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ABSTRACT 

This paper discusses a novel Machine Learning (ML) algorithm that leverages leaf images from rice crops to 

accurately determine soil nitrogen levels, aiming to optimize fertilizer usage. Utilizing the OpenCV package for image 

enhancement under controlled lighting, the model employs linear regression to establish a quantifiable correlation 

between leaf color and soil nitrogen content, achieving a prediction accuracy of [specific accuracy percentage or metric]. 

Unlike traditional methods, which are often costly and time-consuming without considering dynamic agricultural factors 

like crop variety and soil quality, our approach proposes a real-time, cost-effective solution. This research not only 

demonstrates the potential to increase agricultural sustainability and yield through precise fertilizer application but also 

paves the way for future research encompassing a broader spectrum of crops and soil properties. The proposed system 

provides farmers with an intuitive digital platform for nitrogen level assessment, facilitating targeted fertilizer application. 

By integrating camera-assisted soil health evaluation, the program promotes environmentally sustainable farming 

practices. Our findings indicate that ML-guided nitrogen fertilization can significantly enhance resource utilization 

efficiency, supporting the increasing global food demand. The implementation of this ML algorithm has shown to improve 

fertilizer application recommendations by with an accuracy of 80 percentage and low R2, RMSE and MAE Values, thereby 

reducing environmental impact and supporting sustainable agricultural development. 
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1. Introduction 

With 1.3 billion people living there and the largest democratic 

population in the world, India’s agricultural environment is under 

severe stress. The need to increase agricultural land in order to meet 

the growing population’s food demands has become an urgent concern. 

In order feed worlds raising population. India’s most important staple 

crop becomes extremely important, particularly with usage of 

fertilizer. The need for more efficient agricultural methods and higher 

crop yields has resulted in a greater dependence on chemical inputs like 

fertilizers and insecticides. Because nitrogen affects crop productivity 

so greatly and may have an impact on the environment, it is imperative 

that agricultural nitrogen levels be understood and controlled. 

Excessive use of nitrogen-based fertilizers can result in lower crop 

yields, wasteful spending, and environmental damage. Traditional 

plant tissue analysis and traditional method are expensive and time-

consuming. To over-come this, analyze nutrients in real time, this 

research suggests a novel method that combines the use of NPK sensor 

technology with leaf image collection. With the utilization of this  
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technique, farmers should be able to apply fertilizer in a timely, economical, and data-driven manner. Such 

innovation is necessary given the global issue of producing adequate food in the face of shifting dietary 

preferences and an expanding population. In order to increase crop yields and agricultural output, fertilizers 

are essential. 

The majority of these were nitrogenous fertilizers, with the most popular type being urea. This pattern 

indicates that the need for fertilizers is increasing in the agriculture sector as shown in Figure 1. Other 

environmental factors, topographical limitations and urbanization have also made it the most efficient way to 

improve yield potential on existing agricultural holdings. In addition to increasing crop yield, fertilizers also 

enhance crop quality. Fertilizers contain key nutrients that enhance a crop’s nutritional value, including protein, 

vitamins and minerals. Fertilizers also enable the plant to adapt and grow in changing climate conditions and 

under greater pressure from harmful organisms. 

 
Figure 1. Usage of Nitrogen fertilizer in India 2016–2022. 

2. Related work 

This research reviews the integration of drones, Machine Learning (ML), and advanced image processing 

techniques and their utilization in agriculture for the prediction of soil nutrients, plant health monitoring, and 

for the management of nitrogen.  

2.1. Drones and ML applications in agriculture 

Drones and ML are used to measure NNI in Chinese rice fields. Advanced agricultural imaging & analysis 

tools are being developed. This study combines modern data analysis with aerial technology in agriculture. 

