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ABSTRACT 

Brain tumors represent a critical and severe challenge worldwide early and accurate diagnosis is necessary to 

increase the predictions for individuals with brain tumors. Several studies on brain tumor mapping have been conducted 

recently; however, the methods have some drawbacks, including poor image quality, a lack of data, and a limited 

capacity for generalization ability. To tackle these drawbacks this research presents a distributed optimizer tuned 

explainable AI classifier model for brain tumor mapping from histopathological images. The foraging gyps africanus 

optimization enabled explainable artificial intelligence (FGAO enabled explainable AI) combines the advantages of the 

explainable AI classifier model and hybrid spatio-temporal attention-based ResUNet segmentation model. The hybrid 

spatio-temporal attention-based ResUNet segmentation model accurately segments the histopathological images that 

leverage both Spatio-Temporal attention and the ResUNet model which addresses performance degradation problems. 

The nature-inspired algorithms draw inspiration from the foraging and hunting traits which optimize the tunable 

parameters of the explainable AI classifier. The SHAP model in the explainable AI translates the insights into 

predictions that produce explanations for the decisions made by the CNN model which fosters end-user confidence. The 

experimental results show that the FGAO-enabled explainable AI model outperforms the conventional approaches in 

terms of accuracy 95.75%, sensitivity 95.10%, and specificity 96.32% for TP 80. 

Keywords: brain tumor mapping; explainable AI classifier; hybrid spatio-temporal attention-based ResUNet 

segmentation; foraging gyps africanus optimization; SHapley Additive exPlanations 

1. Introduction 

According to statistics, brain tumors rank as the tenth leading 

cause of death for both men and women[1] which arises when 

aberrant cells in the brain or spinal cord begin to develop 

unnecessarily. Based on histology and genetic characteristics, the 

World Health Organization (WHO) classified brain tumors in 2016 

into four grades (I, II, III, and IV), ranging from low to high 

grade[2,3]. When the tumor is at a more advanced stage, the prognosis 

for brain cancer is minimal[4]. Thus, timely and precise cancer 
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diagnosis and grade estimation contribute to better disease prognosis and treatment planning. The main tests 

for tumor diagnosis and grade estimation include neurological examination, imaging, biopsies, and 

biomarkers[5]. When a tumor is small in the primary stage, which is referred to as benign[6]. When a tumor 

reaches the secondary stage it is referred to as malignant since it has grown beyond benign boundaries and is 

greater in size[7]. Numerous techniques are employed to treat brain tumors[8], radiation therapy is helpful in 

the benign stage, and a patient can live without surgery[9]. Conversely, the malignant stage is dangerous and 

responds well to radiotherapy and chemotherapy[10]. 

Computer-aided cancer diagnosis and grading systems rely heavily on the segmentation of histological 

images into meaningful segments. In the medical image domain, imaging segmentation is used to divide an 

image into two sections. The act of spitting out an image results in its being separated into portions, which 

enhances its representation and increases analytically usefulness. However, this could be a difficult problem 

to tackle because medical images often contain minor differences, certain types of noise, and absent or 

contested barriers. Computed tomography (CT) and magnetic resonance imaging (MRI) can be used to study 

the interior structure of the brain. Compared with CT images MRI scans are more valuable since they 

provide information on the texture and structure of the tumor[11]. The position, dimensions, and form of the 

detective tissues can be readily determined by MRI. A few drawbacks of these methods include their high 

cost and computation time[12]. Diverse investigators have offered distinct approaches for categorizing brain 

tumors. Image segmentation has been applied to the identification of anomalous brain tumors in several 

contexts. Individual MRI tumor imaging investigations require various algorithms for patient-specific 

training dataset. Accurate image segmentation, or fully automatic extract segmentation, is one of the open 

challenges. 

Deep learning (DL) approaches have recently been investigated for the segmentation of histology 

images and have shown better results than previous techniques. Using a deep CNN and transfer learning[13] 

extracted features that an SVM classifier used to segment images of the brain’s histology[14]. Even though the 

DL models were effective in learning features they typically need a large set of training images and related 

annotations, which can be challenging to collect the data images due to the tissue structures. To tackle this 

issue high-resolution histopathological image analysis has recently been made possible by advancements in 

digital pathology, giving researchers access to additional information from CAD image analysis which 

enables the full slide image to display precise quantitative histomorphometry features, such as histologic 

primitives (such as glands and nuclei) from a typical hematoxylin and eosin (H & E) slide[15]. A recent study 

improved diagnostic accuracy and shortened the screening time for prostate cancer by applying the 

contouring of various cells from histopathology images[16]. The traditional approaches such as SVM, ANN, 

DCNN, and LSTM have some limitations including high levels of anatomical diversity, image quality 

concerns, and the requirement for domain-specific expert interpretation. 

