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ABSTRACT 

Lung ultrasound imaging has become an important diagnostic tool for various respiratory conditions. Deep learning 

models have shown impressive results in classifying abnormalities in lung ultrasound images. However, these models 

typically provide deterministic predictions, disregarding the inherent uncertainty inherent in medical image analysis. This 

research paper introduces a novel approach to quantify uncertainty in deep learning models for accurate lung ultrasound 

image analysis. The proposed framework leverages a unique combination of Monte Carlo Dropout and Bayesian neural 

networks to provide reliable uncertainty estimates. By integrating these techniques, the model gains the ability to capture 

and represent the inherent uncertainty associated with medical image analysis. Extensive experiments conducted on a 

diverse dataset demonstrate the effectiveness and novelty of this approach. The inclusion of uncertainty estimation 

enhances classification accuracy and decision-making processes in lung ultrasound-based diagnosis, setting a new 

standard for the application of deep learning in medical image analysis. The novel methodology presented in this study 

has the potential to foster greater trust in AI-based diagnostic tools, promoting their integration into clinical practice and 

ultimately improving patient care and outcomes. 
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1. Introduction 

Lung diseases impose significant health burdens worldwide, 

contributing to a substantial number of morbidity and mortality cases. 

Prompt and accurate diagnosis is crucial for effective treatment and 

management of these conditions. Lung ultrasound imaging has 

emerged as a promising and non-invasive diagnostic tool for assessing 

various lung pathologies. Unlike traditional imaging modalities, such 

as X-rays or computed tomography (CT), lung ultrasound offers 

several advantages, including real-time imaging, lack of ionizing 

radiation, portability, and cost effectiveness[1]. These features have 

contributed to the growing popularity of lung ultra-sound in clinical 

practice and research. 

In recent years, deep learning models have demonstrated 

remarkable potential for automating medical image analysis tasks, 

including the classification of lung ultrasound images[2]. These models 

leverage convolutional neural networks (CNNs) and vast amounts of 

labeled data to learn complex patterns and features from images, 

leading to impressive classification accuracy. However, one critical 
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limitation of deep learning models lies in their deterministic nature[3–5]. They provide point estimates and fail 

to account for the inherent uncertainty present in their predictions, which is crucial for reliable and trustworthy 

medical decision-making. 

The uncertainty associated with medical image analysis arises from multiple sources, including imaging 

artifacts, data noise, model architecture, and the complexity of the underlying disease. Failure to account for 

this uncertainty may lead to erroneous diagnoses, inappropriate treatments, and compromised patient 

outcomes. Consequently, there is a growing interest in developing methodologies that can accurately quantify 

uncertainty in deep learning models, enabling clinicians and radiologists to make more informed decisions 

based on the model’s level of confidence[6,7]. 

This research aims to address the uncertainty estimation challenge in lung ultrasound image analysis by 

introducing a novel deep learning-based approach. The primary goal is to develop a framework that can reliably 

quantify uncertainty in deep learning models for lung ultrasound image classification. The proposed 

methodology leverages recent advancements in Bayesian neural networks and Monte Carlo Dropout to provide 

probabilistic predictions, enabling the estimation of predictive uncertainty. By obtaining uncertainty estimates, 

clinicians can gain insights into the model’s confidence and reliability, leading to more transparent and 

evidence-based medical decisions. The organization of this paper is as follows: 

Literature review section reviews current advancements in lung ultrasound imaging, deep learning models 

for image classification, and methods for uncertainty estimation in medical imaging. Methods section details 

deep learning-based approach for estimating uncertainty in lung ultrasound image analysis, focusing on the 

model’s architecture and the integration of Bayesian neural networks with Monte Carlo Dropout. Experimental 

Setup describes the dataset, pre-processing steps, and the procedures for training and evaluating the model, 

alongside the hardware and software utilized. Results and analysis section resents the findings from our 

experiments, comparing the model’s performance against baselines and examining the generated uncertainty 

estimates. Discussion interprets the significance of incorporating uncertainty estimates in lung ultrasound 

analysis and discusses the potential clinical applications and challenges for future research. Finally, 

summarizes the research findings, highlighting the importance of uncertainty estimation in enhancing 

diagnostic processes and clinical decision-making in lung ultrasound image analysis. 

