribution of parameters (𝑉0) 

2: Set 𝐿𝑥 = 1 and 𝐾𝑚𝑎𝑥 = 0 

3: While 𝐾𝑒𝑣𝑎𝑙 < 𝐾𝑚𝑎𝑥 do 

4: Set 𝐿𝐻 = 0 

5: For 𝑛 = 0 to 𝐼𝐽 do 

6: Vector mutation 𝑅𝐶𝑛
𝐿𝑥 is receivedfrom Equation 10 and 𝑉𝑛

𝐿𝑥 

7: Trial vector 𝑊𝑅𝑛
𝐿𝑥 is obtained using Equation 11 and 𝑉𝑛

𝐿𝑥 

8: If 𝑘(𝑊𝑅𝑛
𝐿𝑥) ≥ 𝑘(𝑅𝑛

𝐿𝑥) then 

9: 𝑅𝑛
𝐿𝑥+1

= 𝑊𝑅𝑛
𝐿𝑥 , 𝑣𝑎𝑙(𝑛) = 1 

10: Put 𝑉𝑛
𝐿𝑥 into 𝐿𝐻 

11: Else 

12: 𝑅𝑛
𝐿𝑥+1

= 𝑅𝑛
𝐿𝑥 , 𝑣𝑎𝑙(𝑛) = 0 

13: End 
14: End 

15: For 𝑛 = 1 to 𝐼𝐽 do 

16: If 𝑟𝑎𝑛𝑑(0,1) < 𝜆1 then 

17: 𝑉𝑛
𝐿𝑥+1

= 𝑉𝑛
𝐿𝑥 

18: Else 

19: Generate 𝑊𝑅𝑛
𝐿𝑥 using Equation (5) and Equation (7) 

20: 𝑉𝑛
𝐿𝑥+1

= 𝑊𝑉𝑛
𝐿𝑥 

21: End 
22: Else 

23: If 𝑟𝑎𝑛𝑑(0,1) < 𝜆2 then 

24: If 𝐿𝐻 ≠ 0 then 

25: Generate 𝑊𝑉𝑛
𝐿𝑥 using Equations (6) and (7) 

26: 𝑉𝑛
𝐿𝑥+1 = 𝑊𝑉𝑛

𝐿𝑥 

27: Else 

28: Initialize 𝑉𝑛
𝐿𝑥+1 randomly 

29: End 
30: Else 

31: 𝑉𝑛
𝐿𝑥+1 = 𝑉𝑛

𝐿𝑥 

32: End 
33: End 
34: End 

35: 𝐿𝑥 = 𝐿𝑥+1 
36: End 

b. Embedding language: 

For linguistic demonstrations, one can put a model of language based on the BERT database (BBLM) 

that equates to the Equations (12)–(14) below: 

𝑙𝑓 = 𝐵𝐸𝑅𝑇(𝑊) (12) 

𝑆 = 𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐹𝐹1(𝑙𝑓) + 𝑝𝑜𝑠) (13) 

𝑊 = 𝑙𝑜𝑔(𝑠𝑜𝑡𝑓𝑚𝑎𝑥(𝐹𝐹2)) (14) 

In such case 𝑊 = (< 𝑏𝑜𝑠 >, 𝑊1, 𝑊2, . . . , 𝑊𝑀)  is input sequences; < 𝑏𝑜𝑠 >  is an acronym for initial 

sentence; this token is appropriate for the “introductory” anticipate the captions first using the decoder; the 
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position encoding of words is 𝑝𝑜𝑠 ∈ ℝ𝑑𝑏𝑒𝑟𝑡 . Embedded representation of sequences (position encoding). 

Component-specific position vectors FF1 and FF2 are the first and second frames, respectively, feed-forward 

networks with hidden nodes, including a ReLU-activated two-layer linear network. These networks rely on 

feed-forward knowledge of the model based on transformers, which handle focus and presentation than the 

preceding multi self-attention node. version; 𝐼𝑓 ∈ ℝ𝑑𝑏𝑒𝑟𝑡  is the BERT model’s output 𝑆 ∈ ℝ𝑑𝑏𝑒𝑟𝑡  is the result 

of covert processing. 𝑊 is the log softmax probability in this module of word-prediction distribution. 