ML and drone imagery are used to accurately measure soil nitrogen levels in rice fields. This study is changing 

agriculture by merging modern technology with traditional methods. It demonstrates a shift towards more 

accurate and innovative agriculture[1,2]. Subsequent studies analyze RGB color space, HSL color space, HSV 

color space, CIE lab color space, and CIE lCH color space to find correlations between plant nitrate level and 

digital image color data to estimate nitrogen content of maize plants. This study emphasizes the improved 

accuracy and efficiency of plant health monitoring by image analysis[3]. Drones based data collection for crop 

monitoring, Use of infrared, multispectral, and hyper spectral sensors for crop analysis[4].  

2.2. Advanced image processing for plant health 

In many studies have image analysis, by extracting leafs and color reference circles from the photos using 

advanced image processing. This method improves the accuracy of plant trait analysis in agriculture. In this 

study researchers segmented the plant images and analyzed using features detection & background reduction 

techniques. And determined the plant characteristics using advanced image processing to isolate and analyze 

plant attributes. For this study applied CIEDE2000 distance calculation to identify and analyze leaf color 
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characteristics accurately. Agricultural image processing improves the accuracy of agriculture and enhances 

plant health assessment[5]. 

2.3. Prediction of soil nutrients and management 

Combining ML with traditional farming techniques to create more efficient and productive farming 

practices. NIR (non-irradiated light) and transfer learning were used to identify key soil nutrients. Some of the 

key soil nutrients are CO2, nitrogen, phosphorus and potassium. ResNet50 (one of the most popular deep 

learning models for soil nutrient prediction) was used in this study. This method demonstrates how high-level 

ML enhances the effectiveness and precision of soil analysis to improve soil health and fertility. In this study, 

digital cameras used to take close-up images of rice plants[6,7]. The nitrogen concentration of the rice plant was 

compared with the attractiveness of the rice plant based on specific data extracted from the images. Several 

ML models were tested and Random Forest Regression (RFR) was found to be the most efficient model for 

predicting the nitrogen concentration of rice plant. 

NIR and transfer learning can identify soil nutrients like carbon dioxide, phosphorous, and potassium. 

ResNet50 is one of the most commonly used deep learning model for soil nutrient prediction. This method 

demonstrates how high level ML can improve the effectiveness and precision of soil analysis for the 

determinations of fertility and health[8,9]. In this study, we used digital cameras to monitor the nitrogen and 

water contents of winter wheat. After taking photos of wheat at various stages of growth, we analyzed wheat 

grain color and texture and applied this method to predict nitrogen and water conditions for the plant. Digital 

imagery is a powerful tool for precision agriculture. Real-time, accurate data allows farmers to make better 

crop management decision. Discover a new image processing method to determine the chlorophyll in wheat 

leafs[10]. This method was developed as a replacement for the labor-intensive and time-consuming laboratory 

methods for the analysis of digital images of wheat leafs. The chlorophyll and color data in the images were 

successfully combined. With image processing, agricultural operations can better and more effectively monitor 

the health of the plants and the chlorophyll level[11]. 

One of the most important nutrients for plants is nitrogen (N). It also plays a vital role in the production 

of chlorophyll which is necessary for photosynthesis. An adequate nitrogen supply is essential for plant health 

and crop yield. However, inadequate or over-fertilized nitrogen can have negative environmental and economic 

impacts, including contaminated water, greenhouse gas emissions, and reduced farmer profitability. When 

nitrogen management is successful, plants receive the right amount of nitrogen for optimum growth and yield. 

When too much nitrogen is present, deposition (plant collapse) can occur, making plants more susceptible to 

disease and reducing resource efficiency. Too little nitrogen can also reduce productivity[12]. Nitrogen runoff 

from the field can also contaminate the water and cause water “dead zones” (algal blooms). Correct nitrogen 

fertilizer recommendations can help to reduce these environmental impacts[13]. 

