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ABSTRACT 

The acronym for “polyphonic music” (PM) is employed when referring to music which includes different melody 

lines that are performed sequentially. Integrating PM with Sentiment Analysis (SA) and music composition involves 

evaluating and creating tunes with several tunes played simultaneously. Advanced techniques, usually centred on Deep 

Learning (DL) methods, have been employed to achieve the aim. The intention of this study is to provide an innovative 

framework for monitoring and developing SA in good management. Initially, a particular system of analysis is created, 

employing sophisticated DL methods to enhance the accuracy and sensitivity of PM detection of sentiments. The research 

addresses the intricate functioning of sound features like Mel Frequency Cepstral Coefficients (MFCC) and Chroma. This 

research project investigates whether dimension reduction approaches like Stacked Autoencoders (SAE) enhance PM-SA 

models. To address computationally demanding issues. The recommended SA system MDL is thoroughly evaluated 

compared to traditional techniques. Accuracy, precision, recall, and F1-score examine the MDL framework’s potential to 

detect and classify PM sentiment states. 

Keywords: sentiment analysis; polyphonic music; accuracy; deep learning; classification and performance; Mel frequency 

cepstral coefficients 

1. Introduction 

The music industry has experienced a significant change due to 

the rapid advancement of communication technologies, intelligent 

devices, and the proliferation of digital data[1,2]. The emergence of the 

digital age has not only changed how a person listens to music but has 

also required a complete reconsideration of the methods used to 

manage and access the rapidly growing amount of music data. 

Recently, metadata content has been crucial in finding music[3,4]. 

However, due to the significant increase in music data, there is a 

considerable need to transition towards content-based retrieval[5,6]. 

The proliferation of smart devices, radio stations, and 

Recommender Systems (RS) has brought about a time when music 

services are now ubiquitous. In order to improve customer satisfaction 

and involvement, music service providers have undertaken a mission 

to intelligently suggest songs, with sentiments being identified as a 

vital element in this context[6,7]. 

The process of obtaining music data, which used to rely on genre, 

artist, and musical instruments primarily, has now expanded to 

incorporate sentiments as a crucial factor[8,9]. The learning 

environment for kids is the setting where music’s impact is most 
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apparent[10–12]. Scientific research indicates that listening to music significantly backs kids’ psychological well-

being in virtual educational environments[13–15]. This emphasises the requirement for Music Information 

Retrieval (MIR) platforms to present data-driven decision-making and customised features that can be adapted 

to people’s interests[16–18]. 

Music-based SA systems concentrate on music with instruments, which may trigger sentiments without 

lyrics. When identifying sentiments from musical instruments, there are plenty of issues to consider. The 

ambiguous nature of sentiments in musical instruments, the diversity in how identical sentiments are conveyed 

via various verbs, and a shortage of datasets for detecting sentiments in musical instruments make music-based 

Sentiment Analysis (SA) problematic[19–21]. Based on the outcomes of this examination, a MuSe sample[22–25] 

has been determined to be available to the public at large. 

Feature Extraction (FE) and classification, with the help of Deep Learning (DL) methods, are the main 

fields of emphasis for the recognition of patterns used in the context of music research. Furthermore, Mel 

Frequency Cepstral Coefficients (MFCC) have been the subject of thorough investigation in the context of 

music-related studies[26–28]. These parameters are frequently used as sound features in voice and music 

applications. In music-based unique SA proof of identity, chroma features and traits that are associated with 

their use are leveraged. Additionally, the research into the possibility of recognising sentiments from musical 

instruments remains an arena that has not been thoroughly investigated because it is still an emerging area. 

By describing an extensive technique for recognising SA in musical instruments, this article attempts to 

deal with the flaws that have been highlighted. The experiment involves recourse to a method for decreasing 

dimensionality utilising a Stacked Autoencoder (SAE), which includes MFCC and Chroma Energy 

Normalised Statistics (CENS) data[29–31]. This approach is frequently used in the evaluation of chromatic 

musical instrument sources. A practical classification method for Polyphonic Music (PM) is feasible using a 

multimodal Deep Learning (DL) method. These video clips are grouped based on an array of SA, and an SAE 

is used to minimise the total number of variables in the data that is input. Furthermore, to provide an impact 

on advancing the field of music SA, the main goal of this study is to provide an understanding of the complex 

link that exists between musical instruments, sentiments, and developing computer technology. 