Considering that VieCap4H is a Vietnamese dataset, we use the HuggingFace-hosted vinai/phobert-base 

model to pre-train a BERT-based language model. In addition, the phobert-base model is somewhat designed 

and optimized for training quickly on the tiny VieCap4H dataset, allowing us to run more trials. It also gives 

BARTPho-syllable and BARTPho-word, as well as PhoBERT-large. Yet, it does not appear to work well with 

pre-trained models. Possible cause: VieCap4H’s very modest sample size makes large-scale systems 

inappropriate. The linguistic device “attention” portrays a single reference sequence. 

c. Methodology of RSTNet: 

Specifically, during training, we use the grid augmented (GA) and adaptive attention (AA) modules of 

the RSTNet model—a suggested Transformer-based architecture—to improve the model’s performance. This 

is the strategy we settled on for testing the VieCap4H. Dataset since it is a novel approach with two novel 

modules. Grid characteristics are used throughout the design to lower the computational complexity of the 

architecture. Additionally, RSTNet pre-trains a BERT-based model to get language signals and utilises the 

grid features and random embedding vectors to train the Transformer-based model. Then, the Adaptive 

Attention module integrates the encoder’s output (visual encoded features), the decoder’s (hidden states), and 

the linguistic signals to predict the following word. It swaps out its BERT-based model with our PhoBERT-

base variant so that it may be tailored to each nation. 

d. An enhanced grid (GA): 

The study significantly altered the transformer’s conventional attention mechanism to obtain the relative 

geometry matrix 𝜆𝑔 ∈ ℝ𝑁×𝑁  that represents the spatial relationships between grids. To properly integrate the 

new spatial data into the model’s computations, this modification was necessary. Self-attention mechanisms 

are the mainstay of the typical Transformer architecture, enabling the model to balance the relative relevance 

of various input components during prediction. However, a basic self-attention mechanism might not be 

enough for activities involving geographic or grid data. As a result, this work add’s a grid-specific attention 

mechanisms to the Transformer to increase its functionality and handle the intricate interactions between grids. 

e. Adaptive attention (AA): 

The authors discovered instances where the next word prediction relied more on linguistic context than 

visual attributes. It is suggested that the AA module use language presentations (from the mask attention 

module at the BERT model), visual cues from the encoder output, and hidden states to anticipate the next word 

probabilities rather than relying only on the hidden states of the decodes. In particular, the decoder output at 

timestep t is fed into another instance of the mask multi-head attention to generate an attention feature, which 

is subsequently used as a query. A key is any encoder-generated visual signal at the current time step 𝑡. At 

timestep 𝑡, the BERT-based language model outputs a linguistic signal that is quantified. The Multihead fits 

the criteria of the query, key, and value. Focus on trying to guess the following word. An excellent illustration 

of the inference and training stages (Figure 3). 

Natural picture captioning methods based on object recognition have inspired the description a captioning 

strategy for medical image captioning that blends derived visual characteristics with related medical concepts. 

Indeed, it is not possible to use object detection algorithms on medical pictures since they do not provide 

accurate findings. However, certain pre-trained algorithms may be used to extract medical ideas linked to 
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medical imagery. 

 
Figure 3. Experimental procedure summary. 

The results from such systems have the potential to enhance the accuracy of already available medical 

image captioning systems. It advocates combining visual and semantic elements to provide alternative 

captions. Some pre-trained networks are used to derive visual characteristics from photos. Medical concept 

detection for medical pictures is used to calculate semantic characteristics. CNN networks are used to obtain 

characteristics from optical and lexical samples, and then a multi-label decoder is used to identify the concepts. 

In the end, a long short-term memory (LSTM) network is implemented for linguistic output, with beam search 

used to improve the prediction of suitable phrases for use in the caption. Detailed explanations of the 

procedures (Figure 4). 

 
Figure 4. Multi-label LSTM feature vector creation and training. 

f. Encoding visual features: 

As a first step, it is proposed or use an already-trained CNN model for feature extraction. Because of its 

modest size, high performance, and extensive training on the massive ImageNet dataset, VGG-16 model is 
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employed for the classification needs. After feeding the medical photos into the model’s 16 levels (Figure 3), 

the final classification layer is removed to reveal a 4096-element feature vector. The model learned these 

properties while attempting to forecast the picture class and differentiate visual content. To fit the images into 

the VGG-16 model, they were pre-processed. They were scaled and normalized to work in the encoder and 

then enhanced using conventional methods. 

g. Pre-processing of text: 

This work pre-processed the captions to remove unnecessary words and tidy up the content. To be more 

precise, it deleted stop words, filtered out punctuation, and computed word stems after tokenizing each caption 

and changing all letters to lowercase. Each caption now also includes the words “start” and “end” to denote 

where the statement begins and ends. The NLTK package is used for this pre-processing. One caption in the 

training set could be no longer than 50 words; thus, the longer ones were utilized to fill the set. The semantic 

content of each statement was also captured by calculating embeddings from these captions. Finally, a 50-by-

50-by-1 vector was used to represent each picture and encode its caption. 

