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ABSTRACT 

Integrating medical sensors and the Internet of Things (IoT) within smart healthcare has facilitated the 

development of an advanced framework known as the Internet of Medical Things (IoMT). This framework enables the 

detection and assessment of the severity of participants’ conditions. Nevertheless, local IoMT devices’ constrained 

storage capacity and computational capabilities necessitate transferring participants’ health data to different devices for 

investigation. However, this transfer poses a significant risk of privacy breaches due to the absence of complete power 

over the participant’s health information and the system’s susceptibility to various attacks. This research presents a 

Smart Agent-based Privacy Preservation and Threat Mitigation Framework (SAPPTMF) for augmenting security in 

IoMT using an intelligent agent system. The framework involves the development of a complete system model that 

spans a range of components and interactions within the IoMT ecosystem. An attacker model is developed to simulate 

various threat situations. A thorough assessment framework is used to assess the efficacy of security measures, 

encompassing both the evaluation of security measures and the decision-making process. The analytic hierarchy process 

(AHP) provides suitable weights to various security needs or criteria. The findings provide the following performance 

metrics: accuracy (94.5%), precision (91.0%), recall (93.4%), F-score (92.4%), and mean squared error (MSE) of 0.09. 
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1. Introduction to healthcare and security 

issues 

IoT has been widely implemented in smart travel, business, 

grid, and smart cities[1–3]. Among these applications, IoT technology 

in healthcare, specifically in the IoMT, has garnered significant 

interest. Using a range of wearable sensors, the IoMT framework 

has effectively incorporated sensor technologies to monitor a 

participant’s health from a distance[4]. The IoMT reduces needless 

hospital stays and reduces the stress on the healthcare system by 

establishing safe communication between medical specialists and 

participants[5]. This connectivity eventually results in significant 

time and cost savings. The exponential growth in IoT devices inside 

healthcare networks has significantly impacted the financial sector 

in recent years. The adoption of the IoMT is seeing a significant 

upward trend, with around 65% of healthcare companies worldwide 
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having used this technology. By 2025, the IoMT adoption rate will rise more than 38%[6,7]. 

IoMT devices in healthcare settings are vulnerable to many cyber threats and assaults. The healthcare 

business encounters more security vulnerabilities, around 380% more, than other industries[8]. It exhibits a 

higher exposure to data theft and is approximately 250% more vulnerable. Research shows that a significant 

majority of organizations, namely over 95%, encounter at least one security breach[9]. It has been proposed 

that the IoMT system experiences an average of 180 cyber threats reported per 1000 linked host devices[10]. 

The deployment of IoMT devices in networks without enough security consideration has been identified as 

the primary cause of concerns related to privacy, reliability, and accessibility[11,12]. These vulnerabilities 

enable hackers to unauthorized access the IoMT network, facilitating the acquisition of sensitive and 

confidential information about participants[13]. One of the significant challenges IoMT devices encounter is 

concerns around safety and confidentiality. 

The challenges in the available methods are listed below: 

• IoT devices’ constrained local storage and computational capabilities provide limitations for processing 

health data[14]. 

• One potential concern is the risk of privacy breaches resulting from the sharing of data remotely and the 

limited control over participant data. 

• The susceptibility of networks to different forms of cyberattacks[15]. 

• The existing frameworks for the IoMT suffer from inadequate or fragmented security mechanisms. 

The proposed method makes many primary contributions to the field, and those are listed below: 

• This research introduces an intelligent agent system to enhance security in IoMT settings. 

• A comprehensive system model that encompasses the components and interactions of the IoMT 

ecosystem. 

• The Attacker Model should be expanded to replicate several possible threat situations, facilitating 

rigorous testing. 

• The analytic hierarchy process (AHP) is proposed to facilitate the equitable allocation of security 

weights, improving decision-making and prioritizing risks. 

The rest of the manuscript follows: Section 2 investigates the current knowledge and research about 

healthcare security and the IoMT. Section 3 presents the Smart Agent-based Privacy Preservation and Threat 

Mitigation Framework (SAPPTMF) and its extensive functionalities. Section 4 presents the simulation 

results obtained from the implementation of SAPPTMF and provides a comprehensive discussion of the 

outcomes attained. Section 5 concisely explains the analysis and implications and proposes prospective 

avenues for future research. 

2. Literature survey and findings 

This section examines the convergence of healthcare, the IoMT, and security. This study explores the 

dynamic environment of networked medical devices, reviewing their capacity to transform participant care 

while also considering issues related to data privacy, authentication, and protection against cyber attacks. 

Through a comprehensive analysis of existing scholarly literature, this part offers helpful information about 

the obstacles and progress that influence the incorporation of the IoMT into safe healthcare environments. 

Zaabar et al.[16] provided an innovative mechanism for managing health records called HealthBlock, which 

utilizes blockchain technology to ensure robust security measures. HealthBlock offers superior data security 

and privacy outcomes compared to conventional centralized solutions by capitalizing on the decentralized 

nature of blockchain technology. The findings from the simulation demonstrate a noteworthy reduction of 

30% in data breaches and a substantial drop of 40% in unauthorized access attempts. The benefits include 

secure data storage that is resistant to tampering and the capacity to maintain comprehensive documents 
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detailing every action for auditing purposes. However, it is essential to recognise the existence of potential 

problems in terms of scalability when using this method within a healthcare ecosystem of a significant size. 

Singh et al. proposed a conceptual framework that leverages blockchain technology to ensure healthcare data 

privacy in the IoT[17]. The approach encompasses the collaborative training of machine learning models on 

several decentralized devices, with a concurrent focus on safeguarding data privacy via blockchain 

encryption techniques. The suggested methodology successfully provides improved privacy protection, as 

simulation results demonstrate a 25% decrease in data leakage compared to standard methods. The 

framework’s key benefits are distributed model training and safe data-sharing capabilities. It is essential to 

acknowledge that the architecture also exhibits several downsides, such as its inherent complexity and the 

significant resource overhead it requires. 

Miyachi et al. proposed a unique outline to ensure privacy in the context of healthcare data via 

blockchain infrastructure[18]. This framework incorporates both on-chain and off-chain components in its 

system architecture. The proposed methodology effectively partitions confidential participant information 

from transactional details to address privacy issues while preserving the capacity to monitor and track 

transactions. The hybrid approach demonstrates effective data management and enhanced privacy, as 

simulation results indicate a 15% improvement in data confidentiality compared to current systems. The 

framework reflects its efficacy via its ability to strike a harmonious balance between privacy and openness—

however, the intricate nature of its implementation and the possible vulnerabilities that exist off-chain 

present significant obstacles. Kishor et al. provided a novel approach that utilizes fog computing, the IoT, 

and machine learning techniques to segregate healthcare data effectively[19]. Edge computing in data 

processing at the network’s periphery has been seen to boost real-time data analysis and mitigate latency. 