1.1. Research motivation 

The integration of musical instruments, sentiments, and advanced statistical techniques is what motivated 

the invention of a concept for studying SA in PM. Recognising the mental and sentiment elements that are 

incorporated into these complex rhythmic patterns is an exciting challenge in the contemporary musical type, 

which is defined by an extensive range of harmonic tunes that are simultaneously varied and complex. The 

application of SA is prevalent in the study of text and speech, where the current study provides an intriguing 

approach to understanding the sentiments aspects that prevail in PM. In the scenario of PM, which is defined 

by owning a great deal of distinct melodies, there are specific difficulties related to identifying the SA. 

Traditional methods contingent on metadata are insufficient for understanding the scope and complexity of the 

SA that mesh musical elements can communicate. The requirement to create solid analytical techniques with 

the goal of determining the sentiment elements that can be found in PM is what motivates the current study. 

Online streaming services are the force that drives behind the musical entertainment industry, and they demand 

user relationships that are both customised and engaging. The introduction of SA into PM, search and 

recommendation systems is following the increasing need for intelligent music streaming services that 

accommodate the SA needs of users as individuals. The composition of PM and the absolute need of SA are 

the two factors considered in this study. 

1.2. Research objective 

The key objectives of this research are: 
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a) Create and execute an efficient analytical framework that integrates DL algorithms designed explicitly 

for the PM to enhance precision and sensitivity in SA. 

b) Examine the function of various acoustic features, such as MFCC and Chroma features, in capturing 

sentiment expression in PM. 

c) Evaluate the influence of dimensionality reduction methods, such as Stacked Auto Encoders, on 

enhancing the efficiency of SA models for PM, thereby reducing computational complexity. 

d) Evaluate the SA framework created in this research by thoroughly experimenting and comparing it to 

existing approaches. This evaluation will be based on accuracy, precision, recall, and F1 score metrics. 

The goal is to determine the framework’s effectiveness in accurately identifying and categorizing 

sentiments states in PM. 

The paper is organized as follows: Section 2 presents the methodology, Section 3 presents the evaluation 

of the model, Section 4 describes the experimental result, and Section 4 concludes the work. 

2. Related works 

The section provides an overview of the developing area of Music Information Retrieval (MIR) in the 

context of pattern recognition, with a particular emphasis on Music Emotion Recognition (MER). Previous 

studies predominantly focus on MER, specifically analyzing music clips incorporating instrumental and vocal 

components. However, when exploring the recognition of sentiments in instrumental music, the analysis 

focuses on instrumental portions and involves two crucial steps: i) FE and ii) recognizing and classifying them. 

Existing research primarily focuses on acoustic aspects essential for developing SA systems. The sentiment 

content of audio signals is greatly influenced by timbre, which is efficiently represented by MFCC which plays 

a prominent role in numerous works[32,33]. 

Krishnamohan et al.[34] used MFCC as a feature and leverages auto-associative neural networks in their 

investigation, and the efficient average recognition rate is 94.4%. In their study, Raju et al.[35] utilized spectral 

roll-off, brightness, energy, rhythm features, and Support Vector Machines (SVM) to reach a SA rate of 

87.27%. Suneetha et al.[36], Suneetha et al.[37] and Wagdarikar and Senapati[38] employ a hierarchical SVM 

model that integrates rhythm features, tempo, articulation, and variation in note length. The accuracy rate of 

this model is 92.33%. 

Janarthanan et al.[39] employ Artificial Neural Networks (ANN) and a 35-dimensional feature vector to 

categorize music signals into four distinct sentiment groups. Their accuracy rate reached 67.0%. 

Machine Learning (ML) techniques are essential for optimizing the effectiveness of SA. Priyadharshini 

and Gomathi[40] present a regression technique in their work that uses Gaussian Process (GP) regressors to 

assess the SA of a musical composition precisely. The authors attained remarkable results by utilizing adaptive 

aggregation approaches. Ali et al.[41] proposed a system that combines MFCC with residual phase features. The 

results demonstrate that SVM provides superior performance in this system. Pande and Chetty[42] proposed a 

pattern recognition system that utilizes Recurrent Neural Networks (RNN) with Long Short-Term Memory 

(LSTM) layers to accurately extract sentiments-specific information from Chromogram features. 

Exploring DL techniques, specifically Convolutional Neural Networks (CNN), has proven effective in 

music SA. The researchers attained an accuracy of 88.5% by utilizing a CNN to classify six sentiments based 

on music data[43]. This was achieved by transforming the signal into a Chroma spectrogram. Furthermore, Ali 

et al.[44] introduced a pattern recognition approach that employs RNN to analyze monophonic instrumental 

music. Meanwhile, a study presents a method that improves the backpropagation algorithm by including an 

Artificial Bee Colony (ABC) algorithm to boost music SA. 

