
Journal of Autonomous Intelligence (2024) Volume 7 Issue 5

doi: 10.32629/jai.v7i5.1554

1

Original Research Article

Adaptive Threshold Fuzzy C-Means (ATFCM) VMmigration and

resource optimization based dynamic scheduling for edge-cloud

computing environments
S. Supriya1,*, K. Dhanalakshmi2

1 Departmentof Computer Science, Kongunadu Arts and Science College, Coimbatore 641029, India
2 Department of Information Technology, Kongunadu Arts and Science College, Coimbatore 641029, India

* Corresponding author: S. Supriya, supriyasundaram@gmail.com

ABSTRACT

The method of delivery of information technology services has changed according to cloud computing. The latest

generation of IoT applications benefits from low latency response offered by edge-cloud computing architecture. The

migration procedure suffers when there is insufficient network capacity available. This further increases the difficulty of

scheduling and resource monitoring. In this study, (1) Average Migration Time (AMT), Average Energy Consumption

(AEC), Average Response Time (ART), and Average Service Level Agreement Violations (SLAV) evaluation

parameters are minimised using Mutation Donkey and Smuggler Optimisation (MDSO). The amount of load that they

can manage, data centre servers are categorised into four groups using Adaptive Threshold Fuzzy C-Means (ATFCM)

clustering: extremely low load, mild load, medium load, maximum load. ATFCM moves thevirtual machine (VM) on

maximum loaded or extremely low loaded hosts to very lowly loaded hosts. Utilising host information from Resource

Monitoring Service (RMS), Residual Recurrent Neural Network (R2N2). Asynchronous advantage actor critical (A3C)

learning is acknowledged for its ability to swiftly adapt to dynamic settings with fewer data, whereas R2N2 for rapid

updating of model parameters. When contrasted to modern methods, trials done on practical applications data sets in

areas of energy usage, SLA, response time, and running costs.

Keywords: deep reinforcement learning; edge computing; Residual Recurrent Neural Network (R2N2);

Asynchronous Advantage Actor-Critic; Mutation Donkey and Smuggler Optimization (MDSO) algorithm

1. Introduction

Internet of Things (IoT) applications are growing rapidly in

multiple domains. These edge devices have put a lot of strain on the

Cloud Computing (CC) infrastructure and centralized control for real-

time operation and control of data storage and processing. Due to

significant network latency, deployed conventional cloud-centric IoT

apps do not adapt to time-sensitive applications.

Several versions of virtual resources are created by CC and are

housed on a real server. These physical servers are widely distributed

in huge Data Centers (DC) in numerous places. DC assign various

computing resources, including processors, storage, and networks, to

end users in accordance with their needs[1]. DCs use a lot of energy in

order to run on a regular basis. In addition, users’ reliance on CC has

multiplied with the growth of digital ecosystems including smart

cities, healthcare, and IoT. Additionally, demands for real-time data

storages and processes with CC have grown phenomenally along with

ARTICLE INFO

Received: 18 January 2024

Accepted: 26 February 2024

Available online: 15 May 2024

COPYRIGHT

Copyright © 2024 by author(s).

Journal of Autonomous Intelligence is

published by Frontier Scientific Publishing.

This work is licensed under the Creative

Commons Attribution-NonCommercial 4.0

International License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/

2

IoT.

Edge Computing (EC) interface can efficiently reduce the workload and enable real-time processing

while maintaining data security. Due to expense and viability factors, the resources at network’s edge are

limited. To assist additional apps and improve Quality of Services (QoS), correct use of Edge resources is

essential. Edge computations are a complex paradigm. The capacity, response time, speed, and energy

consumption of computing servers among remote clouds and local edge nodes dramatically vary as a result

of heterogeneity. Edge paradigm’s mobility element, the bandwidth among processing nodes and data

sources is always changing, demanding continuing dynamic tuning to meet application requirements.

Heuristics or rule-based rules have prevailed task scheduling techniques in Edge-Cloud systems[2].

Heuristics frequently function effectively in normal situations; however, they do not take into consideration

the dynamic settings caused by workloads and hybrid computational paradigms[3]. Moreover, they struggle to

adapt to ongoing system changes, which are typical in Edge-Cloud settings[4]. Given this, a reinforcement

learning (RL) based scheduling method offers a practical way to optimise the system dynamically.

Most value-based RL approaches function miserably in Edge-Cloud deployments because they are

unsuitable for highly stochastic situations, as demonstrated by prior research[5]. There aren’t many works that

can apply policy gradient methods[6], enhance for just one QoS parameter, and steer clear of using

asynchronous updates in highly stochastic environments if you want faster flexibility. Furthermore, temporal

patterns in workload, network, or node behaviour have not been utilised in any of the previous studies to

improve scheduling decisions. Furthermore, the centralised scheduling approach used in these studies is

unsuitable for contexts that are hierarchical or decentralised.

The effective utilization of data center resources is an important task more users migrate to the cloud.

Depending on the workload, certain servers might be overcrowded while others might be underutilized. If a

physical server breaks without VM migration, every VM that is running on it will also fail. Furthermore, the

service quality is impacted by the time required to re-instantiate such VM on different servers. All of these

problems have been overcome by the introduction of live VM migration. In cloud data centers, it makes

server consolidation, energy conservation, fault tolerance, maintenance, and traffic management simpler.

Consequently, serving as a critical technology for data center administration. As a result of their close

communication, moving one VM frequently necessitates moving all other associated VMs.

This research provides an innovative way to maximize the migration of virtual machines utilizing

ATFCM clustering. MDSO algorithm has been introduced to represent the complicated workload patterns

and resource variability. Additionally, it uses asynchronous policy gradient techniques to resolve the

scheduling issue in dynamic edge-cloud environments. These techniques use residual recurrent neural

networks (R2N2) to constantly modify system dynamics for producing improved outcomes.

2. Literature review

Aujla and Kumar[7] introduced an effective plan for Software-Defined Networking (SDN)-based

MEnSuS of cloud data centers. Support Vector Machine (SVM) driven workload categorization technique

for classifications. Furthermore, a two-phase game is developed for workload scheduling in order to ensure

edge-cloud sustainability of DC. In the cloud environment, several consolidation solutions are also provided

to enhance energy efficiency the most use of computer and network resources. The evaluation findings using

Google workload traces show the the proposed system’s effectiveness.For all these cases, using realistic

weather traces, the mapping of energy generated by Renewable Energy Sources (RES) and energy

consumption is done to assess the impact of proposed scheme on sustainability.

