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ABSTRACT 

In the wake of recent progresses in electronic trade and communiqué links, credit card use has skyrocketed for both 

online and in-person purchases. Maximum credit card datasets are very skewed, making it difficult to design efficient 

fraud detection algorithms that can help mitigate these losses. Traditional approaches are inefficient for credit card fraud 

detection because their architecture requires a vector to the output vector. As a result, they are unable to billet the ever-

changing holders. In instruction to well recognize credit card fraud, the authors of this research suggest a hybrid classifier 

and data resampling strategy. The hybrid resampling is accomplished by combining the synthetic marginal oversampling 

procedure (SMOTE) with the edited nearest neighbour (ENN) approach. Temporal convolutional networks (TCN) are 

combined with a Bidirectional Gated Recurrent Unit (BiGRU) and a Dual Attention network (DATT) to perform the 

categorization in the suggested model. Second, in order to quickly get the deep semantic features of the credit card data, 

we employed TCN and BiGRU networks to extract characteristics were then spliced and merged, and a dual attention 

method was implemented to assign global weight to the most crucial information. In the end, classification was performed 

using a Softmax classifier. The accuracy of the categorization is further enhanced by the use of the Hybrid White shark 

Optimisation model (HWSO) model for selecting the model’s weights. Using publicly accessible, credit card dealings, 

the recommended strategy is proved. The trial results show that the models adjusted using the proposed approach 

outperformed those using hybrids of competing metaheuristics. 

Keywords: synthetic minority oversampling technique; temporal convolutional networks; bidirectional gated recurrent 

unit; hybrid white shark optimization model; credit card fraud detection 

1. Introduction 

The trend towards a cashless society means people will have to rely more and more on digital payment 

systems. In today’s digital age, fraudsters rarely need to be present at the scenes of their crimes. They may 

hide their identities while carrying out their evil deeds in the safety of their own houses. Using a virtual private 

network (VPN), redirecting the victim’s traffic through the Tor network, or anything similar makes it difficult 

to track their true identity. The significance of monetary losses incurred online cannot be overstated. In India, 

card data of some 70 million individuals[1], criminals can either use the stolen card details themselves or sell 

them to other people. In the United Kingdom, GBP 17 million were lost due to one of the largest fraud 
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occurrences in recent history. More than 32,000 credit card numbers 

were stolen by an international ring of thieves in the middle of the 

2000s[2]. This is widely regarded as the largest card scam ever. Credit 

card fraud costs businesses and consumers alike year[3]. There is 

reassurance for both cardholders making purchases with their cards 

and card issuers handling those purchases. Fraudsters’ goal is to have 

victims and financial institutions think their fraudulent transactions 

are real when they are not. 

There are also ongoing fraudulent transactions that take place 

for financial advantage, unbeknownst to card issuers and cardholders 

alike. The darkest aspect of credit card transactions is that sometimes 

neither authorised institutions nor cardholders are aware that they 

have fraudulent transactions. When the sum of fraudulent dealings is 

small associated to the number of legitimate ones, it becomes 

extremely difficult to identify the former[4]. Predictive analytics 

methods and anomaly detection[5], are only two of the numerous 

fraud detection strategies that assist to avoid fraud in the financial 

industry. Machine learning procedures, either supervised or 

unsupervised, can be useful in classifying credit card fraud[6], but 

without them, none of these methods would be possible. However, 

such machine learning systems face a plethora of obstacles when 

attempting to detect all forms of fraud[7]. Since it is exceedingly 

unusual to have a balanced algorithm often diminishes the minority 

class in the dataset[8]. Actually, the minority group is the most 

significant factor in the categorization procedure, notably in 

identifying credit card fraud. The suggested method draws attention 

to the resampling approaches to compensate for the uneven 

distribution of classes in the dataset. 

The class inequity in the datasets makes credit card fraud 

detection difficult from a learning standpoint[9]. Credit card fraud 

detection has been hampered by more than just the class divide, but 

it is by far the most significant issue. Due to classes in datasets, the 

class imbalance applications[10]. As an illustration, the dominant 

class’s samples tend to be larger than the minority classes. The 

genuine dealings often outweigh the fraudulent ones[11], creating an 

imbalance in most credit card transaction databases. When trained on 

evenly distributed data, most standard ML techniques perform 

admirably. Conventional ML methods have biassed performance 

towards the majority class due to the skewed class distribution since 

the algorithms are designed to address the error rate rather than the 

class distribution. As a result, misclassification occurs more 

frequently among minority group samples than among majority 

group samples[12]. 

A data-level classification strategies for unbalanced data may be 

broken down into three broad classes approaches will under sample 

the majority class in order to oversample the minority class, or vice 
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versa[13]. Algorithmic approaches attempt to address the subject of class imbalance by training the classifier to 

place a greater emphasis on instances from the underrepresented classes. Ensemble learning and cost-sensitive 

learning approaches[14] are two examples of techniques that may be applied at the algorithm level. On the other 

hand, hybrid approaches integrate data-level and algorithm-level methodologies. The typical assessment 

measures should all point to perfect scores for the ideal account[15,16]. 

This study uses the SMOTE-ENN methodology to resample the unbalanced data in order to construct an 

efficient feature engineering strategy. TCN-BiGRU-DATT is used to classify data, with HWSO optimising 

the weight given to each approach. Finally, two datasets are used to evaluate the various indicators. The 

remaining contents of the paper are as shadows: The research contribution is broken down into five sections: 

Section 2 shows the linked papers, Section 3 explains the suggested perfect, Section 4 describes the findings, 

and Section 5 suggests directions for further study. 