2.4. Economic and environmental impacts of Nitrogen management  

Nitrogen management can improve profitability for farmers. By reducing input costs and maintaining or 

even increasing yields, farmers can apply nitrogen at appropriate rates based on the needs of the soil and 

crops[14]. Nitrogen fertilizers contribute to one of the most significant greenhouse gases (GHG) that nitrogen 

fertilizers produce (N2O). To maintain agricultural productivity and reduce N2O emissions, appropriate 

nitrogen management is a key component of sustainable agricultural practices[15]. A balanced supply of 

nutrients (including nitrogen) promotes long term soil health and fertility, reducing soil erosion and 

degradation[16]. Precise nitrogen management allows farmers to make informed resource use decisions based 

on data-driven strategies, such as soil testing or remote sensing. To address the issue of sustainable agricultural 

production in China, a three-year experiment was conducted to study the impact of irrigation and nitrogen 

fertilizer on spring wheat in a semi-arid region of China. 
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India’s economy is heavily dependent on agriculture, which means that accurate predictions of future 

crops are essential. ML algorithms analyze a wide range of variables, including temperature, rainfall, and soil 

quality, to provide a feasible solution. Researchers are attempting to improve agricultural decision-making and 

improve food security by applying various algorithms on large-scale data sets to identify the most effective 

methodologies for precise predictions[17]. Thanks to data mining methods, this model takes into consideration 

various factors, including crop type, soil size, pH and soil composition, type of seed, water availability, and 

even the risk of diseases. With the help of ML, farmers can improve their crop yield by making decisions based 

on local climate information and other relevant factors[18]. 

Improving corn nitrogen fertilizer recommendations using soil and weather data, statistical, and ML 

algorithms. The decision tree approach was promising for some variables, but the random forest algorithm 

improved the recommendations significantly. Adding site-specific data via ML has the potential to improve 

nitrogen management for corn production in the Midwest[19,20]. 

2.5. Decision making with ML 

Soil fertility data can be used to determine the right fertilizer dosage. These recommendations can be 

spatially represented with the help of STCR fertilizer formulas. This approach allows you to apply fertilizer 

more precisely by taking into account the nutrient needs of different areas of your field. By combining STCR 

equations and soil fertility data, precision agriculture has advanced a great deal. This approach enables farmers 

to apply fertilizer more effectively and efficiently. Because it improves crop yields while minimizing adverse 

environmental impacts, it is essential for the advancement of sustainable agricultural practices. 

Table 1 has systematically reviewed the contributions of various studies to the field of precision 

agriculture, from drone and ML applications to advanced image processing and nitrogen management. Our 

research builds upon these advancements, aiming to further refine and apply these technologies to enhance 

precision agriculture’s effectiveness and sustainability. 

Table 1. Summary of related works. 

Authors Methods Used Limitations Results 

Sathiya Priya R, 

Rahamathunnisa U
[21]

 

⚫ Deep Learning Method 
Assisted Clustering Algorithm 
(DLCA) 

⚫ Convolutional Neural 
Networks (CNNs) 

⚫ - Naive Bayes (NB) and K-
nearest Neighboring (KNN) 

⚫ Difficulties encountered 
in monitoring rice crops 
through satellite images 

⚫ High cost of fertilizers 
and soil deterioration in 
paddy crop production 

⚫ Proposed DLCA 
achieved a lower error 
rate of 0.03 and high 
accuracy of 98.52%. 

⚫ DLCA outperformed 
other popular methods in 
paddy growth 
identification. 

Islam MA[22]
 ⚫ Three Convolutional Neural 

Network (CNN) algorithms: 

AlexNet, ResNet, and 
Proposed Algorithm 

⚫ Hardware implementation with 
Internet of Things (IoT) 
connectivity for auto-spraying 
suitable fertilizer. 

⚫ Difficulties encountered 
in monitoring rice crops 

through satellite images 
⚫ High cost of fertilizers 

and soil deterioration in 
paddy crop production 

⚫ Accuracy of AlexNet: 
92% 

⚫ Accuracy of Proposed 
Algorithm: 96.93% 

O. Rama Devi, Solapuri 
Naga Babu, Sowmya, 

Akansha
[23]

 

⚫ Random Forest method is 
employed for fertilizer 
prediction. 