Nayyer et al.[8] developed a Load Balancing for Resource Optimization (LBRO), a platform for

collaborative cloudlets that takes user preferences into account when addressing load balancing issues in

3

edge computing. The proposed model not only addresses resource scarcity of cloudlets but also resolves the

under-provisioning of resources at peer cloudlets thus maximizing resource utilization at cloudlet level. The

experimental results show decreased load and stable resource utilization at cloudlets without jeopardizing

performance of applications running on them. The suggested method greatly outperforms the traditional

edge-based strategy with regard to of Central Processing Unit (CPU), storage, and disk utilization, according

to a comparison of the two approaches.

Li et al.[9] proposed a mechanism for data transport and a strategy for allocating resources that is

adaptable. The edge cloud cluster’s adaptive resource allocations are made possible by predictions. Resource

allocations with lowest service costs for the edge cloud clusters are selected using adaptive resource

allocation approaches. Cluster load balances and data dependability are guaranteed by data movements. In

the experiment, the load prediction accuracy and resource reconfiguration time under different loads are

evaluated.Then compare the related work in the edge cloud and verify the effectiveness of proposed

algorithm. Finally, the feasibility of the data migration algorithm is verified by experiments.Several studies

show that the suggested approach may greatly increase system efficiency by reduced cost controls, increased,

load balances and data integrity.

Zeng et al.[10] suggested a model-free method that, with no prior expertise, can suit the network

dynamics well. To achieve this, a model-free DRL technique was presented to manage network edge

resources effectively. They created agents for mobility-aware data processing service migrations which

adhered to their DRL design principles. The results of the studies demonstrate that the agent is capable of

automatically recognizing user mobility patterns and controlling the service migration between edge servers

to reduce runtime operational costs. There is also a clear discussion of some prospective future research

problems.

Tuli et al.[11] suggested an A3C based real-time scheduler for stochastic Edge-Cloud environments

allowing decentralized learning, concurrently across multiple agents.R2N2 architecture to capture a large

number of host and task parameters together with temporal patterns to provide efficient scheduling decisions.

Stochastic Edge-Cloud instances provide decentralised learning among several agents through the

construction of an A3C-based real-time scheduler. Implementing R2N2 architecture enables scheduling

choices to be made effectively. It is capable of gathering a broad variety of temporal patterns, host, and task

data. Studies on real-world datasets show a considerable increase in energy usages, response times, SLA, and

operating expenditures by 14.40%, 31.90%, 7.74%, and 4.64%, respectively, as compared to current

approaches.

Nabavi et al.[12] suggesteda multiple-goal VM placements in edge clouds which optimized network

traffic and power of data centres using Seagull optimization. By centering VM communications on a single

PM, the amount of data transported via the network is decreased, and the quantity of energy used by PM is

decreased by VM consolidation to fewer, more energy-efficient PM. Two distinct network topologies, VL2

and three-tier, have been tested using CloudSim to demonstrate that the suggested strategy may successfully

minimize traffic and power usage in ECDC.The experimental results show that proposed method can

decrease energy consumption by 5.5% while simultaneously reducing network traffic by 70% and the power

consumption of the network components by 80%.

3. System model and problem formulation

This study takes into account that the underlying architecture consists of both cloud and edge nodes.

The system structure is shown in broad strokes in Figure 1. The distributed heterogeneous resources that

make up the edge-cloud environment are linked to the network edge through a multi-hop remote cloud.

Various application functionalities are hosted by the computer resources. Although edge devices provide

4

significantly faster reaction times since they are located closer to the clients, resource limitations restrict their

computing capacity. More distant cloud resources, however, should provide much faster responses for users.

The technology involves Resource Monitoring Applications, VM Migration, and Scheduling are all

included in the Resource Management System (RMS) for management. Tasks with their QoS and SLA

criteria are sent to RMS by IoT users and devices. On the basis of the optimization goals, it sets new tasks

that periodically determine if current tasks should be transferred to new hosts. The RAM, bandwidth, CPU,

and disk limitations and the estimated completion times have an impact on the RMS option. The effect is

replicated using Workload Generation Module (WGM), stochastic task generators that adhere to dynamic

workload paradigm for job executions.

A Deep Reinforcement Learning Module (DRLM), which the Migration and Scheduler services

interface with, offers placement recommendations for each work to the previous services. Run numerous

schedulers with distinct partitioning of jobs and nodes in place of a single scheduler. Asynchronous updates

are made possible by policy learning of DRLM, which alloted schedulers unique instances of global neural

networks. The DRLM’s proposal is assessed by the Constraint Satisfaction Module (CMS), sometimes

referred to as the RMS, taking into account constraints such when a task has started migrating or the target

host is loaded.

Figure 1. System model.

Workload Model:Each task involves dynamic workload, and task generation is stochastic. Separate

execution time to scheduling intervals of similar length, as was done in earlier research[13]. As seen in Figure

2, the ordering of the scheduling intervals is represented by numbers.

Figure 2. Dynamic task workload model.

5

ithschedule intervals 𝑆𝐼𝑖 , starting at times 𝑡𝑖 , stay till next intervals denoted as 𝑡𝑖+1 . Active tasks in

𝑆𝐼𝑖are those that were running on the hosts and are identified by the letter 𝑎𝑖.Additionally, at the start of 𝑆𝐼𝑖 ,

the completed tasks are designated as 𝑙𝑖, and the WGM sends new tasks, which are designated as 𝑛𝑖.New

tasks 𝑛𝑖 are created in the system as the tasks 𝑙𝑖are removed. Therefore, tasks that were active for 𝑆𝐼𝑖 were

𝑎𝑖is𝑎𝑖−1 ∪ 𝑛𝑖\𝑙𝑖.

Problem Formulation: Represent loss of the interval 𝑆𝐼𝑖 as 𝐿𝑜𝑠𝑠𝑖.𝐻𝑖 represents ith hosts in enumerated

Host samples i.e. [𝐻0 , 𝐻1 , … , 𝐻𝑛] which imply their allocations for tasks Tas {𝑇} . Executing Hosts’

parameters, tasks from previous intervals (𝑎𝑖−1\𝑙𝑖), and new tasks 𝑛𝑖 are included in 𝑆𝐼𝑖 , designated as Statei.