The benefits include effective data management and decreased data transmission. At the same time, its 

shortcomings encompass possible reliance on a reliable fog computing infrastructure and limited suitability 

for resource-constrained applications. 

Nguyen et al. proposed a robust cyber-physical system for healthcare that incorporates blockchain 

technology, Deep Belief Networks (DBNs), and ResNet models to provide enhanced security measures[20]. 

Deep learning is included into the suggested method and blockchain technologies to augment security and 

ensure data integrity inside healthcare systems. The results of the simulation demonstrate a level of accuracy 

of 95% in the detection of harmful activity. The positives of this technique include its enhanced capabilities 

in detecting and preventing threats. 

Wang et al.[21] developed eight secure calculation methods to enable the cloud server to efficiently 

perform fundamental integer and floating-point calculations, to ensure training the support vector machine 

(SVM). The suggested method ensures the trained SVM model’s safety while safeguarding the training 

data’s privacy. Equivalent classification accuracy to a generic SVM is achieved according to the 

performance test results conducted using two real-world illness data sets. 

Zhang et al.[22] suggested a parallel ECG-based authentication method to enhance the extraction that 

combines fiducial and non-fiducial-based characteristics. This technique would extract more complete ECG 

features. Improving identification efficiency in numerous ECG feature spaces is another goal of this paper’s 

parallel ECG detection architecture. The suggested verification was tested and found to work in the trials 

with the Linear Discriminant Analysis (LDA)[22]. 

Kaushal et al.[23] developed PCA to collect data characteristics. The relevant factors are selected using a 

feature selection procedure based on genetic algorithms. The suggested system is evaluated using the 

MATLAB simulation tool, and the metrics are compared to the industry standards. The proposed and current 

methods are estimated based on criteria for processing time, security level, and encryption time. 

Deepa et al.[24] developed a new approach based on machine learning for predicting the risk associated 

https://ieeexplore.ieee.org/author/37078534600
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with COVID-19. Predictions are made using sensor data using the Naive Bayes (NB) classifier. By 

classifying individuals, we may lessen the disease’s effect on the larger population of that group. Compared 

to NB, whose accuracy is 99%, RF’s is 97%. 

Liang et al.[25] suggested a decision tree (DT) categorization technique that is both efficient and secure. 

To be more precise, the clinical decision model, which is a decision tree classifier, is converted into Boolean 

vectors first. Next, we encode the Boolean vectors into encrypted indices using symmetric key encryption. 

According to the performance evaluations, DT has excellent communication, storage, and computing 

efficiency. 

This part offers a comprehensive review of several strategies and approaches to address the challenges 

associated with handling intricate healthcare data, maintaining security in the internet of things, and 

facilitating intelligent diagnosis. The simulation consistently emphasises the heightened levels of accuracy, 

energy economy, and improved privacy. In order to effectively deal with the issues of scalability, seamless 

integration, and real-time capabilities, it is essential to use certain techniques that can adapt to the always 

changing environment. These strategies will enable the development of a complete and long-lasting solution. 

The existing methods have several shortcomings, including insufficient levels of accuracy and precision, 

subpar F-scores, low recall rates, and elevated ideal error rates. The presented methodology has been 

meticulously crafted to significantly enhance the efficiency of these metrics. Within the context of the 

Internet of Medical Things (IoMT), the objective is to address these constraints and improve both security 

and efficiency. 

3. Proposed smart agent-based privacy preservation and threat mitigation 

framework 

This section presents an innovative way to enhance security in IoMT environments. An intelligent agent 

system enhances data privacy and addresses potential dangers. A system model encompasses the 

interconnections of the IoMT, while an intricate attack model simulates various hazards that arise. By 

incorporating the AHP, this methodology guarantees the equitable assessment of security factors, 

augmenting the overall resilience of the IoMT ecosystem. AHP and TOPSIS are justified by their capacity to 

effectively address complex decision-making scenarios involving several criteria and offer a comprehensive 

assessment of security measures. The systematic nature and ability to evaluate alternatives shown by these 

techniques follow the research’s objective of assessing and validating the suggested framework’s 

effectiveness in enhancing security in the context of the IoMT, distinguishing them from other approaches. 

3.1. Real-time intelligent agent 

This section provides a novel framework for the IoMT that focuses on the edge and incorporates a real-

time intelligent agent (RTIA) to analyze health monitoring data safely. This framework is shown in Figure 1. 

 
Figure 1. RTIA framework. 

https://ieeexplore.ieee.org/author/37086884419
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Figure 2. IoMT workflow for privacy preservation. 

Figure 1 illustrates the hacker’s endeavour to connect with the IoMT sensor. The hacker knew about 

the intermediate local server and used it to secure the edge server after obtaining access to the route. 

Assuming it communicates with the edge computer, the access point transfers the data to the hacker’s site. 

Along with the edge server, the attacker’s anonymous server communicates with it. When the legitimate 

connection route is hacked, the attacker has unfettered control over all sensitive health information. In 

preparation for the possibility of an assault on the IoMT infrastructure, a proposed RTIA has been 

developed. The RTIA’s operating strategy for the edge-centric IoMT architecture is shown in Figure 2. 

There are three steps in this representative’s life cycle: collecting, analyzing, and finally classifying the 

collected health monitoring data. Understanding the data and collecting it are the two main processes that are 

involved in the process of getting information for an Environmental Impact Assessment (EIA). The edge-

centric architecture has the capability to detect irregularities in the activity of the network via the use of 

Real-Time Intrusion Analysis (RTIAs). The data reader evaluates the data flow for indicators of problems 

before providing it to the network. This is done because each gateway is equipped with an agent that has 

already been deployed. The Internet of Medical Things (IoMT) design that has been presented includes a 

complete list of all of the many components that make up the framework. Real-Time Integration Architecture 

(also known as RTIA) is one of these components. Quick patient assessments and thorough treatment are 

within the realm of possibility for healthcare practitioners given enough funding. Improving the quality of 

medical care is possible with the availability of real-time alerts that clinicians may monitor, observe, and 

convey via the IoT. Since it is less of a hassle to precisely administer medications, doctors and other medical 

staff can get more done in less time. Now, from anywhere in a healthcare institution, it is possible to reliably 

and remotely monitor patients’ vital signs thanks to medical technology provided by the Internet of Things 

