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ABSTRACT 

Deep Learning (DL) forecasts Customer Lifetime Value (CLV) and optimises CRM in current research. ML models 

can be adapted and used alongside CRM methods to recognise customer behaviour anomalies amid numerous customer 

relationships, heterogeneous statistics, and time-sensitive data. This technique allows companies to maintain customers 

and improve profit, advertising, and confidence, divided by income. First, the study recommends a multi-output Deep 

Neural Network (DNN) model for predicting CLV. The suggested framework was measured with multi-output Decision 

Tree (DT) and multi-output Random Forest (RF) techniques on the same dataset. The study presents a multilayer 

supervised DL-based CLV prediction technique that enhances features on limited data, outperforming better-quality 

goods in marketing effectiveness and client lifetime value. The research explores using CLV prediction in personalized 

customer experiences, highlighting its potential to enhance CRM strategies by incorporating dynamic variables and 

current data for improved accuracy. The Deep Neural Network model has an acceptable error rate of MAPE of 10.3%, 

MSE of 11.6%, and RMSE of 12.29%, demonstrating reasonable complete error rates. 
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1. Introduction 

Both research and business have investigated Customer 

Relationship Management (CRM) since the 1980s because it can 

increase business profits and market benefits. Businesses can classify 

customers by consumption behaviour, lifetime value, and other 

parameters to calculate customer value for CRM. Successful 

marketing approaches demand empirical studies on Customer 

Lifetime Value (CLV)[1–5]. CLV is an integral measure for 

organizations because it predicts future customer value. Due to the 

accessibility of enormous customer data sets, particularly from digital 

service providers, CLV forecasting is increasing in demand. 

Organizations use this data, namely consumer buying behaviour and 
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usage of product data, to predict future consumer buying behaviour and behaviours. Online shopping is every 

day, but paying attention to customer requirements reduces time. Studying customer feedback to obtain a 

general idea or mean sentiment about a good or service provides a better and more effective online purchase[6–

10]. 

This has resulted in an essential rise in the volume of individuals making online purchases, resulting in a 

boom in the number of firms that sell items and provide products online[11–15]. The market has grown 

increasingly competitive as additional e-commerce businesses enter it. Therefore, in order to be successful 

with other businesses in the subject of e-commerce, firms must maximise the success of their company’s 

marketing ideas. 

This process is carried out to find economical customers and those more likely to adopt the company. The 

methodologies of categorization and grouping can be employed to generate clusters of customers with similar 

features based on customers’ individual and past information. 

This research designs models that predict the CLV in order to maintain existing customers. The CLV 

presents the business with a method to measure the point at which the customer is significant to the industry. 

When companies are more aware of the value their customers provide, they can use their financial resources 

properly. 

To boost economic viability, the preliminary aim of the process is to increase the number of transactions 

involving customers. A number of the strategies that are employed comprise market basket analysis, response 

analysis, and cross-sales. 

The framework was divided into four objectives to address this research hypothesis. 

1) According to the research, predicting CLV with additional variables could enhance CLV prediction and 

classification. 

2) What model is optimum for forecasting output features over CLV? 

3) What is the most accurate approach to analysing the findings of the DL model? 

4) Identify future profitable customers for multi-level e-commerce businesses. 

This paper presents a detailed measure of background studies on specific research in Section 2, details 

the proposed methodology, models used, data, explainability, and use of result measures for user segmentation 

and CLV design in Section 3. Results are presented in Section 4, and the research concludes in Section 5 and 

future work recommendations. 

2. Related works 

CLV prediction research and hybrid approaches to prediction models support our investigations. CLV is 

a crucial advertising statistic for maintaining customers and funds. It also increases value for investors. The 

authors observed that obtaining fresh consumers is costlier than supporting them in their final days, prompting 

decades of study on CLV. The above approach considers one-time purchases and long-term customer value[16–

20]. 

Binary classifier and regression approaches were employed to predict CLV in a multi-level model. They 

divided the CLV model into AOV and Freq regression models. Marketing theory suggests CLV comprises 

customer retention and sales subprocesses. By predicting these factors, marketers may recognize customers 

with a low-profit risk but excellent expected buy and implement high-value CLV[21–25]. 

The authors developed a deep neural network and zero-inflated lognormal distribution CLV integrated 

analysis method. Investors assumed low CLV implied customer loss. The platform informs business choices 

with churn, CLV predictions, average order value, and frequency. Multiple-stage modelling was employed, 

with the final CLV being the product of three sub-model outputs[26–30]. 
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Assuming customers have a set turnover risk following making a buy, the authors substitute the Pareto 

distribution with a Beta-geometric distribution. Markov Chains are valid CLV techniques since they are model-

free[31–35]. According to the researcher, Random Forest (RF) and Deep Neural Networks (DNNs) have proven 

more adaptable and efficient for matching variables to data, resulting in more reliable CLV prediction models. 