For each task, the scheduler must choose 𝑎𝑖(= 𝑎𝑖−1 ∪ 𝑛𝑖\𝑙𝑖)the host that is going to be assigned to or

migrated to, which is 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 for 𝑆𝐼𝑖 . Let 𝑚𝑖 ⊆ 𝑎𝑖−1 ∪ 𝑙𝑖 be the migratabletasks. So, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 = {ℎ ∈ Hosts

for task 𝑇|𝑇 ∈ 𝑚𝑖 ∪ 𝑛𝑖} which is a decision about task migration in 𝑚𝑖and allocationdecision for tasks in 𝑛𝑖 .

Scheduler, which indicates that the Model is a function: 𝑆𝑡𝑎𝑡𝑒𝑖 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑖. 𝐿𝑜𝑠𝑠𝑖 of an intervalrelying on

the way hosts are assigned their roles i.e., 𝐴𝑐𝑡𝑖𝑜𝑛𝑖by the Model, n= Edge-Cloud Data enter Host counts.

Consequently, the issue can be expressed as given by Equation (1) for the best Model,

∑ 𝐿𝑜𝑠𝑠𝑖 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜∀𝑖, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖

𝑖

= 𝑀𝑜𝑑𝑒𝑙(𝑆𝑡𝑎𝑡𝑒𝑖)∀𝑖∀𝑇 ∈ 𝑚𝑖⋃𝑛𝑖 , {𝑇} ← 𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇) (1)

Having established the loss function and input-output requirements, specify the process for updating the

Model following each scheduling interval.

4. Reinforcement learning model

This study takes into account that the underlying architecture consists of both cloud and edge nodes.

The system structure is shown in broad strokes in Figure 1.

Model for policy gradient learning that uses reinforcement learning to solve the issue.

Input Specification: The scheduling model’s input is the 𝑆𝑡𝑎𝑡𝑒𝑖 , a collection of host-specific

characteristics that include CPU, bandwidth, RAM, and disc usage and capacity[14] along with Hosts’

parameters including reaction time, cost per units of time, million instructions per second (MIPS), and

number of tasks given to it. It is possible to guarantee low energy usage by allocating several tasks to a

limited group of hosts. Every host in the feature vector 𝐹𝑉𝑖
𝐻𝑜𝑠𝑡𝑠 specifies these parameters. In 𝑎𝑖, the jobs are

divided into two distinct sets:𝑛𝑖 and 𝑎𝑖−1\𝑙𝑖.

Output Specification: The model must, depending on the input 𝑆𝑡𝑎𝑡𝑒𝑖, allocate a host to each job in 𝑎𝑖

at the start of the interval 𝑆𝐼𝑖 . The result (𝐴𝑐𝑡𝑖𝑜𝑛𝑖) are host assignments of new job tasks ∈ 𝑛𝑖 as well as

migration decisions of executing tasks from the previous interval ∈ 𝑎𝑖−1\𝑙𝑖.Every work that is migrated

needs to be able to migrate to the new host; hence, the job needs to fit within the feasible boundaries.

Furthermore, once a host h is allocated to a job T, it shouldn’t get overworked; that is, h is suitable for T.

𝐴𝑐𝑡𝑖𝑜𝑛𝑖 is therefore taken through Equation (2) in order for the interval 𝑆𝐼𝑖 , ∀𝑇 ∈ 𝑛𝑖 ∪ 𝑚𝑖 , {𝑇} ←

𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇),

𝐴𝑐𝑡𝑖𝑜𝑛𝑖 = {
ℎ ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑛𝑖

ℎ𝑛𝑒𝑤 ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑚𝑖 𝑖𝑓 𝑡 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑
 (2)

𝐴𝑐𝑡𝑖𝑜𝑛𝑖fits 𝑡∀𝑡 ∈ 𝑛𝑖 ∪ 𝑚𝑖and is susceptible. Vectors of preferred allocations of hosts for tasks might be

the result for neural networks which provides ranked lists of hosts instead of one host for each activity.

5. Proposed methodology

MDSO algorithm assists in producing better outcomes of metrics including ART, AEC, AMT, and

Average SLAV. ATFCM clustering divides data centre hosts into four groups based on the load they can

6

support: extremely low load, mild load, medium load, and maximum load. The VM on maximum loaded or

extremely low loaded hosts is moved to extremely low loaded hosts using the ATFCM algorithm, while the

VM on lowly loaded and medium loaded sites is left in place. Afterward, based on ATFCM clustering,

threshold has been generated based on the fuzzy function. The R2N2 model uses demands and host features

from RMS to forecast the upcoming scheduling choices. With less data, A3C learning recognizes and adapts

dynamically and quickly than R2N2.

AEC: An interval’s AEC is described as the infrastructure’s energy use regulated by environmental

peak powers and 𝛼ℎ ∈ [0,1] are added to energy used by hosts ℎ ∈ 𝐻𝑜𝑠𝑡𝑠, considering user demands and

deployment plans which can be customized for cloud and edge nodes. Powers are normalized using Equation

(3),

𝐴𝐸𝐶𝑖
𝐻𝑜𝑠𝑡𝑠 =

∑ 𝛼ℎℎ∈𝐻𝑜𝑠𝑡𝑠 ∫ 𝑃ℎ(𝑡)𝑑𝑡
𝑡𝑡+1

𝑡=𝑡1

∑ 𝛼ℎℎ∈𝐻𝑜𝑠𝑡𝑠 𝑃ℎ
max(𝑡𝑖+1 − 𝑡𝑖)

 (3)

here 𝑃ℎ(𝑡)is host h,power function with time,and𝑃ℎ
𝑚𝑎𝑥is h maximum possible power.