Key contribution of the paper: 

The key contribution of this paper is to introduce a brain tumor mapping model using FGAO-enabled 

explainable AI. The hybrid spatio-temporal attention-based ResUNet segmentation utilized in this paper 

minimizes the vanishing gradient problems and produces accurate segmented brain tumor histopathological 

images. The Spatio-Temporal ResNet features enhance the feature extraction capacity of the proposed model 

which leads to precise mapping of brain tumors. The explainable AI classifier incorporates the advantages of 

an explainable mechanism along with the CNN model that accurately maps the brain tumor images as 

Glioma or Mature B cell Lymphomas. 

⚫ Foraging gyps africanus optimization (FAGO): The hunting and foraging traits of African vultures and 

bald eagles served as inspiration for the FAGO algorithm that enhances the convergence speed of the 

optimization algorithm. 

⚫ Foraging gyps africanus optimization enabled distributed explainable AI classifier (FAGO enabled 
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explainable AI): The integration of the FAGO algorithm with the explainable AI classifier accurately 

maps the brain tumors. By optimizing the classifier’s hyperparameters, the FAGO algorithm lowers the 

number of local optimal problems and improves the accuracy of brain tumor mapping. 

The remaining sections of the articles are organized as follows, section 2 describes relevant works for 

brain tumor mapping; section 3 discusses the suggested technique for brain tumor mapping using a 

distributed optimizer explainable AI classifier; section 4 displays the results and discusses the model; and 

section 5 concludes with the research’s future directions. 

2. Literature review 

The literature review explores the limitations associated with the prior research employed for brain 

tumor mapping. 

Xu et al.[17] designed a tissue cluster-level graph model (tiscut) for tissue segmentation based on 

histological images. The graph model initially constructs clusters based on spatial distance which solves the 

segmentation problems and effectively enhances the efficacy of the model. The tissue model may increase 

the system complexity and may produce false predictions. Cheung et al.[18] the authors utilized the GLCM 

features-based histopathological image analysis for brain tumors. The SVM model is employed for brain 

tumor classification. The model leverages the 12 GLCM and 3 GLRLM image features which improves the 

classification accuracy. Due to tumor heterogeneity, the performance of the model should be improved, and 

the SVM training process requires a vast amount of annotated data. 

Pei et al.[19] presented a 3D CNN model which utilized histopathology images. The segmentation is 

processed using the encoding-based 3D-NN which enhances the models’ performance. However, the dice 

score difference between the validation and testing datasets was large due to the data imbalance problem. 

The ROI extraction increases the computational expensive. Im et al.[20] utilized a DL framework for grading 

tumors. The authors used a pretrained ResNet 50 V2 framework for Glioma screening which enhanced the 

grading accuracy. However, the model was prone to overfitting issues and class imbalance problems. 

Zadeh Shirazi et al.[21] used a deep CNN model (deep survNet) survival rate classification. The model 

used histopathological images; the patches are extracted using region of interest extraction which identifies 

the prominent features present in the image. The model can correctly predict the short and long-survival 

tumors and identify the new targets for glioblastoma. However, the CNN model may need a vast amount of 

data for validation and testing also reduces the generalization ability of the model. Vankdothu and 

Hameed[22] implemented a Recurrent (RCNN) for brain tumor classification, which utilized an improved k-

means clustering algorithm that visualizes the regions of tumors. The GLCM features enhance the feature 

extraction capability of the model. However, the model has some limitations such as complexity, and 

sensitive to local image structures. 

Sharif et al.[23] designed a classification model using a multiclass SVM classifier. The pre-trained 

Densenet201model is utilized for feature extraction; the feature selection process was carried out using two 

different techniques such as Entropy-Kurtosis-based High Feature Values (EKbHFV) and genetic algorithm 

(MGA) which selects the optimal features. The major limitation associated with this research is the reduction 

of important features that impact the classification accuracy. Mudda et al.[24] designed a brain tumor 

detection model based on textual features. The integration of GLRLM and CS-LSP features identifies the 

textural relationships between the pixels in the input image that enhance the model’s performance. However, 

the use of a Feed-Forward Back Propagation NN may be prone to overfitting issues. 

Challenges 

⚫ The unsupervised segmentation methods did not use ground truth images which constrained the number 
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of unique cluster labels. 

⚫ An SVM classifier relies on the quality of the data; noise or undesired features in the input image could 

potentially impact the classification accuracy. Additionally, the GLCM and GLRLM features may 

increase computational expenses. 

⚫ The k-means clustering algorithm was sensitive to initial conditions which cannot handle the 

Categorical Data. 

⚫ Pre-trained Densenet201 lacks explicit domain-specific knowledge, which limits its ability to provide 

meaningful insights. 

⚫ The 3D CNN model can be computationally intensive; due to the data imbalance problem, the dice 

score difference between the validations and testing datasets was large. 

3. Proposed method for brain tumor mapping using distributed optimizer 

based explainable AI classifier 

 
Figure 1. Block diagram of distributed optimizer tuned explainable AI classifier for brain tumor mapping model. 

Brain tumors remain a global health concern which increases the mortality rate, early detection and 

accurate classification are prominent to improve the survival rates and minimize long-term complications. 