(IoT). Although occasions are not required, they may nonetheless take place. Neither the actual visits to 

schools nor the manual collection of data are anymore necessary. We no longer need this condition. At this 
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point, students are free to do any of these tasks by themselves that they like. Everyone involved in 

healthcare, from patients to doctors, stands to gain from the IoMT. Among other things, data is used 

effectively, management procedures are efficient, patients are involved in treatment planning, and 

evaluations are trustworthy. The IoMT allows for the instantaneous transmission of patient records and the 

alerting of healthcare providers to any changes in their patients’ health statuses. Science has made some 

more rapid strides because of this terrible occurrence. It shouldn’t matter how many Internet of Things 

devices there are; what matters is that people’s private information and data is protected. By establishing 

stringent security protocols, healthcare institutions can safeguard their patients’ private information from 

identity thieves and hackers. Combating cyberattacks and implementing safety measures are joint efforts 

necessary to guarantee the IoMT’s security. The likelihood of unauthorised users gaining access to hospital 

networks and compromising IoMT equipment would significantly. This crucial management system consists 

of two tiers. To keep all patient information safe, the technique employs encryption keys. On the other side, 

the intermediary layer enables the speed and security of IoMT device connections. Encryption of patient data 

must be a top priority at all levels. 

• Information reader: 

The information reader incorporates a lightweight monitoring program to get data from diverse network 

devices. To understand network traffic, properly arranged data segregated is afterwards transferred to the 

following step. 

• Information collection: 

The information collection part of the agent activities serves as a mechanism for capturing data, namely 

flow and service-based network activity. The packet sent is analyzed to extract valuable data on its 

characteristics, enabling the detection of irregularities within the network’s data flow. Afterwards, the data is 

delivered to the information processing department to extract trends. 

• Data processing: 

During an RTIA, the data set is generated, with the data within the group exhibiting homogeneity based 

on the period. The temporal organization of data enables the architecture to effectively manage the 

transmission of information from sensors to the IoMT architecture. The information is categorized according 

to the specific medical sensors used. 

• Attribute selection: 

RTIA chooses characteristics by identifying and selecting pertinent attributes associated with the 

patterns while removing extraneous qualities. The RTIA incorporates an updated correlation-based choice of 

technique to determine the most crucial attribute for each design. The calculation of the relationship between 

the two characteristics, 𝐹1 and 𝐹2, is performed in Equation (1). 

𝐶(𝐹1, 𝐹2) =
∑ (𝐹1 − 𝑘1)(𝐹2 − 𝑘2)

𝑁
𝑖=0

√∑ (𝐹1 − 𝑘1)
𝑁
𝑖=0 + √∑ (𝐹2 − 𝑘2)

𝑁
𝑖=0

 
(1) 

The 𝑘1, and 𝑘2 denote the average values corresponding to two distinct attribute values. The correlation 

coefficient 𝐶(𝐹1, 𝐹2) represents the relationship between two different characteristics. It is computed by first 

calculating the means of the traits, denoted as 𝑘1 =
∑ 𝐹1

𝑁
𝑖=0

𝑁
 and 𝑘2 =

∑ 𝐹2
𝑁
𝑖=0

𝑁
. The correlation function yields 

values denoted as 𝐶(𝐹1, 𝐹2)that range from +1 to −1. A number near +1 signifies a high similarity between 

the variables, while a value relative to −1 suggests a significant dissimilarity. Therefore, health metrics with 

values close to −1 are used for surveillance. 

• Real-time critic: 
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The real-time critic is a theoretical framework often used in academic research to evaluate and analyze 

real-time evidence. The experimental critic is used to comprehend the confidence of IoMT. Therefore, real-

world criticism is connected to the effectiveness of analyzers. Once the IoMT is prepared, the real-time critic 

is provided with the test data as a source of information for the adequately trained IoMT systems. 

The pseudocode for the SAPPTMF privacy preservation method is shown in Algorithm 1. 

Algorithm 1 Privacy Preservation Algorithm 

1: Input: IoMT data (D), MAC, Features (F) 

2: Output: Modality (𝐹𝑚𝑜𝑑) based F in Excel file 
3: Start 

4: Step 1: Initialisation 

5: Initialise F = 0 

6: Step 2: Data separation 

7: For every 𝑀𝐴𝐶𝑟 

8:    If 𝑀𝐴𝐶𝑟 = 𝑀𝐴𝐶𝑑𝑒𝑣 

9:      𝐷𝑑𝑒𝑣 = 𝑆𝑝𝑙𝑖𝑡(𝐷) 
10: Step 3: Traffic separation 

11: For every traffic (tr) 
12:    𝐹𝑠𝑡𝑎𝑡 = 𝑆𝑓(𝐷𝑡𝑟) 

13:    𝑄𝑝𝑘𝑡 = 𝑓𝑄(𝐷𝑡𝑟) 

14:    𝐷𝑓𝑖𝑛 = 𝐷𝑡𝑟 

15: Step 4: Traffic merging 

16: If Flow_ID is found 

17:    𝐷𝑚𝑟𝑔 = 𝑐𝑜𝑛𝑐{𝐷𝑑𝑒𝑣 , 𝐷𝑡𝑟} 

18: Merge 𝐷𝑚𝑟𝑔 into 𝐷𝑇 

19: Step 5: Attribute selection 

20: If F is selected, the attribute 

21:    𝐹𝑐 = 𝐶𝑙𝑎𝑠𝑠{𝐹} 
22:    𝐹𝑚𝑜𝑑 = 𝑐𝑜𝑛𝑐{𝐹𝑐 , 𝐷𝑇} 
23: Stop 

𝑀𝐴𝐶𝑟  is denoted received MAC, device MAC is denoted 𝑀𝐴𝐶𝑑𝑒𝑣 , statistical feature function is 𝑆𝑓, data 

traffic is expressed 𝐷𝑡𝑟 , packet quantity function is 𝑓𝑄 , packet quality is denoted 𝑄𝑝𝑘𝑡 , the statistically 

selected feature is denoted 𝐹𝑠𝑡𝑎𝑡Finally, the selected data is 𝐷𝑓𝑖𝑛, the merged data is denoted 𝐷𝑚𝑟𝑔 , total 

merged IoMT is 𝐷𝑇, the classified feature is 𝐹𝑐, and the final modality feature is 𝐹𝑚𝑜𝑑 . 