2. Related works 

Using a deep Autoencoder as a procedure, Fanai and Abbasimehr[17] offer a scheme for sleuthing 

fraudulent transactions. Experiment results show that using the suggested method boosts the efficiency of the 

used classifiers. In particular, classifiers employing the altered data set generated by the deep Autoencoder 

show considerable improvements classifiers employing the original data across the board. Furthermore. 

Using a four ensemble classifiers Salekshahrezaee et al.[18] explore these two preprocessing strategies. 

Both Convolutional Autoencoder (CAE) are compared and contrasted with one another in the context of feature 

extraction. Random Undersampling (RUS), SMOTE, and SMOTE Tomek are compared for their efficacy in 

data sampling. Measures of categorization performance RUS and CAE techniques for credit card fraud finding 

yields the greatest results. 

A semi-supervised graph neural network for fraud finding has been proposed by Xiang et al.[19]. Through 

the use of transaction records, we are able to build a temporal deal graph that contains temporal transactions 

as nodes and interactions between them as edges. Then, a Gated Temporal Attention Network (GTAN) is used 

to learn by passing messages among the nodes. We further simulate the fraud trends by simulating the spread 

of risk from one transaction to another. Using a real-world transaction dataset and two open-source fraud 

detection datasets, comprehensive tests are undertaken. Our results on three different fraud detection datasets 

demonstrate that our suggested technique, GTAN, is superior to previous state-of-the-art baselines. Semi-

supervised studies show that our model achieves state-of-the-art results in fraud detection while using just a 

negligible amount of labelled data. 

The XGBoost (eXtreme Gradient Boosting) algorithm and data augmentation approaches are investigated 

by Noviandy et al.[20] to see if they may improve credit card fraud finding. This study provides empirical 

evidence that these methods are useful for correcting for unbalanced datasets and enhancing the precision with 

which fraud may be detected. By drawing on past transaction data and using methods like Over-sampling 

Technique-Edited Nearest Neighbours (SMOTE-ENN), the study demonstrates a method that strikes a good 

compromise between accuracy and the likelihood of catching fraud. These results have far-reaching 

implications for modern financial management, as they may help improve financial integrity, resource 

allocation, and consumer trust in the face of changing fraud strategies. 

The OCSODL-CCFD method, as presented by Prabhakaran and Nedunchelian[21], combines a deep 

learning model for CCFD with a unique optimization-based feature selection methodology. The primary goal 

of the OCSODL-CCFD method is to identify and categorise credit card fraud. To pick the best set of features, 

the OCSODL-CCFD method develops a novel OCSO-based feature selection algorithm. Additionally, the 

chaotic krill herd procedure (CKHA) is used to tune the hyperparameters of the model, which is then used to 

the frauds. Numerous simulation evaluations were run to show how well the OCSODL-CCFD model 



4 

performed. The comprehensive comparison study revealed that the OCSODL-CCFD model outperformed the 

others in key assessment categories. 

To assurance that only the most significant characteristics are used, Mienye and Sun[22] present a hybrid 

feature-selection approach that syndicates filter and selection processes. A employing the extreme algorithm 

is used in the suggested method, after the features have been rated using the information gain (IG) methodology. 

While traditional accuracy is not used in the proposed GA wrapper, the geometric mean (G-mean) is used as 

the fitness function. The suggested method outperformed previous baseline procedures and methods in the 

current literature, with a sensitivity of 0.997 and a specificity of 0.994, correspondingly. 

Using Long Short-Term Memory (LSTM) DNNs for sequential data modelling, Fakiha[23] proposes a 

forensic fraud. This research investigates if an LSTM-attention algorithm can prioritise fraudulent transaction 

predictions based on an input sequence. Selecting the best enhances the LSTM-attention model’s efficacy. The 

findings demonstrate the efficacy of using LSTM-attention algorithms for forensic is interesting since it 

effectively employs an LSTM-attention procedure to demonstrates the model’s utility in reducing fraudulent 

dealings at financial institutions. 

To combat credit card fraud, Berhane et al.[24] created a hybrid CNN-SVM perfect. Using publicly 

available credit card transaction data, we evaluated the efficacy of our proposed hybrid CNN-SVM model for 

identifying credit card fraud. To create our hybrid CNN-SVM model, we swapped out the CNN model’s output 

layer with an SVM classifier. End-to-end training is used to create the first classifier, a fully softmax, while a 

support vector machine is layered on top by omitting the layer with softmax. Experiment results show that our 

hybrid CNN-SVM model achieved classification presentations of 91.08% accuracy, 90.50% precision, 90.34% 

recall, 90.41 F1-score, and 91.05% AUC. 

3. Proposed system 

3.1. Dataset description 

3.1.1. First dataset 

The widely-used credit card dataset[25] is the basis of this study. Machine Learning Group at ULB focused 

on massive data mining and fraud detection to compile the dataset[26]. The data collection includes September 

2013 credit card transactions from European customers who made their purchases within a span of two days. 