RF methods were superior to BTYD models[36–40]. 

During the 1980s, CLV became common in direct marketing research and business processes. In their 

summary of CLV studies, they classify prediction models as computation, customer base evaluation, and 

standard. Investigations utilising CLV to comprehend problems and how chief executives may impact them 

fall into the next group[41–45]. 

Conventional business marketing ignored client support for short-term sales. CRM systems and 

techniques assist businesses in performing, fulfilling, motivating, and keeping customers[46–50]. Developing and 

maintaining trustworthy, profitable clients is its primary goal. Numerous companies in both manufacturing 

and service have been employing CRM since it was first introduced. Multiple techniques have been designed 

for classifying current customers or consumer groups[51–55]. 

CRM involves databases, and its functionality and architecture determine advertising strategies. A 

database contains customer and target data obtained over time, impacting every advertising campaign[55–60]. In 

goods, pricing, advertising, methods, new client acquisition, service to the customer, sales force, client 

relationship maintenance, and study of marketing, it can be operational or strategic[61–65]. 

3. Proposed methodology 

CLV is the total present value of future projected income for each customer in the literature-based model. 

Historically, CLV prediction requires estimating each active customer’s renewal rate and projected revenue. 

This approach predicts future revenue flow in a specified time frame, including discount rates and net current 

value, which renders it beneficial for numerous uses. 

The researchers invented the RFM model in 1994 for figuring out CLV. The segments are R, F, M, and 

M. R is the most recent time the customer purchased the good, F is the number of times, and M is the total 

quantity purchased in historical time. Lower R values imply greater promotional attention and frequent 

purchases, while high R values decrease the economy. F indicates better client retention, value, and sales 

relations. M reflects customers’ overall consumption throughout the average time, having more significant 

purchases contributing to less competing product or service consumption, longer-term customers, and more 

excellent value. 

The K-means clustering method was employed in the building of this model. This technique takes 

responsibility for trying to minimise the gap between the points in a cluster and their average as much as 

possible. Moreover, it is a technique that depends on the origin and distance. A cluster is assigned points 

determined by the distance between the people who have been selected. Based on the K-means algorithm, each 

cluster has a link to its origin. Figure 1 demonstrates the procedure that ensues. 

 
Figure 1. Flow process of customer segmentation. 
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Imports of the data sets have been performed from the UCI repository. The sections contain the following 

information: User_ID and bag add list of items, bag add specifics, click on the shopping bag icon, filter by, 

image selecting, click on the account information page, click on the advertisement label, add detail request, 

and so on. This RF and DT algorithm was implemented to train the dataset in the problem (Figure 2) 

 
Figure 2. Flow process of customer weakness. 

Kaggle is the source of the raw data used for this model. There is no contrast between this dataset and the 

one mentioned in the customer segmentation module. Figure 3 refers to a flow diagram demonstrating how to 

estimate the LCLV. 

 
Figure 3. Flow process for CLV. 

4. ARIMA for CLV 

Applying an appropriate analytical model for CLV forecasting may drastically affect a business’s capacity 

to develop intelligent choices, manage resources, and boost CRM operations. The Autoregressive Integrated 

Moving Average (ARIMA) methodology is a typical CLV forecasting approach[66–70]. The deep ARIMA 

technique for forecasting and modelling time-series data is accurate. This renders it suitable for buyer 

behaviour and lifetime value prediction and analysis[71–75]. 

The ARIMA technique has been selected for CLV forecasting for multiple valid reasons. First, ARIMA 

improves historical data, which is essential for CLV study because consumer relationships and purchases 

fluctuate throughout the period. This approach may allow for buyer behaviour changes, fluctuations in demand, 

and a cyclical nature by identifying time-dependent relationships and habits in the data being analysed. 

ARIMA assists firms in forecasting CLV ratios with high accuracy[76–80]. This aim is necessary for 

intelligent choices and long-term strategy. When people predict when CLV will impact them, businesses may 

decide on more effective resource allocation and, recruitment and advertising choices[81–85]. The ARIMA 

technique is used for time series prediction in economics, banking, and CRM. Applying ARIMA to foresee 

CLV along with supporting CRM involves several variables. The data accumulates into optimal periods after 

receiving and pre-processing historical client purchases, relationships and lifetime data to deal with incorrect 

values, anomalies, and conflicts. Exploratory Data Analysis (EDA) applies mathematical methods for linearity 

assessment and graphical techniques to find time series developments, patterns, and periodicity[86–90]. Evaluate 

the variance ratio and apply ACF and PACF assessment to identify the most appropriate autoregressive and 

moving average parameters for selecting the framework. Also mentioned is periodic ARIMA. Leveraging 

analytical files, the ARIMA model is adapted to automated CLV data. The residual analysis technique verifies 
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the model integrity using MAE, MSE, and RMSE. Prediction time frames analyse predicting risk and develop 

CLV forecasts[91–95]. CRM applications using ARIMA predictions enhance client selection, loyalty, and 

allocation of resources. Personalised advertising strategies, incentive programmes, and client segmentation 

schemes employing projected CLV values are also implemented. 