⚫ Linear regression and K-

Nearest Neighbours methods 
are compared. 

⚫ Difficulties encountered 
in monitoring rice crops 
through satellite images 

⚫ High cost of fertilizers 

and soil deterioration in 
paddy crop production 

⚫ The paper predicts 
suitable fertilizers based 
on environmental, soil, 
and plant conditions. 

⚫ Random Forest method 
is employed for fertilizer 
prediction with greater 
accuracy. 
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Table 1. (Continued). 

Authors Methods Used Limitations Results 

Yi Zhang, Teng-long 
Wang, Zheng Ji Li, Tianli 

Wang, Ning Cao
[24]

 

⚫ ML algorithms (Random 
Forest, Linear Regression, 
etc.) 

⚫ Spectral indices (DSI, SIs) 
⚫ Continuous wavelet transform 

(CWT) 

⚫ Difficulties encountered 
in monitoring rice crops 
through satellite images 

⚫ High cost of fertilizers 
and soil deterioration in 
paddy crop production 

⚫ The best prediction 
model for leaf 
phosphorus 
concentration (LPC) of 
rice was achieved using 
ML algorithms fed with 

spectral indices (SIs) and 
continuous wavelet 
transform (CWT). 

⚫ The random forest (RF) 
algorithm combined with 
SIs and CWT had the 
best results for LPC 
estimation, with an R2 of 
0.73 and an RMSE of 

0.50 mg g−1. 

Gabriele Bernardini
[25]

 ⚫ ML based techniques for 

estimating fertilizer and 
nutrient status 

⚫ Thorough investigation of 
detection and classification 
approaches 

⚫ ML systems require 

large amounts of data 
from different platforms. 

⚫ Key challenges in 
detection and 
classification approaches 
need to be addressed. 

⚫ ML can improve nutrient 

assessment and decision-
making in agriculture. 

⚫ Rapid improvements in 
ML and sensor 
technology are 
recommended. 

Wenzhi Zeng, Chang Ao, 
Guoqing Lei, Thomas 
Gaiser, Amit Kumar 

Srivastava
[26]

 

⚫ ML algorithms (random forest, 
extreme random tree, extreme 
gradient boosting) 

⚫ Swarm intelligence search 

algorithm (cuckoo search 
algorithm) 

⚫ Difficulties encountered 
in monitoring rice crops 
through satellite images 

⚫ High cost of fertilizers 

and soil deterioration in 
paddy crop production 

⚫ The yield simulation 
accuracy of the ERT 
model was the highest. 

⚫ The proposed model can 

increase the average 
yield of maize, rice, and 
soybean. 

J. Dhakshayani, B. 

Surendiran
[27]

 

⚫ Three fusion approaches for 
combining agrometeorological 
and image data. 

⚫ Use of a Multilayer Perceptron 
(MLP) and a pre-trained 
Convolutional Neural Network 
(CNN) model DenseNet-121 

as baseline networks. 

⚫ Difficulties encountered 
in monitoring rice crops 
through satellite images 

⚫ High cost of fertilizers 
and soil deterioration in 
paddy crop production 

⚫ The multimodal fusion 
network (M2F-Net) 
achieved 91% accuracy 
in identifying fertilizer 
overabundance. 

⚫ The fusion approaches 
outperformed the 

individual models in 
terms of accuracy. 

3. Methodology 

We initiated our research using the Nikon D5600, a DSLR camera renowned for its exceptional detail and 

image sharpness. This camera was utilized to capture images of rice fields, under controlled lighting 

conditions, as illustrated in Figure 2. 

We also used modern soil probes placed near each of the cultivated leaf’s. These advanced soil probes 

were able to accurately measure the nitrogen, phosphorus and potassium levels in the soil. This gave us 

important information to compare to the visual observations. 

Preprocessing the data: The next step was to preprocess the data using Python and the open CV package. 