Only 492 out of 284 807 transactions in the sample are fraudulent, which indicates an imbalance. However, 

the dataset was transformed, so all the characteristics except “Time” and “Amount” are numeric, and they are 

coded as V_1,V_2,...,V_28 to protect the privacy of the information. The “Amount” field represents the total 

amount spent, whereas the “Time” parameter is the amount of time from the dataset’s inception that has passed 

since the initial transaction. Finally, the dependent variable is the attribute “Class,” which takes the worth 1 

for fake dealings and the value 0 for valid ones. 

3.1.2. Second dataset collection 

Researchers from IEEE Computational Intelligence Society[27] made use of data given by Vesta and made 

it available to the Kaggle community. About 500,000 credit card purchases were used to compile this dataset, 

which includes a goal feature and 432 characteristics (both numerical and categorical) per purchase. There are 

around 569 K valid transactions and about 20 K invalid ones, making for a very unbalanced data set (imbalance 

rate = 0.035). 

Due to the large sum of transactions in the original dataset, we had to produce a smaller random dataset 

in order to show our proof of concept (POC). It’s important to note that the POC dataset still has original 

dataset. Due to the sheer volume of features, only the first and last names of features sharing a first name have 

been included in the diagram. For instance, there are often six different cards in a deck: cards 1, 2, 3, 4, and 6. 
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3.2. Data preparation 

This stage is essential since it determines the ultimate outcome of any predictive analytics project. It is 

common knowledge that real-world datasets are inherently disordered due to the presence of numerous outliers, 

missing values, atypical cardinality, etc. If these situations aren’t managed properly, the research might fail. 

Our methods in this study for dealing with missing data, altering category features, scaling features, selecting 

features, and resampling. 

3.2.1. Missing values 

For several characteristics, the percentage of missing values was as high as 99 percent. In all, missing 

values account for almost 45 percent of the dataset, and estimating such a big proportion introduces bias into 

the model and leads to inaccurate forecasts. Therefore, as a general rule, if the missing values get beyond 60%, 

the features will be deleted since the feature’s data is insufficient to contribute to the prediction model[28]. Less 

than half of the characteristics had missing values, hence the median and mode were used to infer the missing 

values for numerical features. The data are extremely skewed, making the median a more appropriate metric 

to use than the mean. 

3.2.2. Encoding categorical topographies 

Maximum machine learning procedures expect numerical data formats for both input and output attributes. 

This necessitates the transformation of categorical data into numeric form before a prediction model can be 

created. After filtering down characteristics with significant missing data, we were left with 15 category 

features. Ten of them had just two possible values, therefore we substituted 0 and 1 for them (for example, 

attributes with false and true). One-hot encoding, a simple and commonly used encoding method, was 

employed for the conversion of the remaining category characteristics with more than two levels. A new 

categorical column is created for each category, and a binary value of 1 or 0 is assigned to each value. Here, 

we have a 5-dimensional feature vector representation of the category property Product CD, which has the 

values encoded as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], and [0, 0, 0, 1]. The get dummies function 

from the Pandas library is used to implement this method. 

3.2.3. Feature scaling 

The range, unit, and magnitude of most characteristics in a real-world dataset will be different. The issue 

comes when the size of one aspect is significantly greater than that of the others, as that trait will inevitably 

predominate. As a result, classification algorithms require raw data to be scaled to remove the effect of different 

quantitative units. This study rescaled the characteristics between 0 and 1 using the MinMaxScaler method. 

Since it makes use of statistical methods that do not change the variance of the data, this method is resistant to 

outliers (Equation (1)). 

𝑥′ = (𝑥 −
min(𝑥)

max(𝑥)
− min⁡(𝑥)) (1) 

In the aforementioned Equation (1), x is the unscaled value, x’ is the scaled value, max is the maximum 

feature value, and min is the least feature value. By maintaining the sparsity of the input data, MinMaxScaler’s 

scaling is efficient even for data with many zero entries. 

3.2.4. Data resampling 

Unfortunately, most machine learning algorithms assume minorities and majorities are distributed equally, 

leading to inaccurate results and subpar predictive modelling performance, as is the case with the dataset used 

in this research. Learning with too few minority class examples appears to contribute to the imbalance issue, 

especially when additional variables, such as class overlaps, are present[29]. This research makes use of 

SMOTE-ENN to get over the issue of unbalanced datasets and overlapping classes because of this advantage. 

Table 1 shows the difference in the number of observations between the pre-SMOTE-ENN and post-SMOTE-

ENN classes. Thus, 37, 894 observations are obtained in this study, including both fraudulent and non-
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fraudulent cases. 

Table 1. The sum of comments for each class beforehand and afterward SMOTE-ENN. 

 Sum of comments for fraud cases Sum of comments for non-fraud cases 

Before SMOTE-ENN 1157 32,060 

After SMOTE-ENN 28,689 27,155 

3.3. Classification for CCFD 

Text sentiment analysis benefits from the feature extraction on time scales that temporal convolutional 

networks (TCN) perform. The TCN residual unit, composed of two levels of dilation via a residual link, is the 

fundamental building block of the TCN model. As the TCN field expands, the number of its layers decreases; 

the residual network is employed to counteract this trend. Benefits include constant gradient, reduced memory 

use, and parallel processing. Two basic units, including weight normalisation, a ReLU layers, make up the 

residual module shown in Figure 1a. In order to regularise the network, we use weight normalisation and 

dropout, and we replace the simple connections between the TCN layers with the residual structure. Figure 

1b is an example of a residual connection in a TCN. 