ART:ART represents average response times for all departing tasks (li+1) during periods 𝑆𝐼𝑖 ,

standardized by longest intervals up to those point in time.ART is defined asfollows Equation (4),

𝐴𝑅𝑇𝑖 =
∑ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)𝑡∈𝑙𝑖+1

|𝑙𝑖+1| max
𝑖

max
t∈li

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)
 (4)

AMT: AMT for all active jobs (𝑎𝑖) during an interval 𝑆𝐼𝑖 is defined as the longest feasible migration

time up to the previous interval, standardized by that longest time. AMTis defined as follows Equation (5),

𝐴𝑀𝑇𝑖 =
∑ 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑡)𝑡∈𝑎𝑖

|𝑎𝑖| 𝑚𝑎𝑥
𝑖

𝑚𝑎𝑥
𝑡∈𝑙𝑖

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)
 (5)

Average SLA Violations (SLAV): Mean values of SLA breaches for leaving a position (𝑙𝑖+1).Average

SLA Violations (SLAV), which is the total (i) SLA violation times for active host matrices and (ii) matrices

of performance deteriorations due to migrations, as identified by SLA(t) of tasks 𝑇 during intervals 𝑆𝐼𝑖 and

depicted as Equation (6):

𝑆𝐿𝐴𝑉𝑖 =
∑ 𝑆𝐿𝐴(𝑡)𝑡∈𝑙𝑖+1

|𝑙𝑖+1|
 (6)

This model modifies the variables to fulfill restrictions in addition to minimizing 𝐿𝑜𝑠𝑠𝑖 .

5.1. MDSO algorithm

The MDSO algorithm is clearly shown in Figure 3.

DSO algorithm is designed to minimize energy use measures for cloud and edge nodes by modeling the

actions after that of donkeys. The algorithm simulates the movement of donkeys in an edge-cloud

environment by choosing and searching for routes. For deploying the search activity and RMS in an edge-

cloud context, two modes—donkeys and smugglers—have been developed. In the Smuggler mode, all

potential routes are identified before the resource optimization is identified. Several donkey activities,

including run, face & support and face & suicide, are utilized in the donkey’s approach[15].

Part I: Smuggler (Non-Adaptive): Here, the smuggler will examine every resource that could be used

from the tasks to the VM before making a decision upon particular metrics. The fitness function in the

smuggler section is designed to identify an ideal resource based on many criteria, including AEC, ART,

AMT, and SLAV. When this is finished, the donkey will be sent to the finest monitored VM schedule. Each

task’s parameters will be entered by the operator, and the solutions and fitness will be assessed in the

7

smuggler section. The responses will be clustered altogether according to how fit they are. The donkey will

be sent according to the finest monitoring service that has been selected and briefly explained in Algorithm 1.

Figure 3. MDSO algorithm.

Part II: Donkey (Adaptive): The decisions made in adaptive routing depends on the resources in present

VM state. According to Donkey’s conduct, this response will be provided. The optimal resources were

identified for user demands once the user task specifications were entered into each resource monitoring

parameter. One of the following things will happen when the choke packet findings show that the ideal

solution’s fitness has decreased or is no longer good (another option currently has a greater fitness);

1) Run: A different optimal path (best solution) should be taken. When the ideal resource monitoring

solution established in non-adaptive portions of non-optimal methods are eliminated and updated

optimal resource monitors are set in accordance with the recent modifications.

2) Face and Suicide: selecting the ideal resource monitoring solution search path. There is no need to

recalculate the fitness of the potential population; instead, discard the present route (VM) and employ

the other resource that is ideal for the user job while correcting the blocked one. If any changes that

lower the approach’s fitness render the optimal answer found in the first portion of the procedure no

longer the best. Once the first choice is eliminated and the situation returns to ideal, choose the next best

option in the set of options.

3) Face and Support: Provide 2nd best VM solutions in case ideal resource solutions are discovered by

smugglers begin to show overcrowding or congestion to prevent dropping solutions.

8

Algorithm 1 Mdso algorithm

1: Read the number of request and Task of user,𝑛1 , 𝑛2 ,

2: Smuggler Part

3: arbitrarily create the initial population of VM solutions.

4: Forrow=1 to 𝑛1

5: Forcol=1 to 𝑛2

6: parameters (rows, cols) =𝑟𝑎𝑛𝑑𝑖([decision ranges of variables],𝑛1, 𝑛2)

7: end

8: end

9: For (e=1 to 𝑛1) do

10: Examine fitness of results (Equations1-6)

11: Update potential RSM solutions’ in population

12: End

13: EstablishthefinestRSM for each task

14: Demonstrate your best option

15: Provide the donkey part with the finest RSM solution.

16: Donkey Part

16.1. Determine whether there has been an upgrade in fitness.

16.2. If there is less of a change in the ideal solution’s fitness

17: Runupdate the best solution

𝐵𝑒𝑠𝑡𝑠𝑢𝑖𝑐𝑖𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑓(𝑥𝑖) − 𝑓(𝑚𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (7)

𝑓(𝑚𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)denotes the mutation results of Equation (7) VM based on the user task.
18: Face &Suicide convert second-best fitness solutions from available options.

19: Face &Support Utilize the population’s second-best option, which will serve the same function as the ideal solution, to
support the best solution. (Population fitness is not updated.) (Equations (8) and (9))

𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑓(𝑚𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 𝑓(𝑥𝑖) (8)

𝑏𝑒𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑚𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (9)

20: End If

5.2. VM migration by ATFCM clustering

The CPU, memory disk, and bandwidth of servers in data centers all have an impact on the amount of

energy they use. Energy usage and SLA violations in data centers can be decreased with proper VM mobility

across servers. Yet, frequent VM migration may have a negative effect on the efficiency of any applications

that use the VM. ATFCM Clustering Algorithm 2 is discussed below. Cost issues with moving VMs, as well

as performance issues brought on by moving VMs Equations (10) and (11),

C = k. ∫ uj

t0+Tmj

t0

(t)dt (10)

𝑇𝑚𝑗
=

𝑀𝑗

𝐵𝑗
 (11)

When variable 𝐶 denotes the overall efficiency degradation brought on by 𝑉𝑀𝑗 , variable 𝑘 denotes the

average performance degradation brought on by VM, and the value of 𝑘 is roughly equivalent to 0.1 (10%)

of CPU use,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑗(𝑡) is equivalent to the CPU use of 𝑉𝑀𝑗 , variable 𝑡0signifies start time of migrations,

𝑇𝑚𝑗
 represents completion times, 𝑀𝑗corresponds to complete memory utilizations of 𝑉𝑀𝑗 , and 𝐵𝑗 represents

available bandwidths.

9

SLA Violation Metrics: SLA violations have to be considered in all VM migration algorithms. SLA

violations are now classified in two ways.

(1) Overall Performance Degradations Caused by VM Migrations (PDM): It is specified by Equation (12),

𝑃𝐷𝑀 =
1

𝑀
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑀

𝑗=1

 (12)

here variable 𝑀signifies VM counts in data centers while 𝐶𝑑𝑗
 implies estimated performance degradations

based on 𝑉𝑀𝑗 migrations, and 𝐶𝑟𝑗
refers to the entire CPU capacity that 𝑉𝑀𝑗 required during the course of its

existence.