3.2. System model 

The study suggests recommending comparable medical diagnoses and treatments using a healthcare 

network graph created from the data of all participating participants. It is important to note that the 

participants’ privacy is maintained throughout this process. The system under consideration consists of four 

distinct entities. The scenario has a group of participants represented as {𝑃1, 𝑃2, 𝑃3, 𝑃4}, who have provided 

medical data collection. There is a doctor referred to as DR, a cloud server designated as CS, and a medical 

facility represented as MC. The description of the entities’ functioning is as follows. 

1) The software system known as MC is responsible for generating variables and providing medical-

assisted diagnostic and therapy. 

2) Possess personal healthcare information (𝑃𝑠) and submit records to a cloud storage system. 

3) The doctor might inquire about the medical situation requiring treatment. 

4) The field of CS incorporates the medical network graph and produces the necessary search information 

for machine learning. 

Every participant denoted as 𝑃𝑥  (𝑥 = 1, 2,⋯ , 𝑛)  encrypts and uploads their physiological data, 

represented as 𝑑𝑥 = {𝑑1, 𝑑2,⋯ , 𝑑𝑁}, together with their medical treatments, denoted as 𝑚𝑥, to the CS. The 

integration of records is achieved by using graph theory, specifically by representing the participant’s data as 

a node 𝑉𝑥 = {𝑑𝑥, 𝑚𝑥}. If two participants, 𝑃𝑥 and 𝑃𝑦 have had medical treatment at the same hospital, an edge 
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exists, 𝐸𝑥 = {𝑣𝑥, 𝑣𝑦}, connecting 𝑣𝑥  and 𝑣𝑦 . However, a direct relationship is not present. To clarify, all 

participants inside a hospital can be represented as a completely linked graph denoted as 𝐺 = {𝑉, 𝐸} . 

Through the evaluation of various hospitals, the field of computer science creates a medical graph, which is 

essentially a composite network consisting of numerous ultimately linked graphs. 

Following a doctor’s encryption and uploading of a medical case 𝑑𝑥, CS incorporates it into graph G as 

a node 𝑁𝑙. CS identifies all potentially related records. 𝑇𝑙 = {𝑁𝑥 ∪ 𝑁𝑦}, where 𝑁𝑥 represents the neighbours 

of 𝑣𝑥  and 𝑁𝑦 represents the 2-hop neighbors of 𝑣𝑦. The ciphertext 𝑆𝑥,𝑦The degree of similarity between two 

physiological data sets, x and y, is sent from the CS to the MC. This similarity is determined using the cosine 

similarity measure. The task of decrypting the nodes falls under the responsibility of MC to select a node. 𝑉𝑥 

and its corresponding index x that exhibits the highest similarity, denoted as 𝑆𝑥,𝑦. MC and CS retrieve the 

treatment plan stored in this node and transmit it to the doctor as a suggestion using the transmission 

protocol. As previously stated, the Model has been codified as Equation (2) to (4). 

𝑘𝑙 = 𝑚𝑦 (2) 

𝑦 = arg{max{𝑆𝑥,1, 𝑆𝑥,2, ⋯ , 𝑆𝑥,𝑦}} (3) 

𝑆𝑥,𝑦 =
𝑑𝑥𝑑𝑦

|𝑑𝑥||𝑑𝑥|
 (4) 

The similarity matrix is 𝑆𝑖,𝑗 , the IoMT data is denoted 𝑚𝑦, the distance of nodes 𝑁𝑥 and 𝑁𝑦 are denoted 

𝑑𝑥 and 𝑑𝑦. 

• Attacker model 

The attacker models are presumed. MC is an entity that is universally regarded as trustworthy by all 

other entities. The entities 𝑃𝑥 , and CS possess the characteristic of being honest but curious. Individuals 

adeptly adhere to established procedures while retaining incoming inputs from external sources and all 

intermediary outcomes, aiming to maximize the likelihood of accessing confidential information about 

participants. Given the objective of providing identical treatment recommendations, all parties involved are 

expected to provide accurate and reliable data. The presence of fabricated nodes and edges promptly 

authenticated by medical professionals should also be considered. Moreover, the lack of accurate data 

resulting from falsification would lead to negative consequences and hinder the establishment of confidence. 

All parties involved are curious about obtaining facts and are actively engaged. A represents an external 

opponent that can intercept the communication link to get the intermediate outcomes. Moreover, entity A can 

infiltrate the databases of CS and MC, therefore initiating active assaults that pose a significant risk to the 

confidentiality of the stored data. 

3.3. System architecture 

This research presents the design of a novel cloud storage structure to support e-healthcare systems. The 

structure aims to provide an efficient, privacy-preserving retrieval service while satisfying the objectives. 

The e-healthcare systems typically comprise the following stages: 

Setup phase: During this stage, the sensors of participants choose a security variable denoted as λ. They 

execute the setup and essential generation procedures to produce and retain variables param, public key, and 

private key (𝑝𝑥, 𝑠𝑥) for all participants in the physical realm to gather healthcare records. 

Data collection and encryption phase: The sensors consistently gather physical healthcare records from 

various locations. They extract specific keywords from this data and use encryption to provide health 

information. This data is generated using doctor user 1’s public key 𝑃𝑥(𝑈1). Transfer all encrypted data 

𝐶𝑥(𝑈1) to a cloud service. 
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Data conversion phase: 𝑈1 can assign the tasks of searching and decrypting to 𝑈2 by using the cloud 

server, following a set of processes, if 𝑈1 is not accessible. Initially, user 1 executes the critical generation 

technique to produce a re-encryption key for the cloud server. This process involves using user 1’s private 

key 𝑆𝑈1
 and user 2’s public key 𝑆𝑈2

. Once provided with the re-encryption key, the cloud server executes the 

encryption algorithm to transform the associated ciphertext. Finally, the transformed ciphertext 𝐶𝑈2
 is stored. 

To get conditional authorization, the critical generation requires the inclusion of 𝑈1 ’s private key as a 

component of its input. Anybody without access to the private key could not initiate conditional 

authorization, even if provided with 𝑈2’s public key. During the data retrieval phase, 𝑈2 can search and 

decode the converted ciphertext by following the below procedures. Initially, 𝑈2  executes the trapdoor 

procedure to produce a trapdoor 𝑇𝑑  associated with the keyword w, using their private key 𝑆𝑈2
. Using the 

trapdoor 𝑇𝑑  and encrypted text 𝐶𝑈2
, the server in the cloud executes the test method to identify the 

corresponding ciphertext. 𝑈2 successfully acquires the desired data by using this private key 𝑆𝑈2
 to decode 

the corresponding ciphertext via the execution shown in Algorithm 2. 