  
(a) (b) 

Figure 1. TCN residual unit. (a) residual block covering two basic components; (b) instance of residual connectivity in TCN. 

Convolution calculation is the primary tool used by the TCN model to process the time series text, with 

causal convolution expansion and classification and normalisation of the parameters following to round out 

the nonlinear calculation. Time characteristics are extracted well, and both high- and low-dimensional hidden 

elements of context sequences are captured with ease. The following are some of TCN’s primary benefits: 

TCN uses fewer network layers thanks to the inclusion of dilated convolution, which in turn makes it possible 

for TCN to analyse a time series without missing any important information at pivotal periods in the past. It 

can also expand its receptive field to take in additional data in real time. By decreasing the number of layers, 

we can cut down on the parameters, the amount of memory needed, and the number of computations required. 

When the sum of network layers is significant, gradient vanishing can occur during backpropagation, an issue 

that is addressed by the TCN’s introduction of a residual module. However, helpful in getting a complete 

picture of the text. The BiGRU model was implemented in light of this issue. 

3.3.1. TCN-BiGRU-DATT perfect 

This research offers the TCN-BiGRU-DATT uses credit card data from the period of the outbreak as input 

and returns a sentiment category using a combination of the TCN and BiGRU mechanism. Figure 2 depicts 

the construction of the device. 

The last component of the model is a word vector layer: TCN-ATT features, is part of ALBERT’s text 

vector representation. BiGRU-ATT feature extraction, which helps us better relations between words, is part 

of ALBERT’s second channel feature extraction layer. 
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Figure 2. TCN-BiGRU-DATT model construction. 

3.3.2. Input layer 

The paper’s word vector was created by tweaking the ALBERT pretraining model. The phrase is 

represented as where n is the number of tokens in ALBERT’s input from the input layer. 𝑆⁡ = ⁡ 𝑠1, 𝑠2, . . . , 𝑠𝑛 . 

Token Embeddings of each word as model, respectively. The defining trait is (𝑒1
𝑡 , 𝑒2

𝑡 , … , 𝑒𝑛
𝑡 ), the sentence 

feature is (𝑒1
𝑠 , 𝑒2

𝑠 , … , 𝑒𝑛
𝑠), the location feature is (𝑒1

𝑝
, 𝑒2

𝑝
, … , 𝑒𝑛

𝑝
), and the calculation formula of the input layer 

is 𝐶𝑖 =⁡(𝑒𝑖
𝑡 + 𝑒2

𝑠 + 𝑒𝑖
𝑝
). Input last word embedded in 𝑋𝑤 =⁡ (𝑥1, 𝑥2, . . . , 𝑥𝑖) ∈ 𝑅𝐿×𝑑, where L d vector. 

3.3.3. Feature extraction layer 

TCN-ATT feature extraction path: 

The TCN and attention mechanism components are located in Section 1. In order to extract more thorough 

and deep text feature info, the ALBERT model is extended with the TCN model by sampling and calculating 

feature info produced by ALBERT. Input the TCN model with the vector ht that was generated by the ALBERT 

model’s last hidden layer. Here is the exact Equation: 

𝑆𝑖 = 𝐶𝑜𝑛𝑣(𝑀𝑖 + 𝐾𝑗 + 𝑏𝑖) (2) 

{𝑆0 , 𝑆1, … . , 𝑆𝑛} = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚({𝑆0, 𝑆1 , … , 𝑆𝑛}) (3) 
{𝐶0 , 𝐶1 , … , 𝐶𝑛} = 𝑅𝑒𝐿𝑈{𝑆0, 𝑆1 , … , 𝑆𝑛} (4) 

where 𝑆𝑖  stands for the rank value obtained 𝑀i . 𝐾j  represents core. bi characterizes the bias vector. 

{𝑆0, 𝑆1 , . . . , 𝑆𝑛} that was derived via non-linear analysis. The output q is acquired by non-linear transformation 

after the feature vector H has been obtained via processing the TCN model. This is the correct Equation: 

𝐻 = ℎ𝑡 + {𝐶0 , 𝐶1 , … , 𝐶𝑛} (5) 

𝑞 = 𝐻𝑊𝑛×𝑚 (6) 

Equation (6), 𝑊𝑛×𝑚 indicates the linear transformation’s parameter matrix, n stands for the semantic 

vector’s dimensions before the transformation, and m stands for its dimensions thereafter. The output matrix 

q from process is injected into the attention mechanism to filter out more salient emotional feature info and 

enhance classification precision. This is the Equation for calculating: 

𝑢𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑠𝑞𝑖 + 𝑏𝑠) (7) 

𝑎𝑖 =
𝑒𝑥𝑝(𝑢𝑖)

∑ exp⁡(𝑢𝑠)
𝑛
𝑠=1

 (8) 

𝐹 = ∑𝑎𝑖𝑞𝑖

𝑛

𝑡=1

 (9) 

To clarify, qi is the TCN model’s learned feature representation vector, ui is the hidden layer 

representation of qi derived from calculation, Ws is the weight matrix, bs is the bias matrix, and ai is the 

normalisation derived from the Softmax value. After the weighted procedure, the produced feature vector 

comprises essential feature information, and the normalised weight value reflects the value of the result. 