The proposed model combined visual and semantic information into a single joint feature to generate 

captions. Thus, the medical ideas linked with the photos were processed to get semantic characteristics. Similar 

processing was used with the captions. Concepts of distinctive designations (CUIs), such as C1306645 for 

“Plain X-ray”, represent the medical ideas made available to the public. Tokenizing, lowercasing, stemming, 

and removing stop words were all applied to the many terms that make up the UMLS. This led us to investigate 

ten distinct concepts, each encoded using a vector of size 9 (consisting of nine words) to ensure that the words 

accurately reflected the visuals. After tokenization, the maximum length of a CUI was 9 words, and 10 CUIs 

were optimal for each notion in the training set. We padded the ending sequences if the notion needed fewer 

words. If less than 10 CUIs were connected with a picture, we used the last CUI’s vector for the remaining 

places. The semantic characteristics consisted of embeddings computed from medical concepts. 

h. Learning new words: 

This language was constructed through a number of phases. The process began with turning a corpus of 

text into a set of tokens, where each token stood for a unique linguistic unit, which may be a word or even a 

smaller linguistic piece. These tokens demonstrate the language’s adaptability and variety as they were created 

from captions and conceptual ideas. The construction of a lexicon, where each distinct term or symbol was 

given a numerical value depending on its particular place within the dictionary, was the next step in this 

linguistic progression. The purpose of this numerical assignment was probably to give the language a clear 

structure and order. The positional value may have been influenced by linguistic considerations, word usage 

patterns, context importance, or other variables. The numerical values assigned to these terms may be used 

within the created language for a number of functions, including indexing, sorting, or creating a hierarchy of 

priority.  

i. Identifying medical ideas through multi-label analysis: 

The proposed model advocates using a multi-label classifier to identify and categorize medical picture 

ideas. Then, it trained a condensed version of the VGG-16 network’s CNN to do this. The medical photos 

served as inputs to the model, while the various classes that resulted from identifying ideas based on visual 

attributes served as outputs. For each picture, we chose the 10 most common associations. The anticipated 

ideas underwent further pre-processing, serving as the building blocks for our semantic feature encoding. This 

article can explain how the multi-label classifier is set up (Figure 5). 



12 

 
Figure 5. DL-ICN architecture. 

The encoder-decoder method is considered to introduce a strategy for visual attention. The decoder can 

automatically focus on the most important parts of a medical picture to provide a good description. Figure 5 

represents a proposed DL-ICN. 

To get 𝐺 vectors in 𝐵 dimensions, this model uses a convolutional neural network (CNN) as an encoder. 

Each vector stands for a mask in the diagnostic picture. The feature vectors are scored using the output of the 

convolutional layer in Equation (15). 

𝑠 = {𝑠1, … , 𝑠𝐺}, 𝑠𝑛 ∈ ℝ𝐵 (15) 

The decoder section makes use of LSTM to provide descriptions. The context vector is calculated in 

Equation (16), 

𝑤𝑡 = ∑ 𝛼𝑡𝑛𝑐𝑛

𝐵

𝑛=1

 (16) 

where 𝑤𝑡  describes the implementation of the attention technique, and𝛼 is calculated for each iteration 𝑡 of the 

algorithm. The attention weight vector at iteration 𝑤𝑡  is expressed by the expression 𝛼𝑡 ∈ ℝ𝐵 . A neural 

network may be used to approximate ∑ 𝛼𝑡𝑛 = 1𝐵
𝑛=1 . 𝑐 is the formula for a SoftMax activation function in 

Equation (17). 

𝛼𝑡𝑛 ∝ exp{𝑑𝑐𝑡𝑡(𝑐𝑛, 𝑗𝑡−1)} (17) 

Accordingly, this may characterize the suggested attention encoder-decoder model in the following 

Equations (18)–(20). 