Numerous kinds of research were developed for brain tumor mapping using various imaging techniques. Few 

researchers only utilized histopathological images for brain tumor mapping; but there are several limitations 

with the traditional methods such as overfitting and data imbalance. Additionally, the DL classifiers increase 

the system’s complexity. To tackle these issues the paper proposed a distributed optimizer tuned explainable 

AI classifier for brain tumor mapping. Initially, the histopathological images were collected from the TCGA 

database. The input images are subjected to preprocessing and region-of-interest (ROI) extraction. The 

extracted images are subjected to a hybrid spatio-temporal attention-based ResUNet segmentation which 

produces accurate visualization of brain tumor regions and also increases the segmentation accuracy. The 

segmented images are further provided as input to the feature extraction process, which extracts the 

statistical features, and contributed spatio-temporal ResNet-101-based feature flow-based features. The 
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explainable AI classifier, which is built on a distributed optimizer, receives the features and uses the FAGO 

algorithm to optimize its tunable parameters. The trained model is tested through test slices and the model 

produces precise output of brain tumor maps. The block diagram of the model is depicted in Figure 1. 

3.1. Input 

In this paper, the histopathological images of brain tumors are collected from the database (256, 256.3) 

is provided as input to the model, 

𝑆 = {𝐻1 , 𝐻2, . . . , 𝐻𝑛} (1) 

where 𝑆 represents the database and {𝐻1, 𝐻2 , . . . , 𝐻𝑖 , . . . , 𝐻𝑛} represents the total number of images present in 

the dataset. 

3.2. Pre-processing and ROI extraction 

For medical imaging tasks preprocessing is an essential step that improves the image quality. In this 

paper for brain tumor mapping the input image is preprocessed using image enhancement technique. Image 

enhancement aims to enhance the content visibility of the image[25], by adjusting the brightness and contrast 

the quality of the histopathological image will be increased. Additionally, ROI extraction is performed in this 

stage which reduces the feature extraction time and identifies the most relevant tumor region. The 

preprocessed image is denoted as 𝐻𝑖
∗
 which has the dimension of (256, 256,3). 

3.3. Hybrid spatio-temporal attention (STA)-based ResUNet segmentation 

The process of segmenting the input image into distinguishable sections that are important for tumor 

mapping is known as segmentation. In this paper, the hybrid spatio-temporal attention-based ResUNet model 

is utilized for segmentation which improves the robustness of the model. The segmentation technique 

leverages the advantages of spatio-temporal attention along with the ResUNet model. The conventional 

segmentation methods have some limitations such as time complexity, and sensitive to noises present in the 

image. Additionally, prior segmentation methods may struggle with low-quality images such as artifacts, 

shadows, and non-uniform backgrounds may reduce the effectiveness of segmentation. To tackle these 

drawbacks the paper introduces a hybrid STA-based ResUNet model. The utilization of UNet along with the 

Residual blocks addresses the degradation problems. The deep residual units incorporated in this paper make 

the deep network easy to train and the skip connections enable the propagation of information without 

degradation[26]. The residual block consists of multiple parallel atrous convolutions with different dilation 

rate that enables a better understanding of scales. The integration of the spatiotemporal attention layer in 

ResUNet enhances the feature extraction capability of the model. The architecture of the Hybrid Spatio-

Temporal attention-based ResUNet segmentation is illustrated in Figure 2. The hybrid STA-based ResUNet 

segmentation model is an encoder-decoder paradigm that consists of 6 convolutional layers followed by a 

STA layer in an encoder path. Followed by the convolutional layer the spatio-temporal attention layer is 

employed to extract relevant features. Followed by the attention layer the residual blocks are employed 

which eliminates the vanishing gradient and exploding gradients[27]. 

The input image (256, 256,3) is fed into the convolutional 2D layer which has the filter size 16 and 

kernel (1 × 1), the extracted features 𝑙𝑎𝑏  are provided into the spatial-temporal attention layer (1 × 1 × 3 ×

16) , the spatial attention mechanism calculates the dynamic weighted sum of the local features 

{𝑙𝑎1, . . . , 𝑙𝑎𝑛}the spatial local feature is 𝜙[𝐿] calculated as[28]: 

𝜙𝑎[𝐿] = ∑ 𝛼𝑎𝑏
(𝑡)

𝑛

𝑎=1

𝑙𝑎𝑏 (2) 

where  𝛼𝑎𝑏
(𝑡)

 represents the spatial attention weights, to calculate attention weights the local features are 

normalized using the following equation: 
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𝛼𝑎𝑏
(𝑡)

= exp{𝑒(𝑡)
𝑎𝑏} / ∑{𝑒(𝑡)

𝑎𝑏}

𝑛

𝑏=1

 (3) 

𝑒(𝑡)
𝑎𝑏 = 𝑤𝑙

𝑇 tanℎ(𝑊𝑒𝑘𝑡−1 + 𝑈𝑒𝑣𝑙𝑎𝑏
+ 𝑧𝑒) (4) 

where represents the previous layer output, 𝑤𝑙
𝑇 , 𝑊𝑒, 𝑈𝑒denotes the weights, and the bias is represented as 

𝑧𝑒 . The spatial attention mechanism helps the decoder to selectively catch the relevant regions concerning the 

increasing attention weights. 