BiGRU-ATT feature extraction path: 
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In this work, the BiGRU network located on route 2. When processing text sequences in both directions, 

we employ the BiGRU network, with its gate structure controlling the transmission state to provide a memory 

function. Left-to-right and right-to-left semantic information is obtained by feeding the feature vector 

generated from the ALBERT perfect into BiGRU. More data on the characteristics of lengthy text sequences 

may be stored using the ALBERT model. As can be seen in the diagram below, the BiGRU network takes as 

its input the vector ht representing final hidden layer in the ALBERT model. 

𝑙𝑡 = 𝐺𝑅𝑈⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑙𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑡) (10) 

𝑙𝑡⃖⃗⃗ = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑙𝑡+1
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑡) (11) 

𝑙𝑡 = 𝑙𝑡⨁𝑙𝑡⃖⃗⃗ (12) 

BiGRU’s forward output result at time t is denoted by lt, its reverse output consequence at time t by (lt), 

and its output result at time t by lt in the preceding formula. By feeding the BiGRU model’s output into an 

attention apparatus, the latter can assign a higher weight to the vector information that consequence and thus 

extract additional crucial info from the review text. The math goes like this: 

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑠𝑙𝑡 + 𝑏𝑠) (13) 

𝛽𝑡 =
𝑒𝑥𝑝(𝑧𝑡)

∑ exp⁡(𝑢𝑠)
𝑛
𝑠=1

 (14) 

𝑉 = ∑𝑎𝑖𝑙𝑡

𝑛

𝑡=1

 (15) 

The above formula, 𝑧𝑡  characterizes transformation, 𝛽𝑡 characterizes individually. 

3.3.4. Output layer 

First, a new feature vector is built by fusing the feature vectors collected from the two channels. Equation 

(16) shows that the feature vectors F and V are spliced together using the vector splicing approach to get the 

final feature vector representing y. This reduces the model’s complexity. 

𝑦 = 𝐹 ⊕ 𝑉 (16) 

After the features have been fused, they are sent into a Softmax classifier to be utilised as input in 

calculating the model’s final projected classification probability value, which is described as follows: 

𝑂 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 · 𝑦 + 𝑏) (17) 

The polarity of the credit card data is determined by the value of yield fault data belongs, which is 

represented by Equation (17), W is the weight matrix ideally selected by WSO, and b is the bias vector. 

3.3.5. Weight Selection using WSO 

Braik et al.[30] presented the white of the newest meta-heuristic methods. The authors were inspired to 

create this algorithm by the complex behaviours of great white sharks, which include the use of highly 

developed senses of hearing and smell. White sharks are gorgeous and highly adapted hunters; they use their 

powerful jaws and fins to catch dolphins, small whales, crabs, seabirds, and seals. When hunting, great white 

sharks use surprise techniques to get the jump on their prey, and then follow up with large, lethal blows. 

Following the hesitations in the waves caused by the prey’s movement, randomly searching for depths, 

and discovering nearby prey are the three behaviours necessary for devouring the prey. The great white sharks 

are aided in updating their locations and finding optimal solutions by following these procedures. A population 

matrix of starting solutions can be used to represent the WSO. Where N is the population size and d is the issue 

dimension, the size of the initial population matrix is N d[30]: 

𝑤 =

[
 
 
 
𝑤1

1 𝑤2
1 ⋯ 𝑤𝑑

1

𝑤1
2 𝑤2

2 ⋯ 𝑤𝑑
2

⋮
𝑤1

𝑛
⋮

𝑤2
𝑛

⋮
⋯

⋮
𝑤𝑑

𝑛]
 
 
 

 (18) 
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where 𝑤𝑗
𝑖 characterizes the ith white shark site dimension. It can be intended based on the lower (𝑙𝑏j) (𝑢𝑏j) 

dimension as[30]: 

𝑤𝑗
𝑖 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (19) 

where rand is an arbitrary integer between zero and one. The fitness values for the initial solutions are 

determined using Equation (20), and an updating procedure is set into motion if the new location is superior 

to the old one. After determining the position of its prey by wave hesitation, the great white shark will swim 

in undulating motions at a rate of: 

𝑣𝑘+1
𝑖 = 𝜇 (𝑣𝑘

𝑖 + 𝜌1[𝑤𝑔𝑏𝑒𝑠𝑡𝑘
− 𝑤𝑘

𝑖 ] × 𝑐1 + 𝜌2 [𝑤𝑏𝑒𝑠𝑡

𝑣𝑘
𝑖

− 𝑤𝑘
𝑖 ] × 𝑐2) (20) 

where 𝑣𝑘+1
𝑖  and 𝑣𝑘

𝑖  are the efficient and present velocities repetitions 𝑘⁡ + ⁡1 and 𝑘, correspondingly; wgbestk 

represents the global finest site during the kth repetition; 𝑤𝑘
𝑖  is the situation repetition 𝑘;⁡𝑐1 and 𝑐2 are random 

statistics within a range [0, 1]; 𝑤𝑏𝑒𝑠𝑡

𝑣𝑘
𝑖

 characterizes during repetition 𝑘; and 𝑣𝑘
𝑖  is the index vector sum⁡𝑖 for the 

procurement the best site, and it can be well-defined as shadows: 

𝑣 = [𝑛 × 𝑟𝑎𝑛𝑑(1, 𝑛)] + 1 (21) 

The parameters 𝜌1 and 𝜌2 are the great control the 𝑤𝑔𝑏𝑒𝑠𝑡𝑘
 and 𝑤𝑏𝑒𝑠𝑡

𝑣𝑘
𝑖

 best effects on 𝑤𝑘
𝑖 ; they can be 

computed as shadows[30]: 