𝑐 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑁) (18) 

𝑤𝑡 = ∑ 𝛼𝑡𝑛𝑐𝑛, 𝛼𝑡𝑛 ∈ ℝ, 𝑐𝑛 ∈ ℝ𝐺

𝐵

𝑛=1

 (19) 

𝑖𝑡 = 𝑄𝑟𝐴𝑡 , 𝑡 ∈ {0, … , 𝑋 − 1},  

𝑁𝑡+1 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑖𝑡 , 𝑤𝑡), 𝑡 ∈ {0, … , 𝑋 − 1} (20) 

However, SCDE-based LSTM is quite picky about the very first settings. As a result, SCDE is used to 

fine-tune the baseline properties of SCDE-based LSTM. The normal distribution is first used to generate a 

random population sample for further mathematical and other technical information on SCDE and hyper-

parameter tuning concerns. Then, the solutions that are not dominated are calculated and included in the Pareto 

set. The fitness score is then calculated. Then, operators like crossover and selection are employed to provide 

novel solutions. Once again, we calculate the fitness of the calculated solutions. At last, the solutions that are 

not dominated are added back to the Pareto set. These procedures will continue indefinitely until and until the 

termination conditions are met. 
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4. Numerical results 

As a greater number of medical images need to be examined and reported, clinicians are under increasing 

stress. If a computerized image captioning system could automatically generate report drafts from 

corresponding images, saving doctors time and money, this would be a significant time and labour savings. As 

demand for streaming sound, video, and still image content has skyrocketed, the initial scalar vision of the IoT 

paved the path towards the virtual world of multisensory matters. Therefore, this work employs a DL-ICN to 

do medical picture captioning. The paper’s novel approach is shown by using deep learning (DL) to determine 

the X-ray and electrocardiogram pictures’ respective class labels. The evolutionary process is triggered by self-

control differential evolution (SCDE). The BERT method (bidirectional encoding representation using 

transducers) for the problem of captioning images. An expert textual description of the patient medical picture 

is supplied. BERT is based on the field of computational linguistics. The simulation results demonstrated that 

the proposed model successfully achieved high standards of compression performance, high-quality 

reconstruction, accurate classification, and accurate picture captioning. 

4.1. Accuracy analysis 

Accuracy comparisons between the proposed SCDE- LSTM based DL-ICN and other medical image 

captioning models (Figure 6). It is inferred that proposed model yields 92.8% higher accuracy when compared 

with other models. 

 
Figure 6. Accuracy comparison. 

The accuracy performance may be improved by further training the model and fine-tuning the 

hyperparameters. Medical ideas and picture captions are good candidates for data augmentation to expand the 

available text corpus. Caption quality might be improved by exploring the pre-trained embedding model 

BERT, like those educated on a huge medical database, to include various medical languages in the training 

data. A specific image’s related ideas are then predicted based on the two tiers of information. Moreover, 

clinically relevant data need to be retained during the pre-processing phase. 

4.2. Error analysis 

The error analysis of the SCDE-based LSTM (Figure 7). The observed root mean square error is 13.1 

when the epoch is 7. Particle data from epoch 7 is utilized to fine-tune SVM’s tuning parameters. At epoch 7, 

it was discovered that the root mean square error was zero across all datasets (training, testing, and validation). 

Thus, the best parameters are used by SCDE-based LSTM to train the medical image captioning model. The 

SCDE-based LSTM’s validation, mean (mu), and gradient tests are shown in Figure 7. A gradient is 

determined to be 10.2, and mu is found to be 9.5 when validation tests are run 6 times. As a result, SCDE-

based LSTM can do well regarding caption recognition. Furthermore, mu = 9.5 demonstrates that the 
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overfitting issue is absent in SCDE-based LSTM. 

 
Figure 7. Error analysis. 

4.3. Visual caption analysis 

Figure 8a displays the accurate transcriptions. It turns out that the assumed subtitles are a dead-ringer for 

the actual ones. As a result, we got a perfect BLUE rating for captions like these. Because we have treated it 

as a classification issue, the true projected class is also shown there. It’s conclusive evidence that DL-ICN can 

successfully give captioning for medical photos. 

The misread subtitles (Figure 8b). Captions that were projected were quite different from those that were 

used. As a result, it is guaranteed at least a BLUE rating for such captions. The misclassified group is also 

shown since we’ve treated it like a classification issue. This demonstrates that DL-ICN does not always 

produce accurate captions, especially when picture visibility is low. Images have been accurately categorized 

using the proposed model, and the BERT model has created captions. Moreover, some captions include 

numerical data or punctuation with significant semantic value. However, the pre-processing step of excluding 

punctuation, stop words, and certain characters might lead to a loss of information that compromises the new 

caption’s meaning and generation. Excerpts from the original captions that the removal of some numbered 

tokens has modified (Figure 8a,b). 