 
Figure 2. Hybrid spatio-temporal attention based ResUNet segmentation. 

Temporal attention is employed to calculate the dynamic global and local features, 

𝜑𝑡(𝑉𝐺) = ∑ 𝛽𝑎
(𝑡)

𝑑

𝑎=1

𝑣𝑔𝑎 (5) 

𝜑𝑡(𝑉𝑀) = ∑ 𝛿𝑎
(𝑡)

𝑑

𝑎=1

𝑣𝑚𝑎 (6) 

𝜑𝑡(𝜙𝑎[𝐿]) = ∑ 𝛾𝑎
(𝑡)

𝑑

𝑎=1

𝜙𝑎 [𝐿] (7) 

where 𝛽𝑎
(𝑡)

, 𝛿𝑎
(𝑡)

, 𝛾𝑎
(𝑡)

 are represented as temporal attention weights, the temporal features are fused using the 

following equation: 
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𝜑𝑡(𝑉) = 𝜑𝑡(𝑉𝐺) + 𝜑𝑡(𝑉𝑀) + 𝜑𝑡(𝜙𝑎[𝐿]) (8) 

Finally, each will be provided as input to the residual blocks of [1 × 1 × 3 × 16]. 

The extracted features provided into the residual blocks which consist of batch normalization and ReLU 

activation functions. The proposed architecture consists of 6 convolutional and spatiotemporal attention 

layers. After the encoder path, a PS pooling operator is employed. The first input is divided into four equal 

parts in channel (feature) space by the PSP Pooling operator. The execution of the maximum pooling 

function in consecutive input layer splits, namely in 1, 4, 16, and 64 partitions. The up sampling procedure in 

the decoder section is carried out by the nearest neighbor’s interpolation, which is followed by a normed 

convolution with a kernel size of 1. The network’s resolution is increased via the batch normalization layer 

to prevent the segmentation mask’s chequerboard artifact. The segmented image [1,256, 256,3]  is 

represented as 𝐻𝑖
𝑆  

3.4. Feature extraction 

Feature extraction is a fundamental task for image analysis models, in this paper, the following 

statistical and spatio-temporal ResNet101 features are extracted from the histopathological brain tumor 

images. 

3.4.1. Spatio-temporal ResNet101 

The paper proposed a novel feature extraction technique known as spatio-temporal ResNet101, which 

combines the advantages of the spatio-temporal attention mechanism with the pre-trained ResNet101 model. 

The spatio-temporal ResNet101 selects significant key frames and features from the image in an adaptive 

manner with the goal of enhancing the models feature extraction capability. The architecture of the spatio-

temporal ResNet101 is depicted in Figure 3. The input with the dimension of [1,256, 256,3] is fed into the 

convolutional layer. To maintain the temporal complexity for each layer, ResNet divides the feature map size 

in half and adds twice as many filters to the layers with the same output feature map size. The architecture 

uses a stride of two when convolving layers to do down sampling directly. A completely linked layer with 

SoftMax turned on and a global average pooling layer mark the end of this ResNet[29]. The features extracted 

from the spatio-temporal ResNet101 are represented as 𝐹𝑅 with the dimension of (1 × 100). 

 
Figure 3. Spatio-temporal ResNet101 architecture. 

3.4.2. Statistical features 

The statistical features such as mean, variance, standard deviation, kurtosis, skewness, and entropy 

features are extracted from the segmented images[30], which are mathematically discussed as follows: 

a) Mean (𝜇𝐵 ): The average of the image’s pixel values is determined by a measurement called mean, 

which can be calculated as: 

𝜇𝐻 = ∑ ∑
𝑞(𝑐, 𝑑)

𝑢𝑣

𝑣

𝑑=1

𝑢

𝑐=1

 (9) 

where the pixel intensity value of the pixel (𝑐, 𝑑) is represented as 𝑞(𝑐, 𝑑), 𝑢𝑣 represents the window size. 
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b) Standard deviation (𝜎𝐵): The measure of the mean distance between the pixel value and the mean is 

called the standard deviation. 

𝜎𝐵 = √∑ ∑
𝑞(𝑐, 𝑑) − 𝜇𝐵)2

𝑢𝑣

𝑣

𝑑=1

𝑢

𝑐=1

 (10) 

c) Variance (𝑉): variance is defined as the mean of the squared deviations between each pixel value and 

the mean value. 

𝑉 =
1

𝑛
∑(𝐻𝑖

𝑆

𝑛

𝑐=1

− 𝜇𝐵) (11) 

where a number of samples are represented as 𝑛, 𝐻𝑖
𝑆  denotes the input. 

d) Skewness: Skewness (𝑆𝐾) is defined as a metric that evaluates the asymmetry in the distribution of 

pixel intensity. 