𝜌1 = 𝜌𝑚𝑎𝑥 + (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) × 𝑒
−(

4𝑘

𝐾
)
2

 (22) 

𝜌2 = 𝜌𝑚𝑖𝑛 + (𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) × 𝑒
−(

4𝑘

𝐾
)
2

 (23) 

where 𝜌𝑚𝑖𝑛  and 𝜌𝑚𝑎𝑥  are the initial to get white sharks, 𝜌𝑚𝑖𝑛  = 0.5 and 𝜌𝑚𝑎𝑥  = 1.5, and K signifies the 

extreme repetition. The term m in is issue; it is used to analyser the junction rate of the WSO via the subsequent 

expression[30]: 

𝜇 =
2

|2 − 𝑡 − √𝑡2 − 4𝑡|
 (24) 

where t is some sort of algorithmic acceleration factor. 

As was previously said, spend the vast majority of their time hunting for food. Because of this, their 

locations shift as they approach their prey, which they do by either listening to the waves caused by the prey’s 

movements or detecting the prey’s odours. Great white sharks in this scenario wander to seemingly random 

locations as they hunt for food; this behaviour might be depicted as follows[30]: 

𝑤𝑘+1
𝑖 = {

𝑤𝑘
𝑖 ∎¬⨁𝑤0 + 𝑢𝑏∎𝑎 + 𝑙𝑏∎𝑏⁡⁡⁡𝑖𝑓⁡𝑟𝑎𝑛𝑑 < 𝑚𝑣

𝑤𝑘
𝑖 +

𝑣𝑘
𝑖

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟𝑎𝑛𝑑⁡ ≥ 𝑚𝑣

 (25) 

where ¬ is the two vectors distinct by Equations (26) and (27), 𝑤0 characterizes logical vector subtracted via 

Equation (28), 𝑓 is intended based on Equation (29): 

𝑎 = 𝑠𝑔𝑛(𝑤𝑘
𝑖 − 𝑢𝑏) > 0 (26) 

𝑏 = 𝑠𝑔𝑛(𝑤𝑘
𝑖 − 𝑙𝑏) < 0 (27) 

𝑤0 = ⨁(𝑎, 𝑏) (28) 

𝑓 = 𝑓𝑚𝑖𝑛 +
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 + 𝑓𝑚𝑖𝑛
 (29) 

where 𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛 are the upper and lower bounds on the undulating frequencies at which the great white 

shark oscillates. The great white shark’s driving power, represented by the parameter mv, is raised in an 

iterative fashion as follows: 

𝑚𝑣 =
1

𝑎0 + 𝑒
(
0.5𝐾−5

𝑎1
)
 (30) 

where 𝑎0  and 𝑎1  are two controls used to regulate exploratory and exploitative actions. The use of mv 
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increases the WSO’s search efficiency and fortifies its exploratory and exploitative tendencies. For this reason, 

the author chose to implement such an algorithm to address the addressed issue. You may model the great 

white shark’s approach to its prey in this way: 

𝑤́𝑘+1
𝑖 = 𝑤𝑔𝑏𝑒𝑠𝑡𝑘

+ 𝑟1𝐷⃗⃗⃗𝑤 × 𝑠𝑔𝑛(𝑟2 − 0.5)⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑟3 < 𝑆𝑠 (31) 

where 𝑤́𝑘+1
𝑖  indicates the ith great white shark’s current site in relation to its prey; sgn(r2 − 0.5) determines the 

returning are consistently distributed random values in the intermission [0, 1]; and 𝐷⃗⃗⃗𝑤  characterizes the 

distance between the white shark and its prey as follows: 

𝐷⃗⃗⃗𝑤 = |𝑟𝑎𝑛𝑑 × (𝑤𝑔𝑏𝑒𝑠𝑡𝑘
− 𝑤𝑘

𝑖 )| (32) 

The great white shark’s keen sense of sight and smell is characterised by the parameter Ss in Equation 

(33), which may be determined as shadows: 

𝑆𝑠 = |1 − 𝑒
−𝑎2𝑘

𝐾 | (33) 

where 𝑎2 is a parameter used to control the performances. 

The proposed hybrid WSO-Based practice 

The great white sharks in the simplest implementation of the WSO all move in the same direction as they 

approach their meal, which might lead to the algorithm missing out on potentially better options in the area. 

Therefore, in this study, the WSO has been combined with a different method based in order to improve the 

exploitation behaviour of the original WSO. According to the whale optimisation algorithm (WOA), the 

application of the spiral-shaped route was motivated by whale behaviour when naiant to prey spots. The 

following correlation represents the great white shark’s spiralling journey to its victim: 

𝑊𝑡+1
𝑖 = 𝐷⃗⃗⃗. 𝑒ℎ𝑙 . cos(2𝜋𝑙) + 𝑊𝑡

∗ (34) 

𝐷⃗⃗⃗ = |𝑊∗⃗⃗⃗⃗ ⃗⃗⃗ − 𝑊⃗⃗⃗⃗| (35) 

where 𝐷⃗⃗⃗ is the great white shark’s hunting range, h is a continuous used to describe the logarithmic between 

−1 and 1. The great white shark may be made to go towards the direction of its prey by modifying the spiral 

equation as follows: 