  

(a) (b) 

Figure 8. (a) correct caption prediction; (b) incorrect caption prediction. 

4.4. Analyzing losses during training and testing 

This article discusses the use of loss curves in the training and testing data analysis. The loss analysis of 

VGG16 during training and testing as a function of epoch count (Figure 9a). The VGG16 performs best with 
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a training loss of 0.312 and a testing loss of 0.212. This case illustrates the impact of over-fitting. 

  

(a) (b) 

  
(c) (d) 

Figure 9. (a) training and testing loss analysis of VGG16; (b) training and testing loss analysis of ResNet152V2; (c) training and 
testing loss analysis of DenseNet201; (d) training and testing loss analysis of DL-ICN. 

The ResNet152V2 loss analysis during training and validation (Figure 9b). The best results for training 

and validation loss are obtained with RESNET152V, with values of 0.212 and 1.112, respectively. Overfitting 

is shown to have an effect. However, it outperforms VGG-16 in tests. DenseNet201’s loss analysis during 

training and validation (Figure 9c). DenseNet201 is the least impacted by the over-fitting issue, with optimal 

training and testing loss values of 0.214 and 0.113, respectively. 

Nonetheless, the convergence curve may be sharpened further. Training and validation loss analyses for 

DL-ICN (Figure 9d). The results show that DL-ICN strives for the smallest possible training loss. Also, the 

gap between the optimum training and validation loss values, 0.204 and 0.103, is less for DL-ICN, making it 

more resistant to the over-fitting issue. 

4.5. Performance analysis 

The bilingual evaluation understudy (BLEU) score is a widely used metric in the field of natural language 

processing and machine translation to evaluate the quality of machine generated text, such as machine 

translation or image captions. It was developed to assess the similarity between a reference human-generated 

sentence and a candidate (machine-generated) sentence. In Table 1, BLEU score ranges from 0 to 1, with 

higher scores indicating better quality and more similarity between the two sentences. BLEU is based on the 

concept of precision, which measures the proportion of words in the candidate sentence that are also present 

in the reference sentence. The BLEU score is calculated using the following Equation (21): 
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𝐵𝑃 × 𝑒𝑥𝑝(1/𝑛 × ∑(𝑙𝑜𝑔(𝑝_𝑖))) (21) 

where brevity penalty (BP) is a factor that penalizes short candidate sentences when they don’t match the 

reference sentences’ length. n is the n-gram order (usually 1, 2, 3, or 4) that determines the precision, and it 

considers both unigrams, bigrams, trigrams, and so on. The variable p_i represents the precision for each n-

gram. The BLEU score is a valuable tool for comparing and evaluating the performance of machine translation 

systems and other text generation models, providing a quantitative measure of how closely the generated text 

aligns with human references. 

Table 1. Performance analysis comparison for other image captioning existing models and proposed DL-ICN. 

S.no Model name BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr 

1 DL-ICN 0.93 0.76 0.62 0.51 0.77 1.33 

2 InceptionV3 + LSTM 0.75 0.60 0.50 0.45 0.65 1.20 

3 ResNet + GRU 0.78 0.63 .052 0.47 0.68 1.25 

4 Transformer  0.80 0.66 0.54 0.49 0.70 1.20 

5 Show, attend, tell 0.76 0.62 0.51 0.67 0.67 1.22 

6 CNN-LSTM Hybrid 0.73 0.58 0.48 0.63 0.63 1.18 

7 VGG16 + GRU 0.77 0.61 0.49 0.66 0.66 1.23 

8 BERT for images 0.79 0.64 0.53 0.69 0.69 1.27 

9 MobileNetV2 + LSTM 0.74 0.59 0.47 0.64 0.64 1.19 

10 Inception-ResNet + GRU 0.76 0.62 0.51 0.67 0.67 1.21 

a. Bilingual evaluation understudy (BLEU) analysis 

Bilingual evaluation understudy (BLEU) comparisons between the proposed SCDE-LSTM based DL-

ICN and other medical image captioning models (Figure 10). It is inferred that proposed model yields 0.93% 

higher BLEU-1 when compared with other models. 

 
Figure 10. Bilingual evaluation understudy (BLEU) comparison. 