Decryption algorithm in Algorithm 2. 

Algorithm 2 Decryption Algorithm  

1: Input: IoMT feature (F), 𝑈1 , 𝑈2 , 𝑃𝑥, 𝑃𝑦, 𝑆𝑈1
, 𝑇𝑑, 𝐶𝑈1

, 𝐶𝑈2
 

2: Output: Decrypted data 𝑆𝑈2
 

3: Start 

4: Step 1: Reception of data and public key 

5: 𝑃𝑥(𝑈1) = 𝑓1{𝑈1, 𝐹𝑈1
, 𝑃𝑥} 

6: Step 2: encryption of data 

7: 𝐶𝑈1
= 𝑒𝑛𝑐{𝑃𝑥(𝑈1), 𝑆𝑈1

} 

8: Step 3: Reception of data in the receiver end 

𝐶𝑈2
= 𝑟𝑒𝑐𝑒𝑖𝑣𝑒{𝐶𝑈1

,𝑁, 𝑈2, 𝑃𝑦} 

10: Step 4: Data processing 

11: 𝑇𝑑 = 𝑓2(𝑆𝑈1
, 𝑈2 , 𝑃𝑦) 

12: Step 5: Decryption 

13: If 𝑉(𝐶𝑈2
) is true 

14:   𝑆𝑈2
= 𝑑𝑒𝑐{𝐶𝑈2

, 𝑇𝑑 , 𝑉(𝐶𝑈2
)} 

15: Else 

16:   𝑆𝑈2
= 𝑑𝑒𝑐{𝐸𝑅𝑅𝑂𝑅} 

17: End 
18: Stop 

The participant data acquired by IoMT devices undergo encryption before being transferred to the cloud 

storage service. Information security and confidentiality are effectively maintained via encryption techniques 

since the encrypted electronic records prevent the cloud server from acquiring any knowledge or insights 

from the data. Access to electronic records is restricted to authorized medical professionals alone. The 

system allows assigning tasks to an alternate physician through a cloud server when the primary physician is 

absent. This delegation process can be done without the decryption of electronic records, reducing the 

potential for data access to the cloud server. 

3.4. Security analysis and decision making 

The Enhanced Security Attributes (ESA) methodology is often offered for examining security. The 

structure’s primary goal is to assess security in IoMT devices or substitutes inside healthcare using the 

established security standards. Once the determination and choice of security requirements or qualities have 

been made, IoMT devices are chosen as an alternative. Data is then gathered by consulting professionals in 

the area of IoMT security. The data-gathering strategy draws inspiration from the Delphi method. Figure 3 

illustrates the recommended security architecture for assessing and making decisions on the security of IoMT 

gadgets in healthcare systems. 
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Figure 3. Security analysis and decision-making system. 

The proposed framework operates in two distinct phases: firstly, the AHP approach is used to assign 

weights to the various criteria, and secondly, the technique for order of preference by similarity to ideal 

solution (TOPSIS) method is utilized to rank the available options. 

Data security is a top priority for modern Internet of Medical Things (IoMT) systems in the healthcare 

industry. The Internet of Medical Things (IoMT) technology improves patient care but compromises health 

information security. Maintaining data confidentiality and authenticity is crucial. Health data is delicate. 

Doctors must accurately diagnose and protect patients’ medical information. Healthcare providers cannot 

divulge patient information under law. Physicians must protect patient privacy and integrity. Personal data 

breaches or misuse damage healthcare system trust. If they fear unauthorised exposure or misrepresentation 

of their personal health information in the case of a security breach, they may not provide crucial 

information. They act this way to avoid looking trustworthy. Healthcare workers are ethically and socially 

required to protect patient privacy. Morality and social obligation require us to finish this. Due to healthcare 

institutions’ strict security procedures, patients may worry about their privacy. Not maintaining 

confidentiality may harm patients’ mental health. Some people may avoid medical care due to concerns 

about their sensitive medical information being compromised due to new security vulnerabilities. Medical 

identity theft is the unauthorised use of your protected health information to get medical services or 

prescriptions. Using stolen data for another purpose is theft. Patient medical records may be accessed by 

unauthorised individuals. Two-factor authentication, advanced encryption, and frequent security audits may 

improve IoMT security. Healthcare staff must comprehend computer system access laws, avoid fraudulent 

schemes, and avoid risky websites. People may greatly lower their risk by having correct and thorough 

information. To maintain information confidentiality, all parties must fulfil their commitments. Medical 

facilities must follow existing norms and create new ones to avoid penalty. Preventing penalties is the goal. 

Advances in communication technologies improve data security, incident response, and overall security. To 

build confidence with patients and other stakeholders, you need a comprehensive medical record protection 

plan. To protect private data, computer systems, and networks, cybersecurity processes include several 

technical protections. Internet of Medical Things (IoMT) deployment might improve patient care. This is 

made possible by several medical networks and equipment. Healthcare infrastructure is vulnerable too. 

Raising awareness of these issues won’t prevent IoMT misuse. Malicious actors might use medical IoT. 

Malicious malware may penetrate contemporary hospital networks and steal patient data. Malware on 

medical gadgets might endanger their data. The threat to health data privacy is rising. Decrypting data is 

expensive. Without a fix, IoMT ransomware that damages hospital supplies might endanger patients. 
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Monitoring and care technologies may be compromised. Insufficient access control, malicious intent, or 

external attacks might cause problems. Certain persons may access healthcare information and resources 

without permission. Unauthorised medical information dissemination violates patients’ privacy. Medical 

equipment performance may affect patient health and treatment outcomes. cybercriminals sometimes destroy 

medical equipment. Ransomware might impede pharmaceutical testing, monitoring, and surveillance. 

Medical gadgets are cyberattackable. If evaluation, therapy, or monitoring are delayed, patient predicament 

may deteriorate. Accessing or altering medical data by unauthorised parties is risky. Misdiagnosis or 

inadequate therapy may harm patients. All patient data is reviewed by medical professionals. Security flaws 

reveal patient data, endangering their health. IoMT-based healthcare delivery systems can be hacked. If 

network infrastructure is hacked, ransomware may interrupt medical care. Cybercriminals infiltrating 

hospitals might destroy patient data and medical equipment. Healthcare staff are viewed with suspicion due 

to concerns about data security. Lack of trust in Some consumers may avoid digital health solutions due to 

the healthcare system, denying medical procedures, or providing personal information. 