This research provides a thorough exploration of uncertainty estimation in lung ultrasound imaging, 

aiming to further the field of medical imaging analysis while facilitating the adoption of uncertainty-aware 

models in clinical settings. The approach is poised to boost diagnostic certainty, minimize errors in diagnosis, 

and, as a result, better patient care for lung-related conditions. It introduces an innovative method for 

quantifying uncertainty by merging Bayesian neural networks with Monte Carlo Dropout techniques, a step 

forward in lung ultrasound image analysis. This method significantly improves the clarity and dependability 

of deep learning models, representing a substantial advancement in the precision of medical diagnostics and 

the quality of patient treatment. 

2. Review of literature 

In this section, a comprehensive literature review on lung ultrasound imaging and uncertainty estimation 

in medical image analysis, with a focus on deep learning-based approaches is presented. The literature survey 

delves into the realm of uncertainty estimation in deep learning models for medical images, exploring a variety 

of approaches and their applications[8]. Figure 1 presents a summary of the number of studies related to 

uncertainty quantification for medical images found in three prominent academic databases—PubMed, IEEE 

Xplore, and ScienceDirect—from 2016 to 2023. Noteworthy trends include a substantial increase in 

publications each year. The data reflects a growing interest and research activity in uncertainty quantification 

for medical images over the years. 



3 

A critical review[9] delves into the current methodologies for uncertainty estimation in artificial 

intelligence systems, highlighting the pivotal role these techniques play in enhancing the interpretability and 

reliability of AI models in healthcare. Authors offers insights into the challenges associated with obtaining 

high-certainty labels in medical datasets, emphasizing the importance of robust uncertainty estimation methods 

in improving diagnostic accuracy and patient outcomes[10]. Further, the review[11–14] explores the broader 

implications of uncertainty in machine learning models for medical imaging, providing a critical perspective 

on the need for advanced methodologies that can effectively manage and interpret uncertainty in clinical 

settings. 

Building upon these foundational reviews, the literature review section proceeds to discuss relevant works 

in the field, carefully analysing their contributions and pinpointing their limitations[15]. This analysis not only 

showcases the evolving landscape of uncertainty estimation in medical image analysis but also sets the stage 

for the novel contributions of the present study. 

 
Figure 1. Annual trend in uncertainty quantification studies. 

Table 1. Review summary. 

Author Methodology Metrics Limitation 

Born J et al.[2] Dropout Classification accuracy Insufficient investigation of uncertainty 
quantification in existing DL methods 

van Amersfoort J et 
al.[3] 

dropout and threshold calculation AUROCs Further testing of uncertainty 
thresholding strategy for multi-class 
models and regression 

Lakshminarayanan 
B et al.[4] 

Bayesian Neural Networks Error rate Uncertainty estimates are computationally 
prohibitive to deploy 

Oberdiek P et al.[5] Monte Carlo Dice coefficients plug-in estimate in mutual information is 
subject to sampling bias. 

Sarma R et al.[6] variational Bayesian inference with 
Monte Carlo dropout 

Uncertainty accuracy (UA) NA 

Blesswin et al.[11] MC-DropWeights Uncertainty accuracy NA 

Wang et al.[14] Uncertainty map in SVM False positive detection Optimizing the performance of the neural 
network 

Mary et al.[28] Dropout ROC-AUC Optimizing the performance of the neural 
network 

Several approaches have been proposed in the literature which has been summarized in Table 1. Author 

introduces a deep hierarchical attentive multilevel fusion model for medical image classification, employing 

dropout and emphasizing classification accuracy[16]. Uncertainty-informed deep learning models for high-

confidence predictions in digital histopathology, using dropout and threshold calculations, with a call for 

further testing are explored further[17]. Authors presents an uncertainty-aware deep reinforcement learning 

approach for anatomical landmark detection, utilizing Bayesian Neural Networks, though computational 

challenges for deploying uncertainty estimates are noted[18,19]. Digital histopathology image segmentation is 
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addressed with a Monte Carlo-based uncertainty quantification method, evaluating performance through dice 

coefficients and recognizing potential sampling bias[20]. Additionally, a novel method named MC-drop 

weights, estimating uncertainty in deep learning for medical image segmentation, focusing on uncertainty 

accuracy was introduced[21]. The recalibration of aleatoric and epistemic regression uncertainty in medical 

imaging using variational Bayesian inference with Monte Carlo Dropout, assessing uncertainty accuracy was 

proposed further[22]. 14 paper proposes a technique to reduce false positive detections in liver lesion detection 

using an SVM classifier trained with features derived from the uncertainty map of the neural network 

prediction. A system that learns not only the probabilistic estimate for classification but also an explicit 

uncertainty measure, which captures the confidence of the system in the predicted output was also proposed[23]. 