First, we converted the photos into grayscale, simplifying the data and increasing the efficiency of the 

subsequent analysis steps. Then, various techniques were used to eliminate the background and reduce noise, 

especially using the OpenCV functions Gaussian Blur to smooth the background and create background 

subtraction MOG2 to subtract the background from the image. This technique enabled us to isolate the leaf 

part, making it easy to extract the RGB values from target areas. The grayscale image was then converted into 

a background-free version, as shown in Figure 3. This process focused only on the leaf part and allowed us to 

perform a more detailed and targeted study, which directly impacts the goal of our study: to evaluate plant 
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health with leaf based indicators. 

 
Figure 2. System architecture. 

 
Figure 3. Data pre-processing. 

3.1. Correlation analysis 

To facilitate our analysis, we keep an Excel file containing the RGB data of the leaf images and the soil 

nitrogen values. The file plays a critical role in determining the relationship between the visual properties of 

the leaf image and the nitrogen content of the soil. Our system analyse the user uploaded leaf image and 

extracts the relevant RGB data and then performs correlation analysis to determine nitrogen content. 

3.2. Model construction 

For the prediction stage of our analysis, we employ an ML approach using a linear regression model. The 

model that looks at the relationship of soil nitrogen content to leaf RGB values is trained on the data extracted 

from the Excel data file. When you submit a leaf image via our interface, it is processed in the background to 

get RGB values. The user is then presented with the nitrogen content prediction that the trained model produced 

using these numbers as input. The model’s ability to determine soil nitrogen levels using an RGB image of a 

paddy crop’s leaf greatly facilitates decisions about fertilizer dosage. This method has the advantage of not 

requiring direct soil sensors to estimate nitrogen. The scatterplots with the labels “Red versus Nitrogen”, 

“Green versus Nitrogen”, and “Blue versus Nitrogen” illustrate the correlation between the soil’s nitrogen 

content and the RGB values of paddy crop leaves (see Figures 4–6). 
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Figure 4. Red Vs Nitrogen scatter plot. 

 
Figure 5. Green Vs Nitrogen scatter plot. 

 
Figure 6. Blue Vs Nitrogen scatter plot. 

In our investigation, we discovered a robust relationship between nitrogen concentrations and the red, 

green, and blue values of the spectral colors. We created a linear regression model to estimate nitrogen levels 

based on these color values in order to take use of this observation. The formulation of the model is in Equation 

(1).  

𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 (1) 

where, 

𝑥1, 𝑥2, 𝑥3 are the average red, green and blue values. 

We used multiple criteria to assess our model’s precision. Notably, the model’s R2 value of 0.88 means 

that 88% of the variation in the nitrogen levels can be explained by it. In addition, a mean squared error of 77.9 

was determined. Accuracy is crucial, thus we improved our initial photos and applied error correcting 

procedures. More efficient background removal was used in this method, which greatly decreased our model’s 

error and increased its overall precision. 
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The primary objective of our proposed MLR approach is to predict the NPK value based on a well-

selected dataset. Unlike conventional linear regression, MLR allows for multiple independent variables to be 

used to predict a single dependent result. One of the specialties of this approach is the finding of linear 

correlations between multiple attributes and one target variable. The mathematical Equation (1) describes a 

relationship that involves four independent variables. 

To measure the accuracy of the MLR model, we use several objective statistical indicators. These include: 

Root Mean Square Error (RMSE) Equation (3). 

The Mean Absolute Error (MAE) Equation (4). 

The absolute error between the predicted values and the actual values R2 score Equation (2). 

The proportion of the dependent variable’s variance that can be predicted from independent variable. 

a (0) intercept of the regression line. 

a1, a2, a3 are the slopes of independent variables e is the error. 

R2 = 1 − 
𝑅𝑆𝑆

𝑇𝑆𝑆
 (2) 

where, 

RSS—Sum Squared Regression, 

TSS—Total Sum of Squares. 

The total sum of squares is evaluated to comprehend the variation within the observed data. Regression 

sum of squares is a good indicator of how well a model fits the data.  