𝑆𝐾 =
1

𝑛
∑

(𝐻𝑖
𝑆 − 𝜇𝐵)3

𝜎𝐵
3

𝑛

𝑐=1

 (12) 

e) Kurtosis (𝐾𝐵): kurtosis is the stability of the distribution which can be calculated as: 

𝐾𝐵 =
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑

(𝐻𝑖
𝑆 − 𝜇𝐵)

𝜎4
𝐵

− 3

𝑛

𝑐=1

 (13) 

f) Entropy (𝐸𝑛): The randomness or uncertainty in the texture is measured using entropy. 

𝐸𝑛 = ∑ ∑ 𝑞(𝑐, 𝑑) log2 𝑞 (𝑐, 𝑑)

𝑣

𝑑=1

𝑢

𝑐=1

 (14) 

The statistical features are concatenated as [𝐹𝑆 = 𝜇𝐵‖𝜎𝐵‖𝑉‖𝑆𝐾‖𝐾𝐵‖𝐸𝑛] with the dimension [1 × 9] of 

the statistical and spatio temporal ResNet101 features [1 × 109] is fed into the explainable AI classifier. 

3.5. Distributed optimizer tuned explainable AI classifier for brain tumor mapping 

The distributed optimizer-tuned explainable AI classifier for brain tumor mapping aims to make AI 

systems’ decision-making processes transparent and intelligible. An AI model called XAI is designed to 

make decisions, reasoning, and goals understandable to the average end user. In this paper, the distributed 

optimizer-tuned explainable AI classifier integrates the power of both explainable AI and the CNN 

architecture for brain tumor prediction and classification reduces the biases, and enhances accuracy. Figure 

4 illustrates the architecture of the distributed optimizer-tuned explainable AI classifier. Initially, the input 

image is provided into the Grad CAM++ which calculates the gradients that produce a better visual 

representation of predictions[31], the saliency map generated from the is mathematically represented as: 

𝐻𝑐,𝑑
𝑞 = 𝑟𝑒𝑙𝑢 (∑ 𝑤𝑙

𝑞𝑀𝑐,𝑑
𝑙

𝑙

) (15) 

where 𝑀𝑙 represents the visualization of l-th the feature map, and 𝑞 represents the class, 𝑤𝑙
𝑞  represents the 

weights. 

The saliency map generated from Grad CAM++ with the dimension of [1 × 109 × 1 × 1] is fed into the 

CNN model which contains convolutional, pooling, and fully connected (FC) layer. The convolutional layers 

are utilized for feature extraction and the dimensionality reduction is performed using pooling layers. The 

final stage CNN is represented by the high-level abstraction that the FC layers produce after receiving the 

mid- and low-level information. The SoftMax activation function is used to provide the classification scores. 

Every score for a particular occurrence specify the likelihood of a particular brain tumor[32]. The weight-
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sharing feature of CNN lowers the quantity of trainable network parameters, which improves generalization 

and prevents overfitting. The model output is extremely structured and dependent on the retrieved features 

due to the concurrent learning of the feature extraction and classification layers. 

The generated feature scores are also provided to the SHAP model which is the well-known explainable 

AI technique that describes the results of machine learning models and is called SHapley Additive 

exPlanations (SHAP). The model offers a way to gauge how each model component affects a particular data 

point’s outcome which can assist in understanding the features and why a model produced a specific 

prediction[33]. SHAP calculates the shapely values of features by computing the marginal contributions. 

𝜑𝐹𝑓

𝑚 = 𝑓 (𝑧+𝐹𝑓

𝑚 ) − 𝑓 (𝑧−𝐹𝑓

𝑚 ) (16) 

where the marginal contribution with the feature 𝐹𝑓 is represented as 𝑓̂ (𝑧+𝐹𝑓

𝑚 ), and marginal contribution 

without the feature 𝐹𝑓  is denoted as  𝑓 (𝑧−𝐹𝑓

𝑚 ) , shapely value is calculated for the input data point  𝑝  is 

described as: 

𝜑𝐹𝑓
(𝑝) =

1

𝑁
∑ 𝜑𝐹𝑓

𝑚

𝑁

𝑚=1

 (17) 

Through the application of SHAP, model insights can be translated into predictions, enabling the 

identification and correction of biases, improving performance, and fostering end-user confidence[34]. The 

SHAP library explains the prediction made by the CNN model; the CNN provides output prediction of two 

classes named Glioma or Mature B cell Lymphomas. The classifier parameters are tuned using the FGAO 

algorithm. 

 
Figure 4. Distributed optimizer tuned explainable AI classifier architecture. 

3.6. Foraging gyps africanus optimization algorithm 

Motivation: 

The FGAO algorithm draws inspiration from the foraging traits of bald eagles[35] along with the 

navigation and living characteristics of vultures[36]. The algorithm avoids local convergence problems while 

improving brain tumor mapping and fine-tuning the classifier’s tunable parameters. 