The study by Rani et al.[45] employ a convolutional extended short-term memory model for SA 

recognition. Utilizing Mel filter banks and MFCCs outperforms the performance of conventional machine 
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learning techniques. Nana classifies music SA into two categories, joyful or sad, using gated recurrent neural 

networks[46]. When implemented on a ten-song model, this technique achieves an accuracy of 73.4%. 

Nevertheless, there are several domains within the literature where the potential of Chroma features remains 

untapped, and the application of autoencoders in Music Information Retrieval (MIR) research is not thoroughly 

investigated[47]. The proposed work addresses these deficiencies by conducting a comparative inquiry into the 

efficacy of instrumental SA from PM samples. The task will be accomplished by employing MFCC and 

Chroma Energy Normalized Statistics (CENS) features using stacked autoencoders. 

Research gap 

Modern Music Emotion Recognition (MER) study emphasises vocal and instrumental audio clips, 

investigating sound qualities and MFCC. However, experiments primarily concentrated on MFCC features 

and overlooked Chroma features’ possibility of SA recognition in instrumental music. Autoencoders’ robust 

feature detectors will probably be substantially investigated for Music Information Retrieval (MIR). SVM, 

ANN, RNN, and CNN have been frequently employed for music emotion proof of identity, but there is not 

much research comparing instrumental SA[48]. Combining MFCC and Chroma features with SAE is accurate. 

In order to better comprehend musical instruments and create reliable SA recognition systems, the study will 

investigate how well musical methods can identify sentiments in PM tests. In particular, it will use Chroma 

features and autoencoders in MIR. 

3. Proposed methodology: A multimodal DL for PM-based SA 

This section explains the dataset and the process of SA from the PM using a multimodal DL algorithm. 

3.1. Dataset description 

The MuSe dataset includes SA data for 90,001 songs encompassing musical history. Since the social 

keywords that each music has on tunes. It is possible to assume its tone of voice. As evidence of the database’s 

ability to identify SA along three key parameters, these tags have been created using the database. According 

to the initial definition of value, it is “the enjoyment of an event” which represents the sentiments and mood 

of the music as well as its positivity or negativity. In addition, involvement is an indicator of “the level of 

sentiments caused by a challenge” which is a metric of the sense of excitement that is evoked by the musical 

composition. Finally, power is an analysis that considers “the level of control exerted by an event,” which 

indicates the sentiments of control or impact that the person listening perceives the music to have upon 

individuals. For the aim of presenting relevant data about the sentiments nature of music compositions, the 

MuSe dataset enables an in-depth and complex view of the sentiments that are communicated over an extensive 

spectrum of 90,001 songs. This is achieved through integrating recordings. 

3.2. Features for SA recognition 

Autoencoders aid in constructing complex shapes from simpler ones, serving as proficient feature 

detectors. Both continuous and discrete data forms are fused for learning. This method employs a feed-forward 

artificial neural network perceptron, where weight values multiply input data. The process involves adding the 

bias value ‘a’ to the total inputs and weights, initiating through functions like linear, log-sigmoid, hard limit, 

and hyperbolic tangent with potential saturation, Equation (1) 

𝐵 = 𝑓(𝑤𝑝 + 𝑎) (1) 

Usually, the perceptron employs a general function for the estimation process, with the commonly chosen 

function represented by Equation (2). 

𝑓(𝑝) =
1

(1 + 𝑒−𝑥)
 (2) 

Accurate weight estimation minimizes the error between the output and the expected value within the 

training dataset. Multiple perceptions are organized into layers, with the output of one layer serving as the 
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input for the next. This multilayer network enables the solution of complex linear separable classification 

problems by transmitting input data through the initial weights. 

3.3. Classification of sentiment 

The proposed Multimodal Deep Learning (MDL) framework uses the MFCC and chroma features. The 

MDL is responsible for developing a complicated and distinct learning structure. 

The framework of MDL is signified in Equations (3) and (4). 

𝐻𝑀𝐹𝐶𝐶 = 𝐿𝑎𝑦𝑒𝑟𝑀𝐹𝐶𝐶(𝑋𝑀𝐹𝐶𝐶) (3) 

𝐻𝐶ℎ𝑟𝑜𝑚𝑎 = 𝐿𝑎𝑦𝑒𝑟𝐶ℎ𝑟𝑜𝑚𝑎(𝑋𝐶ℎ𝑟𝑜𝑚𝑎) (4) 

The features are merged and given in Equation (5). 

𝐻𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑(𝐻𝑀𝐹𝐶𝐶 , 𝐻𝐶ℎ𝑟𝑜𝑚𝑎) (5) 

The output layer in MDL models’ SA is given in Equation (6). 