The total sum of squares is evaluated to comprehend the variation within the observed data. Regression 

sum of squares is a good indicator of how well a model fits the data.  

RMSE=√
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
 (3) 

MAE=
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1  (4) 

where, 

N is the number of observations, 

𝑦𝑖  is the actual values obtained, 

�̂�𝑖 is the values determined by the model as shown in Figure 7, the system develops in training and testing.  

 
Figure 7. ML Model for Nitrogen fertilizer prediction. 
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We gather a soil nutrient dataset throughout the training phase, with the data recorded initially in Excel 

and then exported as a CSV file. The dataset includes available nitrogen, Phosphorus, potassium, and 

recommended nutrients. The MLR method for projecting recommended NPK values is made possible using 

Python, which also facilitates the development of a wide range of visual analyses. The panda’s library makes 

extracting data in this setting easy, which helps identify independent and dependent variables. After being 

trained using MLR, the system makes recommended NPK predictions. The testing phase then compares these 

predictions to the observed data. Scatter plots generated with the matplotlib software show discrepancies 

between predicted and observed values. 

The steps of the MLR procedure are shown in Figure 8. Initial entry of soil nutrient information. The 

nitrogen fertilizer with estimates are then calculated using the regression procedure. The regression coefficient 

provides insight into the strength of the connection between the variables of interest and the desired results. 

 
Figure 8. Process of work flow. 

The intercept and coefficients are used to find the line that best represents the model from which the slope 

can be calculated. Three metrics—RMSE, MAE and R2score—are used to evaluate the performance of this 

model. MAE stands for Mean Absolute Error and RMSE stands for Root Mean Squared Error. MAE is 

calculated by taking the number of outlier values and dividing it by the number of observations. RMSE is 

calculated by subtracting out outliers from observations, regardless of their direction. RMSE indicates how far 

the prediction error extends from the model. R2 stands for Rate of Total Variance of Results that the Model 

can attribute to the Model. It measures how well the model reproduces the observed results.R2 can take values 

from 0 to 1. Higher values indicate more accurate forecasts. 

The histogram below shows the distribution of the RMSE and MAE scores for the soil dataset provided. 

Step 1: Load the data into the system. 

Step 2: MLR (Multiple Linear Regression) is used to generate predictions. 

Step 3: Data is split into training set and test set. 

Step 4: Nutrient fertilizer values for target yield are obtainable. 

4. Results 

In our comparative analysis, we benchmark the performance of our ML model against contemporary 

works in the field of precision agriculture, particularly focusing on models aimed at optimizing fertilizer 

application through nutrient prediction. This comparison is anchored on the performance metrics, highlighting 
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our model’s accuracy and the strategic error correction measures we implemented. 

Model R-squared value of 0.88, signifying that it can explain 88% of the difference in the dependent 

variable, This pertains to nutrient levels required for optimal crop growth. This level of accuracy signifies a 

substantial predictive capability, positioning our model as a highly reliable tool for precision agriculture. When 

compared to similar works in the domain, this R-squared value reflects a competitive edge, as it suggests our 

model’s superior ability to capture and analyze the complex relationships between various soil parameters and 

nutrient needs. 

Furthermore, a mean squared error (MSE) of 77.9 for our initial model iteration. Recognizing the potential 

for enhancement, we undertook a rigorous error correction process, focusing on improving the quality of input 

data through enhanced image processing techniques. By refining our original images for more effective 

background removal, we aimed to minimize noise and improve the model’s interpretability of crucial features. 

This methodological refinement is anticipated to decrease the MSE significantly, thereby elevating the model’s 

predictive accuracy. 

While many contemporary models boast similar accuracy levels, the detailed attention we’ve given to 

error correction through image enhancement demonstrates our commitment to precision and reliability. 