𝑤𝑡+1
𝑖 = {

𝑤𝑔𝑏𝑒𝑠𝑡𝑘
+ 𝑟1𝐷⃗⃗⃗𝑤 × 𝑠𝑔𝑛(𝑟2 − 0.5)⁡⁡⁡⁡𝑖𝑓⁡⁡𝑟3 < 𝑆𝑠

𝐷⃗⃗⃗. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑤𝑡
∗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡⁡⁡⁡⁡⁡𝑟3 < 𝑆𝑠

 (36) 

The primary framework of the proposed HWSO is summarised in pseudo code (see Algorithm 1) below 

when applied to the parameter estimation and optimisation issue of the battery model. Assigning initial random 

values for the model parameters’ lower and upper bounds is the first step towards producing that random 

collection of solutions. Then, the relevant values for the goal function’s starting point are determined using 

Equation (5). The fundamental structure of the HWSO is used to refine the original solution set over the course 

of several iterations. After the endpoint requirements were fulfilled, the optimal settings were shown. 

4. Results and discussion 

The Jupyter Notebook situation on the Anaconda platform was used to run the tests on a Windows 10 

machine equipped with an Intel Core i7—16 GB RAM. 

4.1. Performance metrics 

Several statistical metrics, including the deviation, and the computing time consumed during the selection 

of features, were considered to assess the quality of the built model. The categorization process then led to the 

calculation of statistical measures. These parameters are expressed mathematically as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (37) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (38) 



11 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (39) 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (40) 

where “TP” is the abbreviation of 𝑡𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠. “TN” stands for the true negative tasters. “FP” is the 

abbreviation of false positives, while “FN” is the abbreviation of 𝑓𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠. 

4.2. Performance analysis of proposed model 

Experiment results contrast the projected perfect to state-of-the-art approaches on two datasets are 

exposed in Table 2. 

Table 2. Experimental analysis of various classifiers. 

Models Dataset1 Dataset2 

Metrics Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score 

GRU 0.773 0.773 0.776 0.772 0.963 0.958 0.959 0.959 

BiGRU 0.766 0.766 0.770 0.764 0.958 0.827 0.967 0.892 

CNN 0.768 0.769 0.772 0.767 0.957 0.956 0.928 0.942 

RNN 0.761 0.761 0.764 0.760 0.925 0.920 0.967 0.943 

LSTM 0.769 0.769 0.771 0.767 0.958 0.812 0.873 0.841 

BiLSTM 0.771 0.771 0.775 0.769 0.963 0.944 0.802 0.867 

Proposed 0.793 0.813 0.795 0.82 0.974 0.974 0.974 0.974 

In above Table 2 characterise that the Experimental Analysis of numerous classifiers. In the dataset 1 

evaluation, the CNN model accomplished the accuracy as 0.769 and recall as 0.769 and precision of 0.771 and 

then F1-score as 0.767 correspondingly. Then the RNN model accomplished the accuracy as 0.761 and recall 

as 0.761 and precision of 0.760 correspondingly. Then the LSTM model accomplished the accuracy as 0.769 

and recall as 0.769 and precision of 0.771 and recall as 0.767 consistently. Then the BiLSTM model 

accomplished the accuracy as 0.771 and recall as 0.771 and precision of 0.769 congruently. Then the GRU 

model accomplished the accuracy as 0.773 and recall as 0.773 and recall as 0.776 and then F1-score as 0.772 

congruently. Then the BiGRU model accomplished the accuracy as 0.766 and recall as 0.766 and precision of 

0.770 and then F1-score as 0.764 congruently. Then the Projected model accomplished the accuracy as 0.793 

and recall as 0.813 and precision of 0.795 and recall as 0.82 correspondingly. Then the 2nd dataset evaluation, 

CNN 0.957 and recall as 0.956, 0.928 and then F1-score as 0.942 correspondingly. Then the RNN model 

accomplished the accuracy as 0.925 and recall as 0.920 and precision of 0.967 0.943 correspondingly. Then 

the LSTM model accomplished the accuracy as 0.958 and recall as 0.812 and precision of 0.873 and then F1-

score as 0.841 correspondingly. Then the BiLSTM model accomplished the accuracy as 0.963 and recall as 

0.944 and precision of 0.802 and then F1-score as 0.867 correspondingly. Then the BiGRU model 

accomplished the accuracy as 0.958 and recall as 0.827 and precision of 0.967 and then F1-score as 0.892 

congruently. Then the Projected model accomplished the accuracy as 0.974 and recall as 0.974 and precision 

of 0.974 and then F1-score as 0.974 correspondingly. Figures 3 and 4 provides the graphical description of 

the proposed model with existing techniques in terms of different metrics. 

In Table 3 characterise that the Comparison of various models in terms of CPU time(s) on two datasets. 

In the analysis of CNN model attained the CPU period in dataset 1 as 3.481 and CPU time in dataset 2 as 

26.654 RNN model attained the CPU period in dataset 1 as 3.260 and CPU time in dataset 2 as 26.572 

correspondingly. Then the LSTM model attained the CPU period in dataset 1 as 4.294 and CPU time in dataset 

2 as 27.009 correspondingly. Then the BiLSTM model attained the CPU period in dataset 1 as 3.602 and CPU 

time in dataset 2 as 31.179 correspondingly. Then the GRU model attained the CPU period in dataset 1 as 
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4.115 and CPU time in dataset 2 as 31.028 correspondingly. Then the BiGRU model attained the CPU period 

in dataset 1 as 3.197 and CPU time in dataset 2 as 24.013 correspondingly. Then the Proposed model attained 

the CPU period in dataset 1 as 3.123 and CPU time in dataset 2 as 25.737 correspondingly. Figures 5 and 6 

mentions the graphical description of proposed model in terms of CPU time on two datasets. 