While the surveyed papers contribute diverse methodologies for uncertainty estimation, there remains a need 

for standardized approaches and further research to enhance the robustness and accuracy of uncertainty 

estimation in deep learning models applied to medical images. 

3. Existing methodology 

In this section, the methodology for uncertainty estimation in deep learning-based lung ultrasound image 

analysis is presented. The proposed approach utilizes Bayesian neural networks (BNNs) and Monte Carlo 

Dropout (MC Dropout) to enable probabilistic predictions and quantify uncertainty in the model’s 

classification. By incorporating these techniques into the deep learning model, the aim is to provide reliable 

uncertainty estimates for lung ultrasound image analysis, enhancing diagnostic confidence and supporting 

informed medical decision-making. 

Data collection and pre-processing: The initial step involves the collection of a diverse and representative 

dataset of lung ultrasound images. This dataset should encompass various lung pathologies, including 

pneumonia, pleural effusion, pneumothorax, and normal lung conditions. To ensure robust training and 

evaluation, the dataset is carefully curated with expert annotations for accurate labeling. Data pre-processing 

is essential to standardize the images, enabling consistent and optimal model performance. Image resizing and 

normalization techniques are applied to ensure all input images have uniform dimensions and intensity 

range[11,13]. Figure 2 shows the model architecture. 

 
Figure 2. Model architecture. 
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Model architecture: The deep learning model architecture is based on a convolutional neural network 

(CNN) with additional components for uncertainty estimation. The initial layers of the CNN comprise 

convolutional and pooling layers designed for feature extraction, which are then followed by fully connected 

layers that facilitate classification. Uncertainty estimation is introduced by modifying the model to incorporate 

Bayesian neural networks (BNNs), thereby enabling the model to provide probabilistic outputs and quantify 

uncertainty in its predictions[5,18]. 

Bayesian neural networks (BNNs) extend traditional neural networks by introducing probabilistic 

weights, replacing point estimates with probability distributions to capture uncertainty in model parameters. 

Bayes by backprop, a variational inference method, is applied during training to approximate the posterior 

distribution of the weights, facilitating uncertainty estimation in predictions[24]. 

Monte Carlo Dropout (MC Dropout) complements BNNs in approximating model uncertainty. Multiple 

forward passes with dropout enabled during inference simulate “thinned” networks, yielding a collection of 

predictions that reflect model uncertainty[5,25]. 

Probabilistic predictions and uncertainty estimation: The of BNNs and MC Dropout enables our model 

to generate probabilistic predictions for each input image. For a given image, we perform multiple forward 

passes with dropout enabled and obtain a distribution of predictions. We then compute the mean and variance 

of the predictive distribution, representing the predicted class probabilities and uncertainty, respectively. The 

variance serves as a measure of uncertainty, indicating how confident the model is in its prediction[26]. 

Model training and evaluation: We train the uncertainty-aware model using the curated and augmented 

dataset. During training, we optimize the model’s weights using the evidence lower bound (ELBO) loss, which 

incorporates both the standard cross-entropy loss and the Kullback-Leibler divergence between the 

approximate posterior and the prior distributions of the weights[27]. 

For evaluation, we conduct comprehensive experiments to assess the model’s classification accuracy and 

uncertainty estimation performance. We use standard evaluation metrics such as accuracy, precision, recall, 

and F1 score to evaluate classification performance. To evaluate uncertainty estimation, we compare the 

model’s predicted variances against ground truth uncertainty obtained from expert annotations or inter-

observer variability. 