(2) SLATAH (SLA Violation Time per Active Host): This represents percentages of total SLA violations

where CPU usages of active host reached 100%, as per Equation (13).

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝑁
∑

𝑇𝑠𝑖

𝑇𝑎𝑖

𝑁

𝑖=1

 (13)

here 𝑁indicates host counts in data centers, 𝑇𝑠𝑖
 stands for total time consumed by host 𝑖‘s CPU attaining cent

percent usage, leading to SLA violations, and 𝑇𝑎𝑖
 corresponds to total times host 𝑖 consume in active states.

When the SLATAH happened, the CPU of the active host was 100% used, which means the virtual machine

on the host might not have received the desired CPU capacity. Two effective methods for determining the

SLA violation individually are SLATAH and PDM. That being said, the SLA is defined as follows Equation

(14),

𝑆𝐿𝐴 = 𝑃𝐷𝑀 × 𝑆𝐿𝐴𝑇𝐴𝐻 (14)

Energy usage and SLA violations are both a part of energy conservation. Less energy usage and SLA

violations result from increased energy efficiency. Consequently, the following describes the way the energy

performance metric is explained in Equation (15),

𝐸 =
1

𝑃 × 𝑆𝐿𝐴
 (15)

here 𝐸implies energy efficiencies of data centers 𝑦, 𝑃 stands for their energy consumptions, and SLA is a

data center’s SLA violation. Equation (11) demonstrates that energy efficiency increases as 𝐸 increases.

The energy efficiency of data centers can be raised through VM migration. But there are some

significant issues that need to be resolved: (1) when a host is anticipated to be at its maximum capacity,

wherein a host’s VM can be moved to another host; (2) when it is decided to leave all VM on a host

unmodified when it is expected to be minimally or moderately loaded; (3) when all VM are expected to be

moved to another host due to underutilization; (4) selecting one or more VM that need to be migrated from

hosts that are completely or partially loaded; and (5) finding new hosts to house migrating VM.

An algorithm called ATFCM is suggested for VM migration. Three criteria are automatically

determined by the ATFCM algorithm 𝑇ℎ𝑙𝑜𝑤 , 𝑇ℎ𝑚𝑒 , 𝑎𝑛𝑑 𝑇ℎ𝑚𝑎𝑥 (0≤𝑇ℎ𝑙𝑜𝑤< 𝑇ℎ𝑚𝑒< 𝑇ℎ𝑚𝑎𝑥≤ 1), that leads

to the classifications of data center hosts as hosts with very low, low, medium, and maximum loads. Host is

considered to be low-loaded when its CPU use is less than or equal to 𝑇ℎ𝑙𝑜𝑤. The host must be put into sleep

mode and all virtual machines must be moved from the very low loaded host to a different host with low load

to lower the amount of energy used. A host is regarded to be low loaded when its CPU usage ranges from

𝑇ℎ𝑙𝑜𝑤 and 𝑇ℎ𝑚𝑒 .Because excessive VM migration outcomes in performance degradation and high SLA

violations, all VM on lowly loaded hosts must be retained in place as a way to prevent high SLA violations.

A host is considered to be medium loaded when its CPU usage is among 𝑇ℎ𝑚𝑒 , 𝑎𝑛𝑑 𝑇ℎ𝑚𝑎𝑥. It seems that

10

the host is medium loaded; due to the performance decrease and severe SLA breaches caused by excessive

VM migration, all virtual machines on medium-loaded hosts must remain unchanged; Whenever a host’s

CPU usage exceeds 𝑇ℎ, the host is regarded as being maximally loaded; Some of the virtual machines on

hosts that are fully loaded have to be migrated to hosts that are underutilized as a way to reduce SLA

violations.

Data centre hosts are divided into four groups using ATFCM clustering based on the load they handle:

extremely low load, low load, medium load, and maximum load hosts. Let us assume that the collection of n

computers to be separated based on CPU utilization is represented by the expression 𝑉𝑀 = {𝑣𝑚1, . . . , 𝑣𝑚𝑛}.

Here, 𝑣𝑚𝑖 ∈ 𝑅𝑑 for 𝑖 = 1, . . . , 𝑛; 𝑐 represents cluster counts, where 2 ≤ 𝑐 < 𝑛 . Equation (16)[16] depicts

fuzzy clustering.

𝑃: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐽𝑚(𝑈, 𝑉) = ∑ ∑(𝑢𝑖𝑗)
𝑚

‖𝑣𝑚𝑖, 𝑣𝑗‖2

𝑐

𝑗=1

𝑛

𝑖=1

 (16)

here U = 𝑢𝑖𝑗 is each 𝑉𝑀𝑖′𝑠 membership matrix to clusters 𝑗; 𝑉 = {𝑣1, . . . , 𝑣𝑐} are collections of centroids,

where 𝑣𝑗 represents cluster j’s centroid;(The host’s CPU use at time 𝑖 is represented by 𝑣𝑚𝑖; the size of 𝑛 is

determined empirically). The extent that the clusters overlap is indicated by the weighting exponent, or

m. 𝑚 > 1; 𝑑 = ‖𝑣𝑚𝑖 , 𝑣𝑗‖2specifies the Euclidean distance among the 𝑣𝑚𝑖and the centroid 𝑣𝑗for 𝑖 = 1, . . . , 𝑛

and 𝑗 = 1, . . . , 𝑐. Minimizing𝐽𝑚, which represents estimated 𝑉 𝑎𝑛𝑑 𝑈 models in Equations (17) and (18),

𝑣𝑗 =
∑ (𝑢𝑖𝑗)

𝑚
𝑣𝑚𝑖

𝑛
𝑖=1

∑ (𝑢𝑖𝑗)
𝑚𝑛

𝑖=1

 1 ≤ 𝑗 ≤ 𝑐 (17)

𝑢𝑖𝑗 =
1

∑ (
‖𝑣𝑚𝑖,𝑣𝑗‖2

‖𝑣𝑚𝑖,𝑣𝑘‖2
)

1

𝑚−1𝑐
𝑘=1

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑐
(18)

where 𝑣𝑚𝑖and 𝑣𝑗are the space-specific vectors 𝑅𝑑 and are definite as follows Equations (19) and (20),

𝑣𝑚𝑖 = (𝑣𝑚1, … , 𝑣𝑚𝑑), 1 ≤ 𝑖 ≤ 𝑛 (19)

𝑣𝑗 = (𝑣1, … , 𝑣𝑑), 1 ≤ 𝑗 ≤ 𝑐 (20)

Limitations of fuzzy clusters are formalized in Equations (21)–(23)[17],

𝑢𝑖𝑗 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑐 (21)

∑ 𝑢𝑖𝑗

𝑐

𝑗=1

= 1, 1 ≤ 𝑖 ≤ 𝑛 (22)

0 < ∑ 𝑢𝑖𝑗

𝑐

𝑗=1

< 𝑛, 1 ≤ 𝑗 ≤ 𝑐 (23)

According to Equation (21), a 𝑣𝑚𝑖′s degree of membership in clusters 𝑗 need to be between 0 and 1.