𝑌 = 𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟(𝐻𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑) (6) 

where the derived features from MFCC and Chroma are signified as 𝑋𝑀𝐹𝐶𝐶  and 𝑋𝐶ℎ𝑟𝑜𝑚𝑎 respectively. The 

output information is given in the sentiment label Y, and the feature processors in the MDL layer are signified 

as in 𝑋𝑀𝐹𝐶𝐶  and 𝑋𝐶ℎ𝑟𝑜𝑚𝑎  for the MFCC and Chroma features, respectively. 

During training, the MDL framework is optimized for SA by utilizing the MuSe dataset. The proposed 

MDL framework is fine-tuned by the loss function and optimization technique. The disparity between the 

predicted and true SA label Y is measured using the loss function ℒ. It is determined using an appropriate 

categorical cross-entropy-based classification given in Equation (7). 

ℒ =∑ 𝑌𝑖
𝑖

∙ log(𝑌�̂�) (7) 

The loss function is optimized to be relevant to the parameters modelled in the MDL framework. The 

optimization is accomplished using Stochastic Gradient Descent (SGD), which is given in Equation (8). 

𝜃 ← 𝜃 − 𝛼 ∙ ∇𝜃ℒ (8) 

where a model parameter is signified by 𝜃, the learning rate is signified by 𝛼, and gradient loss is signified in 

∇𝜃ℒ. The training process optimizes the biases and weight in the MDL framework, which can effectively 

enhance the accuracy by utilizing the PM features for the classification model. The overall process of the MDL 

is given in Figure 1. 

 
Figure 1. Process of MDL. 

4. Result and discussion 

The concepts of “Pitches Across Time” and “Timbres Across Time” depict the dynamic differences in 

the features of timbre and pitch across the musical piece. The heatmaps give significant insights into the 

melody, sonic attributes, tonal variations, and musicians and assist academics in comprehending the dynamic 

audio file. Each heatmap in Figure 2 depicts distinct audio features. 
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Figure 2. Heat map. 

The high-level features represent musical attributes extracted from a Spotify track with ID 

‘63GEJ5qD9Eu4DKq0EYBGVO’. These features include ‘Danceability’ (0.29), ‘Energy’ (0.624), ‘Key’ (9), 

‘Loudness’ (-8.243), ‘Mode’ (1), ‘Speechiness’ (0.0611), ‘Acoustics’ (0.426), ‘Instrumentalness’ (0.0114), 

‘liveness’ (0.891), ‘valence’ (0.246), ‘Tempo’ (201.37), ‘Type’ (‘Audio_Features’), ‘ID’, ‘URI’, 

‘Track_HREF’, ‘Analysis_URL’, ‘Duration_ms’ (402707), and ‘Time_Signature’ (3). These metrics provide 

insights into the track’s features, such as danceability, energy level, key, and tempo. The data is retrieved 

through Spotify’s audio features API. 

The classification is evaluated using the Accuracy, Precision, Recall, and F1-score performance metrics. 

The classification metrics and comparative analysis are detailed in a subsequent section. 

Accuracy in MDL-SA classification quantifies the model’s overall accuracy in predicting SA across 

several modalities. The evaluation metric considers both TP (sentiments successfully detected) and true 

negatives (non-sentiments correctly identified) in relation to the total number of instances. The experimental 

outcome is discussed in Table 1 and illustrated in Figure 3. 

Table 1. Comparison of accuracy. 

Algorithm CNN RNN LSTM MDL 

100 76.56 81.11 87.56 91.67 

200 77.4 82 88 93.56 

300 79.16 83.36 89.56 93.98 

400 79.55 84.78 89.65 94.67 

500 80.09 90.87 90 95 

 
Figure 3. Comparison of accuracy. 

In the MDL context, precision measures the model’s ability to predict positive attitudes accurately. In the 

context of SA, accuracy refers to the ratio of accurately recognized positive sentiments (TP) to all instances 
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that were projected as positive (TP and FP). The experimental outcome is discussed in Table 2 and illustrated 

in Figure 4. 

Table 2. Comparison of precision. 

Algorithm CNN RNN LSTM MDL 

100 76.34 78.23 79.23 89.9 

200 77.4 79.34 80.12 90.1 

300 77.93 80.9 80.67 91.12 

400 78 81.23 81.2 92.23 

500 78.34 82 82.23 93 

 
Figure 4. Comparison of precision. 

In MDL-SA, recall measures the model’s capacity to identify all pertinent occurrences of positive 

attitudes. The metric calculates the proportion of correctly identified positive sentiments (TP) out of the total 

number of genuine positive sentiments (TP and FN). The experimental outcome is discussed in Table 3 and 

illustrated in Figure 5. 