The bilingual evaluation understudy (BLEU) comparison performance may be improved by further 

training the model. Medical ideas and picture captions are good candidates for data augmentation to expand 

the available text corpus. Caption quality might be improved by exploring the pre-trained embedding model 

BERT, like those educated on a huge medical database, to include various medical languages in the training 
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data. Moreover, clinically relevant data need to be retained during the pre-processing phase. 

b. Metric for evaluation of translation with explicit ORdering (METEOR) analysis 

Metric for evaluation of translation with explicit ORdering (METEOR) is a metric for the evaluation of 

machine translation output. The metric is based on the harmonic mean of unigram precision and recall, with 

recall weighted higher than precision. METEOR score for this pair of translations is computed as follows. First 

unigram precision (P) is computed as the ratio of the number of unigrams in the system translation that are 

mapped to the total number of unigrams in the system translation. Similarly, unigram recall (R) is computed 

as the ratio of the number of unigrams in the system translation that are mapped to the total number of unigrams 

in the reference translation. Next compute Fmean by combining the precision and recall via a harmonic-mean 

that places most of the weight on recall. 

The resulting formula used is Equation (22): 

Fmean =
10𝑃𝑅

𝑅 + 9𝑃
 (22) 

First, all the unigrams in the system translation that are mapped to unigrams in the reference translation 

are grouped into the fewest possible number of chunks such that the unigrams in each chunk are in adjacent 

positions in the system translation, and are also mapped to unigrams that are in adjacent positions in the 

reference translation. In the other extreme, if there are no bigram or longer matches, there are as many chunks 

as there are unigram matches. The penalty is then computed through the following Equation (23): 

Penalty = 0.5 (
Number of chunks

Number of unigrams matched
)

3

 (23) 

Finally, the METEOR score for the given alignment is computed as follows Equation (24): 

Score = Fmean1(−Penalty) (24) 

METEOR comparisons between the proposed SCDE-LSTM based DL-ICN and other medical image 

captioning models (Figure 11). It is inferred that proposed model yields 0.77% higher when compared with 

other models. 

 
Figure 11. Metric for evaluation of translation with explicit ORdering (METEOR) comparison. 

The metric for evaluation of translation with explicit ORdering (METEOR) comparison performance may 

be improved by further training the model. Medical ideas and picture captions are good candidates for data 

augmentation to expand the available text corpus. Caption quality might be improved by exploring the pre-
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trained embedding model BERT, like those educated on a huge medical database, to include various medical 

languages in the training data. A specific image’s related ideas are then predicted based on the two tiers of 

information. 

c. Consensus-based image description evaluation (CIDEr) analysis 

The CIDEr metric measures the similarity between a generated caption and the reference captions, and it 

is based on the concept of consensus: the idea that good captions should not only be similar to the reference 

captions in terms of word choice and grammar, but also in terms of meaning and content. The CIDEr metric 

is computed as follows: 

(1) First, a set of reference captions is provided for each image. These captions serve as the ground truth for 

the evaluation. 

(2) The generated caption is compared to each reference caption using the BLEU score, which measures the 

n-gram overlap between the generated caption and the reference captions. 

(3) The BLEU scores are then modified using an IDF (inverse document frequency) weighting, which gives 

more weight to words that are rare in the reference captions but appear in the generated caption. 

(4) Finally, the weighted BLEU scores are averaged over all reference captions to produce the final CIDEr 

score. 

CIDEr comparisons between the proposed SCDE-LSTM based DL-ICN and other medical image 

captioning models (Figure 12). It is inferred that proposed model yields 1.33% higher when compared with 

other models. 

 
Figure 12. Consensus-based image description evaluation (CIDEr) comparison. 

The consensus-based image description evaluation (CIDEr) comparison performance may be improved 

by further training the model. Medical ideas and picture captions are good candidates for data augmentation 

to expand the available text corpus. Caption quality might be improved by exploring the pre-trained embedding 

model BERT, like those educated on a huge medical database, to include various medical languages in the 

training data. 

5. Conclusion 

IoT Technology can be worn to monitor the health and whereabouts of restricted individuals in real-time. 

The terminal monitor can display many patients’ current health statuses and send alerts to physicians if any 

concerns arise. Even though the natural image captioning is considering as facile technique, there is still a lot 

of uncharted challenge in case of medical image captioning. Several existing image captioning systems now 

leverage in-image non-visual components to build descriptions but, the need for extensive, clinician-style 
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explanations of the contents of medical photographs prevents this from happening. As a result, this work 

proposes a method for automatically creating new captions for medical images by mining pre-existing 

associations between medical concepts and the photos’ visual qualities. Using a multi-label classifier, the 

visual feature encoder, the BERT CNN, and the long short-term memory (LSTM) model that outputs text make 

up the whole trainable network. 
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