Equation (22) states total of a 𝑣𝑚𝑖membership degrees in several clusters must necessarily equal 1. Equation

(23), which states that there cannot be any empty clusters and that there cannot be a single cluster, requires

which the total of membership degrees in clusters are > 0 and < n. Thresholds (𝑇ℎ𝑙𝑜𝑤 , 𝑇ℎ𝑚𝑒 , 𝑎𝑛𝑑 𝑇ℎ𝑚𝑎𝑥)

in ATFCM algorithms can be depicted as Equation (24)–(26),

𝑇ℎ𝑙𝑜𝑤 = 0.5(1 − 𝑟 ∗ 𝑑) (24)

𝑇ℎ𝑚𝑒 = 0.75(1 − 𝑟 ∗ 𝑑) (25)

𝑇ℎ𝑚𝑎𝑥 = 1 − 𝑟 ∗ 𝑑 (26)

11

here 𝑟 ∈ 𝑅+ is an algorithmic variable that controls how quickly the system consolidates virtual

machines. Higher 𝑟 results in more energy usage but fewer SLA breaches brought on by VM consolidation.

Algorithm 2 Atfcm clustering

Input: Number of tasks 𝑇 = (𝑡1 , … , 𝑡𝑛), 𝑐, 𝑚, 𝜀

Output: U,V

1: Initialization

2: t:=0

3: 𝑈(𝑡) ≔ {𝑢11, … . , 𝑢𝑖𝑗} is randomly generated depending on the CPU utilization

4: Calculate centroids by equation (17)

5: Modify membership matrices with equation (18)

6: Convergence

7: If max {abs(𝑢𝑖𝑗
(𝑡)

− 𝑢𝑖𝑗
(𝑡+1)

)} < 𝜀

8: stop the algorithm

9: else

10: 𝑈(𝑡) ≔ 𝑈(𝑡+1) and t:=t+1

11: Go to step 4

12: end of the algorithm

5.3. Stochastic dynamic scheduling using policy gradient learning

Each scheduling session starts with the following: Task requests and job specifications, such as

bandwidth, computation, and SLA needs, are received by the RMS and used by DRL algorithm with host

features from RMS to forecast potential schedules in future. (3) Outputs of DRL are used by constraint

satisfaction modules to make migrations and schedules possible. (4) When new jobs are detected, RMS alerts

users or IoT devices for submitting requests directly to relevant edges or cloud devices. (5) Loss functions

are computed and variables DRL variables are adjusted accordingly. Q-tables or neural network function

approximates simulate these jobs in stochastic circumstances which result in deterministic non-flexible rules.

The technique utilizes policy gradient optimization to estimate the policy and optimize it, utilizing 𝐿𝑜𝑠𝑠𝑖
𝑃𝐺as

a sign to update the network. Utilizing an R2N2 network, estimate the function from 𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 for each

interval SIi. The ability of an R2N2 system to capture complex temporal correlations among outputs and

inputs is advantageous. After the present interval, a single network forecasts policy (actor head) and

cumulative loss (critic head). One may modify the network variables and determine the optimal scheduling

choice for each interval by repeatedly preprocessing the interval state and submitting it, together with the

penalties and losses to R2N2. This enables the framework to quickly adjust to users, environments, and

specific application demands. GRUs, or gated recurrent units, imitate the temporal features of task and host

qualities such task RAM, CPU, and bandwidth needs as well as the hosts’ RAM, CPU, and bandwidth

capability, are used to generate recurrent layers.Features of elements e are represented as 𝑓𝑒, max and min

values as 𝑚𝑎𝑥
𝑓𝑒

 𝑎𝑛𝑑 𝑚𝑖𝑛
𝑓𝑒

individually. These maximum and minimum values are computed utilizing two

heuristic-based scheduling rules: Maximum-Migration-Time (MMT) for task selection, and Local-

Regression (LR) for task allocation both of which depend on a sample dataset[18]. Following that, Equation

(27) is used to standardize features,

𝑒 = {

0 𝑖𝑓 max 𝑓𝑒 = min 𝑓𝑒

min (1, 𝑚𝑎𝑥 (0,
𝑒 − min 𝑓𝑒

max 𝑓𝑒 − min 𝑓𝑒
)) , 𝑒𝑙𝑠𝑒

 (27)

12

R2N2 models receive these pre-processed inputs and flatten them for passing them through thick layers.

By initially generating grouped lists of hosts and decreasing probabilities in 𝑂𝑖 for each i, outputs created 𝑂

are converted into 𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 .Gradients have negative signs to reduce total losses and are proportionate to

these quantities. Mean Square Error (MSE) of expected cumulative losses with the cumulative losses

following one-step look-aheads are second gradient terms. Every scheduling interval, CSM converts the

output 𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 to 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 and sends it to RMS.

6. Results and discussion

This section summarizes experimental configurations, evaluation metrics, dataset, and presents a

comprehensive examination of the results, contrasting the model with other industry-standard methods.

Properties like edge node response times, costs, and powers may be used with CloudSim. Software for

Constraint Satisfactions with preprocessing and output conversions were built. Tasks and host monitoring

services provided by CloudSim computed losses. Hosts in simulation environments were assigned tasks, or

cloudlets and dispersed amongst VM.