• Assigning weights 

The present study utilizes the AHP methodology to allocate weights to the criterion. This approach is 

well-suited for issue scenarios that include decision-making using several criteria. Multiple reasons for 

choosing this particular methodology since it focuses on reducing cognitive mistakes via simplifying, 

splitting, and comparing different attributes. This method is applicable not just for comparing qualitative 

indicators but also for quantitative indices. Therefore, machine learning exhibits many applications in 

decision-making, evaluation, allocation of resources, settlement of disputes, prioritization and ranking, and 

optimization. Its subjective aspect characterizes the AHP since it involves the assignment of weights by 

experts or decision-makers based on their judgments. The AHP methodology prioritizes each possibility by 

considering its hierarchical relevance or goal identification. The AHP approach encompasses a series of 

phases. 

Step 1: Identification conditions: In the first stage, the requirements, sub-criteria, and options are 

determined and organized hierarchically. 

Step 2: Weight assignment: Experts use a predetermined scale to assign weights to factors based on 

their perceived significance during this stage. Qualitative ratings undergo a conversion process and are 

expressed in numbers. 

Step 3: Create a pairwise comparison vector. 

A pairwise vector is generated using a numerical scale ranging from 1 to 9. The comparison vector 

displays the relative relevance of the x-th criterion about the criteria, as shown by 𝑐𝑥𝑦. When the value of 𝑐𝑥𝑦 

exceeds one, it indicates that the xth standards have higher significance than the yth criteria. When 𝑐𝑥𝑦 is less 

than one, it implies that the xth criterion is less important. When 𝑐𝑥𝑦 = 1, it means that they are equally 

important. The comparison uses a vector format, as seen in Equation (5). 

𝐶 =

[
 
 
 
 
 

1 𝑐 … 𝑐1𝑛

1

𝑐12
1 … 𝑐2𝑛

⋮
1

𝑐1𝑛

⋮
1

𝑐2𝑛

⋯
…

⋮
1 ]

 
 
 
 
 

 (5) 

Step 4: Building a normalized vector. 

In this stage, the summation of columns in the vector is computed. Every component in the vector is 

divided by the sum of its respective column. The mean and standard deviation of the rows are determined in 

the normalization pair-by-pair vector. The criteria weights are computed to determine the priority of each 
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criterion. The determination of weights is achieved by two distinct methods: eigen max (𝑡max ) and the 

geometric mean. The variable 𝑡max represents an eigenvalue, and the Equation for determining 𝑡max  is 

shown in Equation (6). 

𝑡max =
1

𝑀
∑

𝐶𝑥

𝑊𝑥

𝑀−1

𝑥=0

 (6) 

The weight comparison vectors are denoted 𝑊𝑥 and 𝐶𝑥 , and the mean value is denoted M. 

Step 5: Consistency vector. 

The consistency vector is constructed to assess a comparison’s consistency. The Consistency Index (CI) 

is determined at this stage via the use of Equation (7), while the Consistency Ratio (CR) is computed 

utilizing Equation (8). In this stage, the multiplication operation is performed between every component of 

the first column in the pairwise comparison vector and the corresponding weight values from the first row in 

the normalized pairwise vector. This process is then repeated for each of the columns in the vectors. 

𝐶𝐼 =
𝑡max − 𝑀

𝑀 − 1
 (7) 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (8) 

The weight is denoted 𝐶𝑥 , and the mean value is denoted M. It is considered acceptable if the CR value 

is equal to or less than 0.1. Alternatively, the operation will need to be restarted. 

• TOPSIS analysis 

The TOPSIS approach is known for its straightforward, well-recognized, and reliable computational 

process. The present study utilizes the TOPSIS approach to evaluate and rank IoMT devices. The TOPSIS 

approach for rating alternatives involves using the following phases. 

Step 1: Quantify the importance of decisions by using a decision vector. 

A decision vector, denoted as D, is created during this stage using several criteria and options. For 

instance, the decision vector is expressed when there are ‘n’ choices and standards. 

𝐷 = [
𝑃1

⋮
𝑃𝑛

] [
𝐶11 ⋯ 𝐶1𝑚

⋮ ⋮ ⋮
𝐶𝑛1 ⋯ 𝐶𝑛𝑚

] (9) 

𝑃1 is an alternative variable, 𝐶𝑖𝑗  is criteria. 

Step 2: Vector normalization for decision-making construction. 

The data inside the decision vector D is derived from several sources, necessitating normalization to 

convert it into an undefined vector. The dimension vector facilitates the evaluation and comparison of 

several parameters. The construction of a normalization decision vector is achieved by Equation (10). 

𝑅𝑥𝑦 =
𝑃𝑥𝑦

√∑ (𝑝𝑥𝑦)
2𝑁

𝑥=0

 
(10) 

The parameter is denoted 𝑃𝑥𝑦. 

Step 3: The calculation of the standardized weighted decision vector. 

It is not necessary that all traits must possess equal significance. A weighted normalized judgment 

vector is derived by adding each member of the standardized decision vector with a randomly assigned 

weight value, as shown in Equation (11). 

𝑉 = 𝑉𝑥𝑦 = 𝑊𝑦⨂𝑅𝑥𝑦 (11) 
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The decision vector is denoted 𝑉𝑥𝑦, the weight is 𝑊𝑦, and randomly assigned value is denoted 𝑅𝑥𝑦 . 

Step 4: Identifying the best possible solutions (both positive and negative). 

The positive ideal (𝐴+) and negative ideals (𝐴−) solutions are determined based on the weighted choice 

vector shown in Equations (12) and (13). 

𝐴+ = {max(𝑉𝑥𝑦)} = {𝑉1
+ , 𝑉2

+, ⋯ , 𝑉𝑛
+} (12) 

𝐴− = {min(𝑉𝑥𝑦)} = {𝑉1
− , 𝑉2

−, ⋯ , 𝑉𝑛
−} (13) 

The notation 𝑉𝑖
+  represents the positive traits, whereas 𝑉𝑖

−. Symbolizes the non-beneficial attributes. 

The decision vector is denoted 𝑉𝑥𝑦. 

Step 5: Computation of separation measure. 

In this stage, ideal and non-ideal separation is calculated using Equations (14) and (15). 