Inspiration: 

The bald eagle follows a unique strategy for foraging which acts as inspiration for the algorithm. The 

eagles choose a search region during the first phase of their search. During the second phase, the eagles scour 

the designated area for food. The eagles select and strike a victim during the third stage. Bald eagle 

movement in all three phases is dependent upon a central location. The eagles travel from the center point to 

the designated search area in the first phase. The eagles search the area surrounding the center point and 

inside the search space in the second phase. In the third phase, the eagles take off from the search area’s 
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center and fly in the direction of their prey[37]. The navigation and living traits inspired by the gyps africanus 

(also known as African vultures), based on the circular movements in the sky, the vultures constantly travel 

to get better food sources. The quality position of the vultures’ is obtained by the optimal value of the 

feasible solutions’; the best and first vulture is identified as the best solution; the second best vulture is 

defined as second solution. Specifically, all vultures are located nearer to other vultures to avoid local 

optimum. The combined algorithm enhances the mapping accuracy of the explainable AI classifier. 

Initialization: 

The tunable classifier parameters such as weights and biases are initialized in this phase which is 

represented as 𝑃𝑡. 

Fitness evaluation: 

In this phase, each individual solution in the population has its fitness value, and the fitness function is 

used to determine which solution is optimal. The fitness function is calculated as: 

𝐹𝑖𝑡(𝑃𝑡) = max(accuracy(𝑃𝑡)) (18) 

Parameter update: 

The parameters of the algorithms are updated based on the following stages. 

Case (i): Boundary selection 𝑅 < 0.5. 

The search lies within the search boundary and the peculiar idea is there is a need for a best position 

within the boundary to execute the search. This is necessary because eagle needs energy for food hunt which 

cannot be lost due to the wrong selection of search space. 

𝑃𝑡+1 = 𝑃𝑝𝑗best
(𝑡−𝑧)

+ 𝜀1 × 𝑟(𝑃mean
𝑡 − 𝑃𝑗

𝑡) (19) 

where 𝑃best
(𝑡−𝑧)

 represents the best solution based on past experience, the current position of the eagle is 

represented as 𝑃𝑗
𝑡, 𝑟 is the random number [0, −1], and the constant parameter is denoted as 𝜀. 

Case (ii): Knowledge sharing 𝑅 ≥ 0.5. 

In this phase, the solution executes the search based on the permanent knowledge-sharing phenomenon 

from neighbors. 

𝑃𝑡+1 = 𝑃𝑡 + 𝑟2𝑠2(𝑃ℎ
𝑡 − 𝑃𝑗

𝑡) + 𝑟3𝑠3(𝑃𝑃𝑗best
𝑡 − 𝑃𝑗

𝑡) − 𝑟4𝑠4(𝑃𝑔best
𝑡 − 𝑃𝑗

𝑡) + 𝜀2𝑃𝑗
𝑡−1 + 𝜀2(1 − 𝜀2)𝑃𝑗

𝑡−2 +
1

6
𝜀1(1 − 𝜀2)(1 − 𝜀2)𝑃𝑗

𝑡−3  
(20) 

The movement of the vulture 𝜀1 and 𝜀2 are calculated as: 

𝜀1 = 𝑃𝑡
1best(𝑗) −

𝑃𝑡
1best(𝑗) × 𝐾(𝑗)

𝑃𝑡
1best(𝑗) − 𝐾(𝑗)2

× 𝑓 

𝜀2 = 𝑃1best(𝑗) −
𝑃𝑡

2best(𝑗) × 𝐾(𝑗)

𝑃𝑡
2best(𝑗) − 𝐾(𝑗)2

× 𝑓 

(21) 

where 𝑓 represents the rate of vulture satiation, current vector position is denoted as 𝐾(𝑗), 𝑃𝑡
1best(𝑗) and 

𝑃𝑡
2best(𝑗)  represents the first and second best solutions in the current iteration. The rotational flight is 

calculated using the following equations: 

𝑠3 = 𝑃𝑃𝑗best
𝑡 × (

𝑟𝑎𝑛𝑑5 × 𝐾(𝑗)

2π
) × cos(𝐾(𝑗)) (22) 

𝑠4 = 𝑃𝑃𝑗best
𝑡 × (

𝑟𝑎𝑛𝑑6 × 𝐾(𝑗)

2π
) × cos(𝐾(𝑗)) (23) 

where 𝑟𝑎𝑛𝑑5 and 𝑟𝑎𝑛𝑑6 represents the random number between 0 and 1. 
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𝑠2 = 𝑓𝑖𝑡(𝑃𝑔) + 𝑓𝑖𝑡(𝑃𝑡
𝑗1,global) (24) 

where 𝑓𝑖𝑡(𝑃𝑔) represents the fitness of the global solution and the fitness of the neighbors best solution is 

represented as 𝑓𝑖𝑡(𝑃𝑡
𝑗1,global). 

Case (iii): Exploitation 𝑅 > 1. 

Looks for a better search limit outside the present boundary to explore more valid solutions, the eagle is 

aware of food abundance and recursive attacks from enemies. 