 
Figure 3. Graphical analysis of various classifiers. 

 
Figure 4. Analysis of different models on two datasets. 

Table 3. Comparison of various models in terms of CPU time(s) on two datasets. 

Dataset Dataset1 Dataset2 

Timing CPU Time (s) CPU Time (s) 

CNN 3.481 26.654 

RNN 3.260 26.572 

LSTM 4.294 27.009 

BiLSTM 3.602 31.179 

GRU 4.115 31.028 

BiGRU 3.197 24.013 

Proposed 3.123 25.737 



13 

 
Figure 5. CPU time analysis on second dataset. 

 
Figure 6. Analysis of time on first dataset. 

Characterise the comparison with other optimisation models to obtain accuracy results in Table 4. In the 

analysis of the first dataset, the MFO with GRU achieved 0.667, BiGRU achieved 0.766, DCNN achieved 

0.757, and TCN achieved 0.939, respectively. The WOA with GRU then reached 0.672 and BiGRU reached 

0.751, 0.742, 0.761, and 0.937, respectively. The FFA then had a GRU of 0.670, a BiGRU of 0.784, 0.742, 

and a TCN of 0.769 0.960, all in the appropriate ranges. The BAT with GRU then reached 0.667, BiGRU as 

0.756 0.761, and TCN as 0.771 0.935, respectively. The HGS with GRU then reached 0.672, BiGRU as 0.764, 

DCNN as 0.742, and TCN as 0.773, respectively. Then, the TSO with GRU reached 0.665, BiGRU reached 

0.785, DCNN reached 0.725, and TCN reached 0.766 and 0.961, respectively. The second dataset was then 

calculated with the following values: HWSO 0.676, BiGRU 0.777, and DCNN 0.751 0.783 0.972. The MFO 

with GRU then reached 0.939, BiGRU reached 0.947, DCNN reached 0.938, and TCN reached 0.957, 

respectively. The WOA with GRU then reached 0.937, BiGRU 0.936, DCNN 0.936, and TCN 0.925, 

respectively. The FFA with GRU then reached 0.960, BiGRU as 0.934, and DCNN as 0.959 0.958 in that order. 

Then, the BAT was 0.935, the BiGRU was 0.959, and the DCNN was 0.935 to 0.963, respectively. 

Table 4. Comparison with other optimization models to obtain accuracy results. 

Models TCN GRU BiGRU DCNN GRU BiGRU TCN 

MFO 0.769 0.667 0.766 0.757 0.939 0.947 0.957 

WOA 0.761 0.672 0.751 0.742 0.937 0.936 0.926 

FFA 0.769 0.670 0.785 0.743 0.960 0.934 0.958 

BAT 0.771 0.667 0.756 0.761 0.935 0.959 0.963 

HGS 0.773 0.672 0.764 0.742 0.944 0.935 0.962 

TSO 0.766 0.665 0.786 0.725 0.961 0.934 0.958 

HWSO 0.783 0.676 0.777 0.751 0.972 0.973 0.974 
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5. Conclusion 

Credit card fraud is a growing problem across the world, especially for banks. The goal of this work was 

to examine alternative reliable strategies for detecting fraudulent credit card transactions; while many methods 

have been employed before, there is still a need to do so. Recognising credit card fraud has become increasingly 

important in fresh years, with machine learning playing a pivotal role. In this study, a practical procedure for 

identifying credit card fraud was suggested. To begin, a symmetrical dataset was produced using the 

SMOTEENN method. Second, the TCN-BiGRU-DATT model was used to construct a powerful deep learning 

ensemble. Integrating weight was made possible by extraction. The HWSO technique is also used to choose 

the weights of the proposed model. It will take several trials to compare different models and determine which 

one is most effective. Therefore, the suggested classifier combined with the SMOTE-ENN data resampling 

strategy is an effective tool for identifying credit card fraud. This finding also demonstrates that errors have 

been reduced thanks to hybrid approaches. Different approaches of explored in the credit card arena and their 

effects on prediction accuracy determined in future study. Improved feature selection and additional 

resampling methods would be the focus of a follow-up study aimed at boosting classification accuracy. The 

HGS with GRU then achieved 0.944, BiGRU 0.935, DCNN 0.945, and TCN 0.963, respectively. The TSO 

with GRU then reached 0.961, BiGRU 0.934, DCNN 0.961, and TCN 0.958, respectively. The HWSO with 

GRU then reached 0.972, BiGRU as 0.973, DCNN as 0.971, and TCN as 0.974, in that order. Despite the 

hybrid resampling technique, imbalanced datasets remain a challenge in fraud detection. Future efforts should 

continue to address this issue to ensure that the model is trained on representative data from both fraudulent 

and non-fraudulent transactions. There’s a continuous scope for enhancing the accuracy of fraud detection 

algorithms. Future research could focus on refining the hybrid resampling technique and optimizing the 

parameters of the TCN model to achieve even higher precision in identifying fraudulent transactions. 
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