ARIMA model: The CLV data model was measured after data were added to the application’s database. 

The letter ‘f’, included in the parameters, can be utilised to recognise this data. Based on the findings of specific 

authors, the ARIMA model is an example of time-series analysis that depends on prediction methods. 

Static ARIMA model iteration: The Dickey-Fuller test is a standard statistical approach to identify the 

stationary state of the autoregressive model. It analyses the null assumption that an autoregressive model has 

an initial base vs linearity or trend-stationarity. In 1979, researchers David Dickey and Wayne Fuller developed 

the test. It examines developments within sections with predictable swings and increasing associations. The 

OLS method of practical estimate requires static time series variables. 

First, study a variable’s time-series graph to find its significance. A single root test may identify a random 

pattern in a time series. Assume the first-order explanation process, Equation (1): 

𝑥𝑡 = 𝑝𝑦𝑡−1 + 𝑢𝑡𝑡 = 1, . . 𝑁 (1) 

The subsequent hypothesis investigates if the time series has a single root or is unidentified, Equation (2). 

𝐻0 = 𝑝 = 1 𝐻1: =< 1 (2) 

An autoregressive (AR) model impacts a series’ present value by its previous values. In an AR(p) model, 

a variable’s future value is determined by a linear sum of its ‘p’ last data points, a random error term, and a 

fixed factor. The mathematical description of AR(p) is Equation (3). 

𝑃𝑡 = 𝑐 + ∑  

𝑝

𝑗=1

𝜑𝑖𝑃𝑡−𝑖 + 𝜀𝑡 (3) 

Here Pt and 𝜀t are correspondingly the actual value and random error at time ‘′𝑡′,  𝜙𝑖(𝑖 = 1,2, … , 𝑝) are 

model variables, and ′c′ is a fixed. The digit of ′p′ is identified as the order of the model. Historical errors 

impact present variations from the mean in time series analysis. An AR model of order ‘p’ forecasts the next 

value by regressing the series’ past values. In contrast, a Moving Average (MA) model of order ‘q’ employs 

series errors as variables to explain—a mathematical illustration of the MA(q) model. 

In this Equation (4), ‘μ’ specifies the sequence mean, θj (for j = 1, 2, …, q) are the model’s variables, and 

‘q’ specifies the model order. Linear regressions correlating the present data versus unpredictability from 

previous research are moving average models. Linearity, or consistent variation near a set point, is essential 

for Box-Jenkins time series modelling. A static mechanism achieves statistical balance with a fixed probability 

distribution p(xt) at all periods ‘t’. Equations (5) and (6) require Regular Differencing (RD) to fix a non-

stationary series. 

𝑃1 = 𝜇 + ∑  

𝑞

𝑗=1

𝜃𝑗𝜀𝑟−𝑗 + 𝜀𝑡  (4) 

𝛻𝑃𝑡 = (1 − 𝐵𝑆)𝑋𝑡 = 𝑃𝑡 − 𝑃𝑡 − 1 (5) 

𝛻𝑃𝑡 = (1 − 𝐵𝑆)𝑋𝑡 = 𝑃𝑡 − 𝑃𝑡 − 1 (6) 

The backward shift function is symbolized as ‘BS’. The requirement for at least two standard variations 

is minimal. 

Deep neural network model 

Given the input patterns, the deep NN adapts its settings to generate more precise results while minimising 

faults. It statistically develops the desired unidentified function utilising neuron functions, with expansion 
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weights corresponding to network weights[96–100]. Essential CPU parts linked by weight ratios form ANN that 

may identify variable relationships. Four key factors impact the Deep NN model: 

 The forecasting method uses exchange value, volume, and recent exchange as input parameters and CLV 

data. It selected 500 customers. 

 Hidden Layer Count: The research has two hidden layers. 

 In the output layer, exponential and sigmoid tangent activation functions from hidden and linear layers 

are employed for transfer. 

 Due to their popularity, this study uses growth, Lonberg-Marquardt, descending gradient, phase, delta bar 

delta, and conjugate rotation techniques. 