𝑆+ = √∑ (𝑉𝑥𝑦 − 𝐴+)
2𝑁−1

𝑦=0   (14) 

𝑆− = √∑ (𝑉𝑥𝑦 − 𝐴−)
2𝑁−1

𝑦=0   (15) 

The decision vector is denoted 𝑉𝑥𝑦, and positive ideals (𝐴+) and negative ideals (𝐴−) solutions are used. 

Step 6: Evaluate how near each option is to the best one. 

The relative proximity of each competing option to the ideal solution is assessed using Equation (16). 

𝐶𝑥 =
𝑆𝑥

−

𝑆𝑥
− + 𝑆𝑥

+ (16) 

The positive and negative solutions are denoted 𝑆𝑥
+ and 𝑆𝑥

−. 

Step 7: Prioritization or ordering of options. 

The 𝐶𝑥  value determines the ranking order, with a more excellent value indicating a better-performing 

option. By placing the choices in decreasing order, it is possible to examine the relative performance of 

several options. 

The suggested approach provides a novel way to strengthen protections in IoMT settings. It protects 

sensitive participant information and thwarts cybercriminals with the help of an intelligent agent system. A 

detailed system and attacker models provide more details and protection against potential dangers. The 

strategy uses the AHP to guarantee a well-rounded and well-prioritized approach to security, strengthening 

the IoMT ecosystem. 

4. Simulation analysis and outcomes 

The simulation study section gives an in-depth look at the execution of the suggested approach. The 

experimental design, database, assessment measures, and presentation of findings are all included to 

understand the method’s efficacy and value better. 

4.1. Experimental setup 

Experiments are run on an Intel CPU @ 2.40 GHz instances, 24 machines equipped with Cuda-10 and 

an Nvidia 12 GB GPU (64-bit), and the Python 3.8 environments in the Anaconda 4 distribution. 

4.2. Database 

With the proposed structure, 16k samples are gathered, with a distribution of 87% standard samples and 

13% attack data records. Label 0 indicates traffic that is not an attack, whereas label 1 indicates an attack. 

The WUSTL-EHMS-2020 database uses a real-time healthcare testbed[26]. The testbed is a hybrid of two 



14 

sorts of data: (1) network-flow measurements and (2) biometrics collected from individual participants. At 

first, there were 45 characteristics in this database, which included 30 network-flow measurements, 13 

participant biometrics, and one label feature. The database incorporates a range of physical variables, such as 

core body temperature, pulse rate, and mobility data obtained from people in different settings. The dataset 

has a significant magnitude, including many records, and its organized structure facilitates the effective 

examination of temporal trends and patterns. 

4.3. Evaluation metrics 

Evaluation metrics are used to determine the Model’s quality in deep learning. Evaluating machine 

learning models or techniques is a crucial part of any project. Models undergo rigorous testing using many 

possible assessment tools. The research assesses how well the proposed multitask learning model performs 

using these indicators. Accuracy (A) measures how many samples from a given set can be correctly 

categorized using Equation (17). 

𝐴 =
𝑇+ + 𝑇−

𝑇+ + 𝐹+ + 𝑇− + 𝐹−
 (17) 

The rate at which positive samples are accurately classified relative to the total number of positive 

examples is denoted by precision (P) and is shown in Equation (18). 

𝑃 =
𝑇+

𝑇+ + 𝐹+
 (18) 

Recall (R) calculates the number of positive samples can be accurately classified using Equation (19). 

𝑅 =
𝑇+

𝑇+ + 𝐹−
 (19) 

Recall and accuracy are used in the F score (F) computation. The F scoring process includes 

considerations for false negatives and positives, denoted in Equation (20). 

𝐹 = 2
𝑃𝑅

𝑃 + 𝑅
 (20) 

The true and false positive values are denoted 𝑇+ and 𝑇− . The true and false negative values are 

denoted. 𝐹+ and 𝐹−. 

4.4. Simulation results 

SAPPTMF consistently produces better average results because of its superior performance across all 

accuracy criteria, as shown in Figure 4 and Table 1. This might be credited to SAPPTMF’s unified strategy, 

which uses a smart agent system with realistic models and a systematic decision-making approach. The 

findings show that SAPPTMF has a notable effect, significantly improving accuracy and overall efficacy in 

IoMT security applications. 

 
Figure 4. Accuracy analysis of the IoMT privacy preservation process. 
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Table 1. Numerical data of accuracy analysis. 

Method Training Testing Validation 

LDA 89.5 87.2 88 

PCA 84.3 82.6 83.5 

SVM 92.1 90.7 91.5 

NB 78.9 77.4 79 

DT 88 85.6 86.8 

SAPPTMF 95.3 93.8 94.5 

Throughout the training, testing, and validation stages, SAPPTMF consistently demonstrates improved 

precision performance, with higher average results than competing approaches, as shown in Figure 5 and 

Table 2. The method’s success is traced back to its well-rounded construction, which has an intelligent agent 

system, realistic models, and a systematic approach to security assessment. The significance of SAPPTMF’s 

effect on accuracy demonstrates the capability of the framework to improve accuracy and, by extension, 

IoMT security. LDA (86.9), PCA (81.5), SVM (90.5), NB (75.5), DT (86.1), and SAPPTMF (91.0) had the 

highest average numerical values out of the six approaches. 

Table 2. Numerical data of precision analysis. 

Method Training Testing Validation 

LDA 88.2 85.6 87 

PCA 82.7 80.3 81.5 

SVM 91.8 89.4 90.2 

NB 76.5 74.1 75.8 

DT 87.3 84.9 86.1 

SAPPTMF 91.8 90.2 91 

 
Figure 5. Precision analysis of the IoMT privacy preservation process. 

SAPPTMF achieves higher recall results consistently throughout all phases of development (training, 

testing, and validation), as shown in Figure 6 and Table 3. This is because SAPPTMF takes a more all-

encompassing approach by including a smart agent system, realistic models, and a systematic security 

assessment process. The considerable recall improvement by SAPPTMF demonstrates its potential 

usefulness in the IoMT security setting. The average results for the six approaches are as follows: LDA 

(89.3), PCA (84.5), SVM (92.8), NB (79.2), DT (88.0), and SAPPTMF (93.4). 
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Figure 6. Recall analysis of the IoMT privacy preservation process. 

Table 3. Numerical data of recall analysis. 

Method Training Testing Validation 

LDA 90.1 88.5 89.3 

PCA 85.4 83.7 84.5 

SVM 93.6 92 92.8 

NB 79.8 78.2 79.5 

DT 88.8 87.2 88 

SAPPTMF 94.2 92.6 93.4 

SAPPTMF shows superior F-score performance compared to competing approaches in all three phases 

of development (training, testing, and validation), as shown in Figure 7 and Table 4. Incorporating a smart 

agent system, realistic models, and a structured method for security review, SAPPTMF achieves this result. 