𝑃𝑡+1 =
𝑃worst + 𝑃exp

𝑡−1𝑡−2

3𝑝𝑗best11
(𝑃𝑔 − 𝑃𝑡)

 (25) 

where 𝑠1 ∈ (−1,1) represents the boundary searching limits. After this condition, the fitness of the solution 

is reevaluated. The algorithm iteratively searches for the best solution until the termination criteria are 

fulfilled. Figure 5 depicts the flowchart of the FGAO algorithm. 

 
Figure 5. The flowchart of the FGAO algorithm. 

4. Results and discussion 

The experimental outcomes and performance evaluation of the FGAO-enabled explainable AI for brain 

tumor mapping are discussed as follows. 

4.1. Experimental setup 

The execution of the FGAO-enabled explainable AI model is carried out in PYTHON software with 

16GB RAM in windows 10 Operating systems. 

4.2. Dataset description  

TCGA dataset[38]: The dataset consists of histopathological images in two different types of slides which 

contain a total of 30,036 slides for brain tumors. 

4.3. Performance metrics 

Accuracy: Accuracy is proportion of accurately mapped brain tumors to the total number of mappings 
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the model made. 

Accuracy =
𝐵𝑝 + 𝐵𝑁

𝐵𝑝 + 𝐵𝑁 + 𝐵𝑃 + 𝐵𝑁
 (26) 

Sensitivity: The proportion of accurately mapped brain tumors to the positive cases is defined as 

sensitivity which can be calculated as: 

Sensitivity =
𝐵𝑃

𝐵𝑃 + 𝐵𝑁
 (27) 

Specificity: Specificity is defined as the ratio of correctly detected non-tumor maps to all negative 

cases. 

Specificity =
𝐵𝑁

𝐵𝑁 + 𝐵𝑃
 (28) 

4.4. Experimental outcomes 

The experimental image results of the FGAO-enabled explainable AI for the brain tumor mapping 

model are deliberated in Figure 6. 

 
Figure 6. Experimental outcomes of FGAO-enabled explainable AI model. 

The disease mapped image obtained using the FGAO-enabled explainable AI is depicted in Figure 7. 
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Figure 7. Mapped results of FGAO-enabled explainable AI model. 

4.5. Performance analysis  

4.5.1. Performance analysis with TP 

The performance analysis of the FGAO-enabled explainable AI model with TP for the corresponding 

epochs is depicted in Figure 8. The FGAO-enabled explainable AI model attains an accuracy of 92.64%, 

93.09%, 94.04%, 95.37%, and 95.75% for epochs 20, 40, 60, 80, and 100. The sensitivity of the FGAO-

enabled explainable AI model for the epochs 20, 40, 60, 80, and 100 is 92.64%, 93.49%, 92.69%, 94.31%, 

and 95.10% respectively. Similarly, the FGAO-enabled explainable AI model obtains the specificity for 

brain tumor mapping are 92.64%, 93.52%, 95.47%, 96.18%, and 96.32% for the respective epochs. 

 
Figure 8. Performance analysis with TP. 

4.5.2. Performance analysis with k-fold 

Figure 9 depicts the performance analysis of the FGAO-enabled explainable AI model for brain tumor 

mapping with k-fold value 10. The FGAO-enabled explainable AI model attains an accuracy of 91.75%, 

92.94%, 94.47%, 95.59%, and 95.64% for epoch 20, 40, 60, 80, and 100. The sensitivity of the FGAO-

enabled explainable AI model for the epochs 20, 40, 60, 80, and 100 is 91.07%, 92.21%, 93.97%, 94.16%, 

and 94.99% respectively. Similarly, the FGAO-enabled explainable AI model obtains the specificity for 

brain tumor mapping are 92.44%, 93.70%, 94.98%, 96.48%, and 96.66% for the respective epochs. 
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Figure 9. Performance analysis with k-fold. 

4.6. Comparative methods 

The brain tumor mapping models performance is compared with the traditional techniques such as 

artificial neural network (ANN)[39], CNN, principle component analysis-long short term memory (PCA-

LSTM)[40], deep CNN, explainable AI classifier[41], AVO based explainable AI classifier, BEO based 

explainable AI classifier. 

4.6.1. Comparative analysis with TP 

Figure 10 depicts the comparative analysis of the FGAO-enabled explainable AI model with 

conventional approaches with TP 80. The accuracy obtained by the FGAO-enabled explainable AI model for 

TP 80 is 95.75% which demonstrates 11.33% improvement over the conventional ANN, 11.29% over CNN, 

9.72% over PCA-LSTM, 10.98% over deep CNN, 9.51% over explainable AI classifier, 7.69% over AVO 

based explainable AI classifier, 4.67% over BEO based explainable AI classifier. The brain tumor mapping 

model attains a specificity of 95.10% which is far better than the traditional ANN, CNN, PCA-LSTM, deep 

CNN, explainable AI classifier, AVO-based explainable AI classifier, and BEO-based explainable AI 

classifier by 16.30%, 14.20%, 11.99%, 13.66%, 9.89%, 9.39%, and 4.80% respectively. The FGAO-enabled 

explainable AI model for TP 80 obtains a specificity of 96.32% which is improved over the traditional ANN 

by 11.53%, CNN by 9.92%, PCA-LSTM by 8.29%, deep CNN by 8.78%, explainable AI classifier by 

7.68%, AVO based explainable AI classifier by 4.91%, and BEO based explainable AI classifier by 4.44%. 