Multilayer perceptron networks with error propagation algorithms are standard in technology. The system 

has three layers of neurons, 80% for training and 20% for testing. The neurons decreased from 1 to 50 to create 

an efficient II-layer NN. Using company information, model outcomes were given individually. 

Researchers demonstrated that linear first hyperbolic and second sigmoid tangent transfer functions and 

the Levenberg-Marquat learning function improve ANN. The number of neurons in the first and second hidden 

layers is considered. 

Based on the investigation, levenberg-Marquat learning and linear first hyperbolic and second sigmoid 

tangent transfer functions generate the ideal state of ANN. Examine the first and second hidden layer neuron 

count. 

A high Pearson correlation between R, F, and M indicates a significant relationship between dependent 

variables and all independent variables. A significant correlation between the two variables (R = 0.946; F = 

0.91; M = 0.93) suggests that both can predict the dependent variable. This demonstrates a simple, powerful 

connection among the variables. A 38.4% MAPE error indicates that the ARIMA model predicts CLV 

effectively. CLV is expected to be greater by using the ARIMA model. MAPE values suggest that the Deep 

NN model in the present investigation predicts CLV far more accurately by using the ARIMA model. 

5. Result and discussion 

The dataset comprises several attributes providing detailed information about transactions. The 

‘Invoice_Number’ attribute represents a six-digit integral number assigned to each transaction, with codes 

starting with ‘c’ indicating cancellations. ‘Stock_Number’ is a nominal attribute of 5-digit necessary numbers 

assigned uniquely to distinct products. The ‘Product_Description’ feature encompasses minimal values 

representing the tags of the products. ‘Quantity’ is a numeric value signifying the measures of each product 

per transaction. ‘Date of Invoice’ is a numeric value measuring the transaction period. ‘Cost_Per_Unit’ denotes 

the unit price of products in real (£) as a numeric value. ‘Customer_ID’ represents the customer number, a 

nominal five-digit primary identifier unique to each customer. Finally, ‘Country’ is a minimum value of the 

name of the country where the customer resides. These value schemes complete visions into transactional data 

and customer behaviour within the dataset. 

Analysing graphs provides several perspectives of the dataset. Figure 4 CLV Histogram illustrates size, 

bill date, and costs, which indicate consumer buying behaviour, sales patterns, and pricing models. Figure 5 

Data Distribution demonstrates the allocation of data collection, assisting in recognising deviations, anomalies, 

and layouts. Figure 6 Item Distribution displays item recognition, directing stock control and promotion. 

Figure 7 Analysis of MAE, MSE, and RMSE measures forecast performance of models, which is crucial in 

selecting a highly accurate approach. These statistics present an in-depth data opinion, allowing customers to 

reach smart marketing, advertising, forecasting, and stock control strategies. MAPE, MSE, and RMSE errors, 

respectively, 10.3%, 11.6%, and 12.29% in the Deep Neural Network framework. These reflect cumulative 

error ratios. Acceptable is Deep Neural Network. 
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Figure 4. CLV histogram. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Data distribution. (a) number of items; (b) date of invoice; (c) cost_per_unit. 

 
Figure 6. Item distribution. 

 
Figure 7. Comparison MAE, MSE, and RMSE. 

6. Conclusion and future work 

The companies forecast Customer Lifetime Value (CLV) and discover lucrative clients using 

mathematical models and Neural Networks (NN), fresh data collection techniques invented over the previous 
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two decades. The precision in such predictions is unclear. This paper proposes a novel Deep Learning (DL) 

business-to-business CLV forecasting technique. Segmentation of buyers by timely completion, frequency 

range, and CLV. CLV forecasts the retention of clients. Business growth raises clients through marketing 

products, statistical analysis, and review measurement. The reliant on-data Autoregressive Integrated Moving 

Average (ARIMA) estimation model calculates the Customer Life Cycle (CLV) and assists businesses in 

making recommendations. Innovative options and CRM improvements are made possible by precisely 

forecasting CLV data periodic relationships, changes, and intervals. ARIMA deals with data migration and 

inadequate past data to enhance marketing purposes, client retention, and allocation of resources. ARIMA 

models enable businesses to forecast CLV, evaluate buyer behaviour, and increase income. Data-driven 

approaches attempt to boost CLV gradually. Summary DL algorithms enhance versatility access and forecast 

the cost of services. The Deep NN system has acceptable MAPE, MSE, and RMSE errors of 10.3%, 11.6%, 

and 12.29%. 

ARIMA’s integration with cutting-edge algorithms such as ML and DL will be significant in future 

developments. Hybrid mathematical models enhance CLV forecasts. 
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