Dataset: Tasks (cloudlets) VM were assigned to the simulation environment, and hosts are assigned to

them after that. By assigning the ith generated. Bijections from cloudlets to VM can be assumed by

connecting the Cloudlet to the ith produced VM and removing the VM when the related Cloudlet is finished

for the current task setting in the edge-cloud environment. The real-world, publicly-available Bitbrain dataset

is used to produce the dynamic workload for cloudlets. Real-time resource utilisation statistics for business-

critical applications utilising Bitbrain architecture is available in the Bitbrain dataset[19,20]. This dataset was

chosen because it illustrates real-world patterns of infrastructure utilisation and may be utilised to create

accurate input feature vectors for learning algorithms. It contains almost a thousand virtual machine

workload records from two different types of computers. The dataset contains workload statistics for each

time stamp, divided into five minutes. These figures include the required number of CPU cores, the CPU

utilisation measured in MIPS, the amount of RAM that was requested, and details on the disc (write/read)

and network (receive/transmit) bandwidth. Divide the dataset into two halves, each having a 25.00% and a

75.00% virtual machine workload. The larger component is used to train the R2N2 network, whereas the

smaller portions are used in tests, sensitivity analyses, and cross-references with similar studies[21]. Cloud

layers’ cost models are based on Microsoft Azure IaaS cloud service.

Metrics:The following metrics has been used for results comparison.

Average Response Time (ART) shown as follows,

𝐴𝑅𝑇 =
∑ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒(𝑡)𝑡∈𝑙𝑖+1

|𝑙𝑖+1)
 (28)

SLAVdefine as follows,

𝑆𝐿𝐴𝑉 =
∑ 𝑆𝐿𝐴𝑉𝑖 . |𝑙𝑖+1|𝑖

∑ 𝑙𝑖𝑖
 (29)

Average Task Completion Time: It is determined by adding the average scheduling time of a task, the

task’s execution time, and the server’s response time during the most recent scheduling interval. The overall

number of tasks completed, the percentage of tasks finished within the anticipated execution time (based on

the desired MIPS), the number of task migrations each time interval, and the total migration time transfer

over the course of the period are all taken into account.

Results comparison Methods: A variety of heuristics have been employed in the dynamic scheduling

methodology. For a number of sub-problems, including task/VM selection and host overload detection, the

top three heuristics from this collection of sub-heuristics have been determined. These variations locate

13

target hosts using Best Fit Decreasing (BFD) method. Additionally, contrast the results with two well-liked

RL techniques that are frequently applied in the literature.

LR-MMT: This dynamic workload distribution method selects tasks based on task selection and

overload detection methods (LR and MMT).

The Maximum Correlation Policy (MC) and Median Absolute Deviation (MAD) heuristics are used in

MAD-MC to dynamically schedule workloads based on task selection and overload detection.

DDQN: The Deep Q-Learning based RL approach has been used in a number of researches published in

the literature.

DRL (REINFORCE): Using a linked neural network and policy gradients, the REINFORCE technique.

Figure 4 demonstrates that, when compared to the other scheduling schemes, the one suggested offers

the shortest average response time. The suggested approach performs 10.26% lower than the baseline

algorithms’ top algorithm, A3C-CCTSO-R2N2. Since the suggested framework does not have multiple

migrations or AMT inherent in the loss function, it specifically checks if nodes are clouds and edge nodes

and distributes work using RMS (MDSO). This shows that the proposed system has lesser ART of 6.21 ms,

whereas other methods such as DDQN, REINFORCE, A3C-R2N2, and A3C-CCTSO-R2N2 has increased

ART of 8.74ms, 8.20ms, 7.46ms, and 6.92 ms respectively (refer Table 1).

Figure 4. Average response time vs. scheduling methods.

Table 1. Average response time of methods’ schedules.

Scheduling Methods Response Time (ms)

DDQN 8.74

REINFORCE 8.20

A3C-R2N2 7.46

A3C-CCTSO-R2N2 6.92

A3C-MDSO-R2N2 6.21

According to Figure 5, the suggested approach has 34.61% less SLA breaches than the A3C-R2N2

policy, and it also has the lowest rate of SLA violations overall. Also reduced migrations and astute work

schedules prevent significant losses resulting from SLA breaches. The proposed system has lower SLA

violations (0.034), whereas other approaches (refer to Table 2) have higher ART of 0.072, 0.064, 0.052, and

0.040, respectively, such as LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-R2N2.

14

Figure 5. Fraction of SLAviolations vs. scheduling methods.

Table 2. SLA violation fractions of methods’ schedules.

Scheduling Methods Fraction of SLA Violations

DDQN 0.072

REINFORCE 0.064

A3C-R2N2 0.052

A3C-CCTSO-R2N2 0.040

A3C-MDSO-R2N2 0.034

As seen in Figure 6, the suggested model has high task completions which guarantee distributions of

work amongsdt few cloud VMs and save cost. Proposed system has higher number of completed tasks as

1264, whereas other methods such as DDQN, REINFORCE, A3C-R2N2, and A3C-CCTSO-R2N2 has lesser

number of completed tasks of 895, 978, 1127, and 1150 respectively (refer Table 3).

Figure 6. Number of completed tasks vs. scheduling methods.

Table 3. Complted task counts of methods’ schedules.

Scheduling Methods Fraction of SLA Violations

DDQN 895

REINFORCE 978

A3C-R2N2 1127

A3C-CCTSO-R2N2 1150

A3C-MDSO-R2N2 1264

15

Figure 7 shows the results of number of task migrations with respect to simulation time. The results are

evaluated by several methods likeA3C-MDSO-R2N2, DDQN, REINFORCE, A3C-R2N2, and A3C-

CCTSO-R2N2. From the results it shows that the proposed system has lesser number of task migrations of

16, whereas other methods such as DDQN, REINFORCE, A3C-R2N2, and A3C-MDSO-R2N2 has 30, 25,

20, and 18 for simulation time of 20 Hours (refer Table 4).

Figure 7. Task migration counts of methods during intervals.

Table 4. Number of task migration vs. scheduling methods.

Scheduling Methods Simulation time (Hours)

0 5 10 15 20

DDQN 22 28 32 25 30

REINFORCE 17 22 30 19 25

A3C-R2N2 15 18 25 17 20

A3C-CCTSO-R2N2 11 15 20 14 18

A3C-MDSO-R2N2 9 13 18 12 16

Figure 8 shows the results of Interval Migration Time in task with respect to simulation time. The

results are evaluated by several methods like A3C-MDSO-R2N2, DDQN, REINFORCE, A3C-R2N2 and

A3C-CCTSO-R2N2. It shows that the proposed system has takes lesser total migration time of 1.19 Seconds,

whereas other methods such as DDQN, REINFORCE, A3C-R2N2, and A3C-CCTSO-R2N2 has 9.50

Seconds, 7.80 seconds, 7.50 seconds, and 5.0 seconds for simulation time of 20 Hours(refer Table 5).