Table 3. Comparison of recall. 

Algorithm CNN RNN LSTM MDL 

100 77.14 78.11 80.02 89.9 

200 77.56 78.74 80.32 90.1 

300 78.33 79.45 80.79 91.12 

400 78.71 80.23 81.34 92.23 

500 79.34 81.43 82.91 93 

 
Figure 5. Comparison of recall. 
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As it gives an accurate assessment of both precision and recall, the F1-score is particularly significant in 

the framework of SA. In the MDL system, the F1-score is employed to determine the harmonic mean of 

precision and recall. This guarantees that a balanced compromise can be achieved between accurately 

identifying positive sentiments and avoiding false negatives. The conclusions of the research are given in 

Table 4, and Figure 6 presents a visual representation of the results that were obtained. 

Table 4. Comparison of F1-score. 

Algorithm CNN RNN LSTM MDL 

100 76.74 78.16 79.62 89.9 

200 77.47 79.03 80.22 90.1 

300 78.06 80.14 80.73 91.12 

400 78.35 80.72 81.27 92.23 

500 78.84 81.63 82.57 93 

 
Figure 6. Comparison of F1 score. 

Compared with different methods, the MDL-SA approach stands out by its reliability and effectiveness 

across various dataset sizes. It shows better accuracy, precision, recall, and F1 score. The results of this study 

shed clarification on the potential of MDL in SA tasks, which necessitate achieving a balance between 

precision and recall in order to make reliable forecasts about sentiment. 

The results of the experiments, which are laid out in Tables 1 and 4 and represented in Figures 3 and 5, 

present an empirical examination of the different methods employed in SA. The Multi-Modal Deep Learning 

(MDL) algorithm consistently outperforms its counterparts, CNN, RNN, and LSTM, across multiple metrics. 

Regarding accuracy (Table 1 and Figure 3), MDL exhibits a marked superiority, achieving an accuracy of 

91.67% for a dataset size of 100, escalating to an impressive 95% for a dataset size of 500. Comparatively, 

CNN, RNN, and LSTM demonstrate lower accuracies across all dataset sizes. The precision results (Table 2 

and Figure 5) reinforce MDL’s dominance, with precision values ranging from 89.9% to 93% across different 

dataset sizes, outpacing the other algorithms consistently. 

In recall (Table 3 and Figure 4), MDL again demonstrates its prowess, achieving recall values ranging 

from 89.9% to 93%, surpassing CNN, RNN, and LSTM. With F1-scores that range from 89.9% to 93%, MDL 

continually outperforms the rest of the algorithms. This level of performance is further reinforced by the F1 

score, which can be observed in Table 4 and Figure 5. These numerical analyses prove that MDL performs 

well in the classification of SA, showing that it is better over a wide range of dataset sizes and demonstrating 

its promise as an accurate tool in the field of SA. After that, it is of tremendous significance to accept the 

possibility of boundaries and examine the different paths of research that could be explored to recognize these 

conclusions better. 
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5. Conclusion and future work 

The research presents a cutting-edge method for analyzing and generating sentiments in the complex field 

of Polyphonic Music (PM), where frequent melodies intersect. The anticipated Multimodal Deep Learning 

(MDL) background uses innovative Deep Learning (DL) methods, such as Mel Frequency Cepstral 

Coefficients (MFCC) and Chroma features, to attain high precision and sensitivity in SA recognition. By 

combining dimensionality-saving approaches, mainly Stacked Autoencoders (SAE), one can successfully 

manage computational complexities while sustaining high performance. After systematic testing and 

assessment, the MDL model exceeds current practices by finding the maximum level of accuracy in precisely 

identifying and classifying sentiment states in PM. This investigation makes a valuable input to the Music 

Information Retrieval (MIR) field and creates a state-of-the-art basis for refining Sentiment Analysis (SA) and 

generation in the complex background of PM compositions. The results highlight the use of the MDL model 

in increasing the boundaries of accuracy, precision, recall, and F1 score, representing a distinguished 

improvement in the computational knowledge of sentiment refinements in PM. In order to ensure the validity 

of the projected method, it is vital to conduct empirical studies in future work. Conducting thorough 

experiments on a standard of PM tests, encompassing many types and sentiments subtleties, will improve the 

strength and pertinence of the results. 

Furthermore, the study can be expanded to thoroughly investigate the influence of autoencoders, 

examining different structures and setups to get the most effective Feature Extraction (FE). Incorporating 

further sophisticated Machine Learning (ML) techniques, such as Deep Neural Networks (DNN), can 

significantly augment the effectiveness of SA systems. 
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