4.6.2. Comparative analysis with k-fold 

The comparative evaluation of the FGAO-enabled explainable AI model with the conventional 

approaches with k-fold 10 is visualized in Figure 11. The accuracy obtained by the FGAO-enabled 

explainable AI model for TP 80 is 95.64% which shows 13.76% improvement over the conventional ANN, 

11.97% over CNN, 8.31% over PCA-LSTM, 10.47% over deep CNN, 5.77% over explainable AI classifier, 

4.85% over AVO based explainable AI classifier, 5.09% over BEO based explainable AI classifier. The 

brain tumor mapping model attains a specificity of 94.99% which is far better than the traditional ANN, 

CNN, PCA-LSTM, deep CNN, explainable AI classifier, AVO-based-explainable AI classifier, and BEO-

based explainable AI classifier by 15.41%, 12.58%, 9.40%, 10.80%, 8.89%, 7.23%, and 5.36% respectively. 
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The FGAO-enabled explainable AI model for k-fold 10 obtains a specificity of 96.66% which is improved 

over the traditional ANN by 12.47%, CNN by 11.69%, PCA-LSTM by 7.58%, deep CNN by 10.48%, 

explainable AI classifier by 6.72%, AVO based explainable AI classifier by 5.50%, and BEO based 

explainable AI classifier by 5.17%. 

 
Figure 10. Comparative analysis with TP. 

 
Figure 11. Comparative analysis with k-fold. 
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4.7. AU-ROC analysis 

The AU-ROC analysis of the brain tumor mapping model using FGAO-enabled explainable AI is 

depicted in Figure 12. The analysis shows that when the error decreases performance of the model is 

increases. 

 
Figure 12. AUC-ROC analysis curve. 

4.8. Comparative discussion 

The traditional techniques employed for brain tumor mapping have several limitations because brain 

mapping is patient-specific and cannot be generalized, each patient’s brain anatomy is unique, and the 

functional anatomy may show pathology-induced atypical structure or reorganization. In the PCA-LSTM 

model errors, including false positives and false negatives, can also be introduced by a variety of factors, 

such as task design and selection, data collecting, and analysis that limit the models performance. In the 

ANN model, computational time and scanner availability are the two main practical limitations of the 

clinical context that affect MRI brain mapping for surgical planning. Selecting and extracting the optimal 

features from the input image is a challenging task for explainable AI classifiers. To overcome these 

drawbacks the paper proposed an FGAO-enabled explainable AI brain tumor mapping model that accurately 

maps the brain tumor as Glioma and Mature B cell Lymphomas. Table 1 depicts the comparative discussion 

of the FGAO-enabled explainable AI brain tumor mapping model. 

Table 1. Comparative discussion of the FGAO-enabled explainable AI brain tumor mapping model. 

Methods TP 80 K-fold 10 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

ANN 84.90 79.60 85.22 82.48 80.35 84.62 

CNN 84.94 81.59 86.77 84.20 83.04 85.37 

PCA-LSTM 86.44 83.69 88.33 87.69 86.06 89.34 

Deep CNN 85.24 82.10 87.87 85.63 84.73 86.54 

Explainable AI classifier  86.65 85.69 88.92 90.12 86.54 90.17 

AVO-based explainable AI classifier 88.39 86.16 91.59 91.00 88.13 91.35 

BEO-based explainable AI classifier 91.28 90.53 92.04 90.77 89.90 91.67 

FGAO enabled explainable AI model 95.75 95.10 96.32 95.64 94.99 96.66 

5. Conclusion and future scope 

The paper developed a brain tumor mapping model named FGAO-enabled explainable AI which 

integrates the Dl methods with the explainable AI classifier. The utilization of hybrid spatio-temporal 

attention-based ResUNet segmentation combines the power of the spatio-temporal attention module and the 
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ResUNet model that accurately segments the brain histopathological images. The spatio-temporal attention 

module enhances the model’s performance and interpretability. The spatio-temporal attention ResNet101 

features extraction model extracts the prominent features from the input image. The integration of an 

explainable AI classifier along with the SHAP method generates the explanation about the prediction made 

by the CNN model; which increases the trust between the end user and the AI system. FGAO-enabled 

explainable AI accurately maps the brain tumor into two classes named Glioma or Mature B cell 

Lymphomas. The models’ performance is compared with the conventional techniques, and the results show 

that the FGAO-enabled explainable AI classifier attains an accuracy of 95.75%, a sensitivity of 96.10%, and 

a specificity of 96.32% with TP 80 for the TCGA dataset. Looking ahead, more DL techniques and 

algorithms will be developed to increase the performance of the model in various domains. 
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