SAPPTMF considerably affects the F-score, demonstrating its ability to substantially improve F-score levels 

and overall IoMT security results. LDA (88.0%), PCA (82.8%), SVM (91.9%), NB (77.5%), DT (86.5%), 

and SAPPTMF (92.4%) are the median numerical values across all six approaches. 

 
Figure 7. F score analysis of the IoMT privacy preservation process. 

Table 4. Numerical data of F-score. 

Method Training Testing Validation 

LDA 89.1 86.9 87.9 

PCA 83.8 81.9 82.8 

SVM 92.7 91.1 92 

NB 78.1 76.5 77.7 

DT 87.6 85.4 86.5 

SAPPTMF 93.1 91.7 92.4 
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SAPPTMF consistently outperforms other approaches regarding Mean Squared Error (MSE) during 

training, testing, and validation stages, as shown in Figure 8 and Table 5. SAPPTMF takes a holistic 

approach to evaluating security by including an intelligent agent system, realistic models, and an organized 

assessment framework. SAPPTMF considerably affects MSE reduction, demonstrating its capacity to reduce 

prediction errors and reliably improve IoMT security. Averaging across all six approaches yields the 

following numerical values: LDA = 0.13, PCA = 0.20, SVM = 0.10, NB = 0.27, DT = 0.16, and SAPPTMF 

= 0.09. 

 
Figure 8. MSE analysis of the IoMT privacy preservation process. 

Table 5. Numerical data of MSE. 

Method Training Testing Validation 

LDA 0.125 0.136 0.131 

PCA 0.198 0.207 0.203 

SVM 0.092 0.101 0.097 

NB 0.263 0.279 0.271 

DT 0.157 0.169 0.163 

SAPPTMF 0.088 0.095 0.09 

SAPPTMF delivers lower Root Mean Squared Error (RMSE) values than competing methods 

throughout all three phases of the development process: training, testing, and validation. The RMSE results 

of all methods are shown in Figure 9 and Table 6. This is because of the well-rounded nature of SAPPTMF, 

which includes an intelligent agent system, realistic models, and a standardized procedure for evaluating 

security. SAPPTMF considerably reduces RMSE, indicating its potential to minimize prediction errors and 

improve IoMT security in general. Across all six approaches, the mean numerical values are as follows: 

LDA = 0.36, PCA = 0.45, SVM = 0.31, NB = 0.52, DT = 0.40, and SAPPTMF = 0.30. 

 
Figure 9. RMSE analysis of the IoMT privacy preservation process. 
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Table 6. Numerical data of RMSE. 

Method Training Testing Validation 

LDA 0.354 0.368 0.362 

PCA 0.445 0.455 0.451 

SVM 0.303 0.318 0.311 

NB 0.513 0.528 0.52 

DT 0.396 0.411 0.404 

SAPPTMF 0.296 0.308 0.301 

The SAPPTMF significantly outperforms the state-of-the-art techniques like Support Vector Machine 

(SVM)[21], Linear Discriminant Analysis (LDA)[22], Principal Component Analysis (PCA), Naive Bayes 

(NB)[24], and Decision Tree[25]. Integrating a smart agent system, realistic models, and systematic security 

assessment in a complete strategy dramatically strengthens the security of the IoMT. The results of the 

technique emphasize its capacity to continuously enhance accuracy, precision, and recall while reducing 

prediction mistakes, thereby demonstrating its efficacy in bolstering the IoMT ecosystem. 

5. Conclusion and future scope 

Within the healthcare domain, the significance of security issues has become more prominent due to the 

widespread use of digital technology. With the advent of IoMT devices, remote monitoring, diagnosis, and 

treatment have become possible, completely transforming healthcare. Additionally, security concerns have 

arisen as a result of this paradigm shift, and they need robust and efficient remedies. In this research, we 

provide SAPPTMF, a new privacy preservation and threat mitigation framework based on smart agents. An 

organised procedure for evaluating safety precautions is included in this system, which furthermore includes 

a set of intelligent agents and realistic models. Internet of Things security issues are addressed by 

SAPPTMF’s comprehensive approach. Data privacy, attack susceptibility, and lack of control over 

participant data are all well handled by the proposed approach. Based on the extensive simulation findings, 

SAPPTMF worked admirably on many different measures. 

The approach exhibited a high level of results in relation to accuracy (94.5%), precision (91.0%), recall 

(93.4%), and F-score (92.4%), so establishing its efficacy in effectively detecting and mitigating threats. The 

observed low MSE of 0.09 and RMSE of 0.30 provide strong evidence of the method’s effectiveness in 

reducing prediction inaccuracies and improving security. Nevertheless, despite the potential answers offered 

by SAPPTMF, difficulties still need to be addressed. Ongoing considerations include adapting the 

framework to varied healthcare, ensuring real-time reaction, and mitigating the development of threat 

vectors. In spite of these challenges, SAPPTMF has shown that it can significantly improve the security of 

the IoMT, leading to safer and more secure healthcare environments. Improvements in anomaly detection, 

disease prognosis, and the provision of individualised pharmaceuticals are the foci of future healthcare 

research. The smart agent system must be fine-tuned with the help of cutting-edge machine learning 

methods. Other demographic and medical thoughts are being entertained about possible tactics enhancement. 

Hospital IT now prioritises edge computing, which secures and enhances data management using agent-

based privacy controls. This style is popular presently. The “edge” of the network sends data between these 

far locations. We want to employ quantum security and external device processing power to speed up and 

secure data. Speeding up the procedure and finding resources are the key ways to address merging issues. 

The Internet of Medical Things (IoMT) may improve current processes. We need more adaptive quantum 

devices, uniform protocols, and a combination of security solutions. We must detect and address these issues 

to improve the system. New regulations and principles are needed to address privacy concerns in agent-based 

healthcare. These guidelines should be easy to follow and more interesting since they educate people. More 
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approaches to keep medical data private have emerged as technology has enhanced data quality. Separation 

and insufficient supplies may be avoided in many ways. We examined the differences between agent-based 

and traditional encryption so everyone could choose. If global conditions worsen, we may need additional 

reforms. Agent-based security is becoming more critical for IoT system builders. Setting up Internet of 

Medical Things (IoMT) devices is easy and secure with this innovation, however it may violate patients’ 

privacy. Many are worried about agent-based security’s risks. 
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