Figure 8. Total migration times during interval of methods’ schedules.

16

Table 5. Total migration time in each interval vs.scheduling methods.

Scheduling Methods Simulation time (Hours)

0 5 10 15 20

DDQN 10 11.5 12 13 9.5

REINFORCE 7 8.5 10 11 7.8

A3C-R2N2 6.2 7.7 8 9 7.5

A3C-CCTSO-R2N2 5.5 6 7.2 7.8 5

A3C-MDSO-R2N2 4.8 5.4 6.3 6.9 4.3

7. Conclusion and future work

A complete real-time task scheduler and migration for combined cloud and edge computing systems are

the goals of this work. MDSO algorithm has been introduced for minimizing the metrics like AEC, ART,

AMT, and SLAV. The technique simulates the movement of donkeys in an edge-cloud environment by

choosing and searching for routes. For deploying the search behavior and RMS in an edge-cloud context,

two modes, donkeys and smugglers have been developed. Virtual machine migration can improve the energy

efficiency of data centres. For VM migration, ATFCM clustering has been implemented. Four classifications

of hosts exist within a data centre: extremely low load, moderate load, medium load, and maximum load

hosts. Data centre servers’ RAM, disc, CPU, and bandwidth all affect how much energy they need.

Appropriate virtual machine mobility among servers helps reduce data centre energy consumption and SLA

breaches. For stochastic dynamic scheduling, an A3C-based policy gradient reinforcement learning

algorithm is used. The A3C-R2N2 scheduler was implemented to increase efficiency; it can account for all

important task and host characteristics. Based on the real Bitbrain dataset, CloudSim 5.0 shows the

superiority of the model over existing methods. The existing design has limitations when it comes to

scheduling jobs and edge nodes. Future research may focus on scalable reinforcement learning techniques

like as Impala. Prepare to investigate issues related to data security and privacy as well.

Author contributions

Conceptualization, SS and KD; methodology, SS; validation, SS and KD; draft manuscript preparation,

SS; visualization, SS and KD. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. Katal A, Dahiya S, Choudhury T. Energy efficiency in cloud computing data centers: a survey on software

technologies. Cluster Computing. 2023; 26(3): 1845-1875.
2. Mohiuddin I, Almogren A. Workload aware VM consolidation method in edge/cloud computing for IoT

applications.Journal of Parallel and Distributed Computing. 2019;123: 204-214.

3. Skarlat O, Nardelli M, Schulte S, et al. Optimized IoT service placement in the fog. Service Oriented Computing

and Applications. 2017; 11(4): 427-443.

4. Pham XQ, Man ND, Tri NDT, et al. A cost-and performance-effective approach for task scheduling based on

collaboration between cloud and fog computing. International Journal of Distributed Sensor Networks. 2017;

13(11): 1-16.

5. Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for deep reinforcement learning. Proceedings of the

International conference on machine learning. 2016; 1928-1937.

6. Mao H, Alizadeh M, Menache I, Kandula S. Resource management with deep reinforcement learning. Proceedings

of the 15th ACM Workshop on Hot Topics in Networks. 2016; 50-56.
7. Aujla GS, Kumar N. MEnSuS: An efficient scheme for energy management with sustainability of cloud data

centers in edge–cloud environment.Future Generation Computer Systems. 2018; 86: 1279-1300.

17

8. Nayyer MZ, Raza I, Hussain SA, et al. LBRO: Load Balancing for Resource Optimization in Edge Computing.

IEEE Access. 2022; 10: 97439-97449.

9. Li C, Sun H, Tang H, Luo Y. Adaptive resource allocation based on the billing granularity in edge-cloud

architecture.Computer Communications. 2019; 145: 29-42.

10. Zeng D, Gu L, Pan S, et al. Resource management at the network edge: A deep reinforcement learning

approach.IEEE Network. 2019; 33(3): 26-33.

11. Tuli S, Ilager S, Ramamohanarao K, Buyya R. Dynamic scheduling for stochastic edge-cloud computing

environments using a3c learning and residual recurrent neural networks.IEEE transactions on mobile computing.
2020; 21(3): 940-954.

12. Nabavi S, Wen L, Gill SS, Xu, M. Seagull optimization algorithm based multi-objective VM placement in edge-

cloud data centers.Internet of Things and Cyber-Physical Systems. 2023; 3: 28-36.

13. Akbari M, Hassan R, Alizadeh SH. An enhanced genetic algorithm with new operators for task scheduling in

heterogeneous computing systems. Engineering Applications of Artificial Intelligence. 2017; 61: 35-46.

14. Kim D, Son J, Seo D, et al. A novel transparent and auditable fog-assisted cloud storage with compensation

mechanism. Tsinghua Science and Technology. 2019; 25(1): 28-43.

15. Shamsaldin AS, Rashid TA, Al-Rashid Agha RA, et al. Donkey and smuggler optimization algorithm: A

collaborative working approach to path finding.Journal of Computational Design and Engineering. 2019; 6(4):

562-583.

16. Gosain A, Dahiya S. Performance analysis of various fuzzy clustering algorithms: a review.Procedia Computer

Science. 2016; 79: 100-111.
17. Pérez-Ortega J, Rey-Figueroa CD, Roblero-Aguilar SS, et al. POFCM: A Parallel Fuzzy Clustering Algorithm for

Large Datasets.Mathematics. 2023; 11(8): 1-16.

18. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and

performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and

Computation: Practice and Experience. 2012; 24(13): 1397-1420.

19. Shen S, van Beek V, Iosup A. Statistical characterization of business-critical workloads hosted in cloud

datacenters. 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 2015; 465-474.

20. Available online: http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (accessed on 25 December 2023).

21. Supriya S, Dhanalakshmi K. Residual Recurrent Neural Network (R2N2) and Intelligent Resource Optimization

based Dynamic Scheduling for Edge-Cloud Computing Environments.International Journal of Intelligent Systems

and Applications in Engineering. 2023; 12(8s): 160–172.