4. Dataset and experimentation setup 

In this section, we present the experimental setup for evaluating the proposed uncertainty estimation 

approach in lung ultrasound image analysis. The experiments aim to assess the performance of the uncertainty 

aware model in classifying lung ultrasound images and quantifying uncertainty in the predictions. We describe 

the dataset used for training and evaluation, the data preprocessing steps, model hyper parameters, and the 

evaluation metrics deployed to measure the model’s classification accuracy and uncertainty estimation 

performance. 

Dataset: The dataset utilized in this research was sourced from the dataset referenced in 2, encompassing 

a compilation of lung ultrasound images. This dataset comprises 746 images. 

Data preprocessing: Prior to model training, we performed data preprocessing to standardize the input 

images. All images were resized to a fixed dimension, ensuring consistency across the dataset and facilitating 

model training. Additionally, we applied intensity normalization to bring the pixel values within a specific 

range, improving convergence during optimization. 

Model architecture: The uncertainty-aware model was implemented using a deep learning framework. 

The model architecture consists of a CNN with convolutional and pooling layers for feature extraction, 

followed by fully connected layers for classification. Bayesian neural networks were incorporated into the 
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model to enable uncertainty estimation, and dropout layers were utilized for Monte Carlo Dropout during 

inference. The architecture is pictorially represented in Figure 2. Hyperparameters: The model’s 

hyperparameters were selected through cross-validation which is described in Table 2. 

Table 2. Hyper parameters. 

Hyperparameter Value 

Dropout rate 0.5 

MC Dropout samples 10 

Dense Flipout Units 2 

Learning rate 0.001 

Batch size 32 

Key hyper parameters included the learning rate, batch size, dropout rate, and the number of Monte Carlo 

Dropout samples during inference. The learning rate governs the magnitude of weight updates during 

optimization, while the batch size determines the number of samples used in each training iteration. The 

dropout rate controls the dropout probability during training, and the number of Monte Carlo Dropout samples 

influences the number of forward passes during uncertainty estimation. 

Model training: The uncertainty-aware model was trained using the curated and augmented dataset. The 

training process involved minimizing the evidence lower bound (ELBO) loss, which combines the standard 

cross-entropy loss and the Kullback-Leibler divergence between the approximate posterior and the prior 

distributions of the weights. The model was trained for a fixed number of epochs, and early stopping was 

employed to prevent overfitting. The training was performed on suitable hardware, such as GPUs, to accelerate 

the optimization process. 

Evaluation metrics: By employing Bayesian neural networks, the model is capable of expressing 

uncertainty as a distribution of predictions rather than a single point estimate. This inherently captures the 

model’s awareness of the uncertainty associated with each prediction. 

Introducing Monte Carlo Dropout during both training and inference enables the model to provide 

multiple predictions for the same input. This Monte Carlo sampling approach results in a range of predictions, 

reflecting the model’s uncertainty and variability in its responses. 

To evaluate the model’s classification performance, we used standard evaluation metrics, including 

accuracy, precision, recall, and F1 score. Accuracy measures the overall correctness of the model’s predictions, 

while precision and recall assess the model’s ability to correctly classify positive and negative cases, 

respectively. The F1 score combines precision and recall, providing a balanced measure of classification 

performance. For uncertainty estimation evaluation, we compared the model’s predicted variances. Mean 

squared error (MSE) was used to assess the uncertainty estimation performance. 

5. Results and discussions 

In this section, we present the results and analysis of the experimental evaluation of the proposed 

uncertainty estimation approach in lung ultrasound image analysis. We showcase the model’s classification 

performance, uncertainty estimation capabilities, and discuss the significance of our findings. The results 

include standard mean and standard deviation, as well as accuracy metrics to demonstrate the effectiveness of 

the uncertainty-aware model. The model underwent training for 20 epochs, leveraging the Adam optimizer for 

optimal gradient adjustments. To quantify uncertainty, we implemented Monte Carlo Dropout twice during 

inference, striking a careful balance between achieving reliable uncertainty estimates and maintaining 

computational efficiency. 
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Classification performance: The below Table 3 represents the results. The accuracy metric, representing 

the overall correctness of the model’s predictions, is depicted. The precision metric, measuring the proportion 

of true positive cases out of all predicted positive cases, is highlighted. Additionally, recall (sensitivity) is 

shown, indicating the proportion of true positive cases identified correctly out of all actual positive cases. The 

F1 score, providing a balanced measure considering both precision and recall, is also presented. 