The advancement the combination of high R-squared values and dedicated error reduction strategies, not 

only booster the model’s accuracy but also highlight its potential for real-world application in sustainable 

agriculture is presented in our work, particularly As such, our research contributes meaningfully to the ongoing 

development of ML applications in agriculture, offering insights into the nuanced interplay between data 

quality and model performance. 

In our results section of the paper, we demonstrate the ML algorithm’s ability to predict nitrogen levels 

in soil. Nitrogen plays an important role in plant growth. The ML algorithm takes the soil data and makes an 

accurate and efficient prediction of nitrogen levels based on selected parameters. We also developed an easy-

to-use interface to make the predictions more accessible for farmers and researchers in the real world of 

agriculture. This interface allows farmers and researchers to easily enter data and obtain nitrogen level 

estimates in real-time. It also enhances communication between the user and the ML system. 

The simplicity of the site design and functionality makes it easy for users to perform nitrogen content 

analysis tasks. From our analysis, MLR was selected as the main part of the computational framework because 

of its ability to identify complex relationships between several inputs. MLR offers the best solution to our 

goals because it is very efficient and can easily predict a single outcome from a large number of inputs. In this 

article, we provide a predictive model to optimize nutrient assessment for optimum crop yield using MLR. 

 
Figure 9. Actual Vs predicted Nitrogen fertilizer. 
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There are two types of data used in Nitrogen Fertilizer prediction: independent variables and dependent 

variables. We use 90% of it for instructional reasons and 10% for actual testing. The MLR model is trained 

using the training set, and then predictions are produced using the test set. We evaluate the MLR model’s 

performance by contrasting its predictions with observed data. Comparisons may be made between these 

anticipated NPK values and the low, medium, and high NPK benchmarks used traditionally, as shown in Table 

2. When comparing the results of the MLR model to these NPK standards, farmers will have a better idea of 

how much fertilizer to use. 

Table 2. Standard fertility rating major nutrients. 

Nutrient (Kg/ha) Low Medium High 

Nitrogen (N) <280 280–560 >560 

Phosphorus (P) <22.5 22.5–55 >55 

Potassium (K) <140 140–330 >330 

To maximize the R2 score, MLR searches for a hyper plane that best matches the given multidimensional 

data. This regression hyper plane correlates well with the data and reduces prediction errors since it accounts 

for a large proportion of the possible outcomes as in Figure 9.  

 
Figure 10. Nitrogen fertilizer to apply. 

Many modern farmers need to make the most of their access to modern technologies and analytical tools, 

which might lead to incorrect judgments on how much fertilizer to use. This application needs to provide 

available nitrogen and type of soil. Figures 10–12 depict our easy, graphical user interface built to circumvent 

this problem. This method is helpful for growers since it suggests the amount of nitrogen fertilizer to use. It 

also tells you how much fertilizer to apply and how big of a harvest you might anticipate. To help farmers 

make more informed fertilizer choices and speed up development in the agricultural industry, we’re supplying 

them with this data. 
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Figure 11. Graphical interface with available Nitrogen. 

 
Figure 12. Graphical interface displaying Nitrogen fertilizer to apply. 

5. Conclusion and future work  

Machine Learning (ML) is used in agriculture to better predict crop yields and nutrient availability, detect 

plant diseases, and ensure the health of crops and plants. Precision agriculture powered by ML is transforming 

agriculture into a cutting-edge industry that makes better use of water, fertilizers, tillage and pesticides. This 

increases productivity and protects the environment at the same time. Our research has shown that a 

combination of factors can be used to predict nitrogen fertilizer rates to be applied with approximately 80% 

accuracy. The reliability of the model in estimating soil macronutrient concentration is supported by its low 

MAE and RMSE error measures. This cost-effective option can improve farmers’ judgment, lead to more 

precise fertilizer use and ultimately increase crop yields.  

In the future, this model could be refined to address the scalability across different agricultural contexts, 

economic impact on farming operations, and strategies for enhancing former’s adaption. This improvement 

will not only increase the models usage but also contribute to efficient agriculture practices. 
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