Table 3. Result comparison. 

 Basic CNN With uncertainty 

Accuracy 0.76 0.98 

Precision 1 1 

Recall 0.28 0.94 

F1 0.43 0.97 

Uncertainty estimation performance: Figure 3 shows the classification performance of the model and 

Figure 4 illustrates the model’s uncertainty estimation capabilities, focusing on the mean squared error (MSE) 

as a distance metric to compare predicted standard deviation with ground truth uncertainty. Higher standard 

deviation implies higher uncertainty, while lower standard deviation corresponds to higher confidence in the 

model’s predictions 

 
Figure 3. Classification performance. 

 

Figure 4. Performance measure MSE. 
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Analysis of results: 

The analysis delves into various aspects of the uncertainty-aware model’s performance. It explores the 

impact of uncertainty estimation on classification accuracy, investigating whether the model’s confidence 

correlates with correct predictions. Instances with high uncertainty are examined for their clinical significance, 

potentially indicating challenging or ambiguous images requiring further expert review. Furthermore, the 

uncertainty-aware model is compared with a standard deterministic CNN model. This comparison 

demonstrates the added value of uncertainty estimation in lung ultrasound image analysis. Cases where the 

uncertainty-aware model outperforms the deterministic model are analyzed, showcasing potential benefits in 

incorporating uncertainty estimates into medical decision-making. 

6. Conclusion 

The In this research study, we proposed and evaluated a novel uncertainty estimation approach for deep 

learning-based lung ultrasound image analysis. The uncertainty-aware model incorporated Bayesian neural 

networks and Monte Carlo Dropout to generate probabilistic predictions and quantify uncertainty in the 

model’s classification. The experimental evaluation showcased promising results, indicating the effectiveness 

of the uncertainty-aware model in enhancing classification accuracy and providing valuable uncertainty 

estimates for lung ultrasound image analysis. The experimental results demonstrated that the uncertainty aware 

model achieved competitive classification performance, as evidenced by high accuracy, precision, recall, and 

F1 score. Moreover, the model’s uncertainty estimates correlated with challenging or ambiguous cases, where 

the model exhibited higher uncertainty. This capability is particularly valuable in clinical decision-making, as 

it alerts clinicians to cases that may require further expert review or additional tests. The comparison between 

the uncertainty-aware model and a standard deterministic CNN highlighted the added value of uncertainty 

estimation in lung ultrasound image analysis. The uncertainty-aware model outperformed the deterministic 

model in cases where uncertainty was high, emphasizing the importance of incorporating uncertainty estimates 

in medical decision-making processes. By providing reliable uncertainty estimates, the model can enhance the 

transparency and interpretability of its predictions, instilling greater confidence in clinicians’ diagnostic 

assessments. However, there are still several avenues for future work in uncertainty-aware lung ultrasound 

image analysis. Firstly, the dataset used in this study could be further expanded to include a more extensive 

range of lung pathologies and a larger number of patient samples. This would enable the model to generalize 

better to diverse patient populations and improve its performance in real-world clinical scenarios. Additionally, 

investigating different uncertainty quantification methods, such as deep ensemble methods or variational 

inference techniques, could provide further insights into uncertainty estimation for lung ultrasound image 

analysis. Comparing various uncertainty quantification approaches may reveal nuances in performance and 

lead to the development of more robust and accurate uncertainty-aware models. Moreover, exploring the 

integration of uncertainty estimates into clinical decision support systems could have practical implications. 

The uncertainty-aware model offers valuable insights into the model’s confidence and performance, 

contributing to more reliable and informed clinical decision-making. As uncertainties are inevitable in medical 

imaging, this research paves the way for future advancements in uncertainty-aware deep learning models, with 

the ultimate goal of improving patient care and outcomes in lung disease diagnosis and management. 

7. Future directions 

The paper concludes with a comprehensive discussion of the findings, highlighting the advantages of 

deep learning-based uncertainty estimation in lung ultrasound image analysis. Future research directions, 

including potential applications in real clinical settings and the integration of uncertainty aware models with 

medical decision support systems, are also explored. 
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