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ABSTRACT 

Background: Neurodegenerative diseases (NDDs) such as Huntington’s disease (HD), amyotrophic lateral 

sclerosis (ALS), and Parkinson’s disease (PD) are reflected in fluctuations in gait dynamics and affect motor activity. 

The classification of gait data using machine learning techniques can help physicians diagnose a neural disorder early 

when clinical symptoms are not yet visible. Problems identified: Because NDD can cause gait abnormalities, screening 

for NDD using a gait signal is a viable option. Proposed work: This study aimed to develop an automated system for 

differentiating NDDs from a healthy control (HC) group. This study used frequency and time-frequency-based 

techniques, namely Fast Walsh Hadamard Transform (FWHT) and Fourier synchrosqueezed transform (FSST), to 

analyze the gait time series. Statistical and entropy measures are computed to capture the non-linear characteristics in 

the gait fluctuating patterns while performing extended gait analysis. Furthermore, we investigated the impact of the 

proposed technique with different feature rankings to select optimum features from the time series gait dynamics data. 

Research findings: The efficient features have been computed for the classification where an artificial neural network 

(ANN) classifier is utilized to effectively classify gait abnormalities, which attains better performance in each 

classification task. The classification performance of the proposed study is compared with the traditional approach, 

where it outperforms with the highest classification accuracy. 

Keywords: neurodegenerative disease; feature extraction; artificial neural network; classification 

1. Introduction 

Neurodegenerative diseases (NDDs) are disorders characterized 

by selective neuronal loss and distinguishable active participation of 

functional systems. Because the central nervous system regulates the 

flexion and extension motions of two lower limbs, the gait of a 

patient with a neurodegenerative disorder might become unusual due 

to motor neuron degradation. Thus, gait parameter evaluation is 

precious for gaining a greater comprehension of the processes 

underlying neurological conditions and the innovation of NDDs. 

Patients suffering from neurodegenerative diseases have a distinct 

gait pattern[1]. There are numerous NDDs, including Parkinson’s 

disease (PD), Huntington’s disease (HD), and amyotrophic lateral 

sclerosis (ALS). Worldwide, the estimated incidence of NDDs is 
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about 13.43 per 100,000 for PD, 5.70 per 100,000 for HD, and 2.7 per 100,000 for ALS[2]. Huntington’s 

disease is a neurodegenerative condition that affects cognitive, motor, and psychiatric functions. 

Furthermore, ALS is a chronic and fatal form of motor neuron disease and the third most common NDD[3]. 

The disorders above are caused by structural proteins in various brain regions, leading to cell dysfunction or 

death, which causes abnormal movements[4]. ALS is characterized by progressive muscle atrophy, 

complexity with voluntary motor actions, and cognitive dysfunction due to damage to upper and lower motor 

neurons in the cerebral cortex, brain stem, and spinal cord[5]. 

Parkinson’s disease is associated with abnormal endorphin neuron activity, which alters basal ganglia 

output[6]. The presence of neurological deficits, incurability, and the progressive nature of the illness are the 

prominent resemblances between PD, HD, and ALS, which may make a significant contribution to some 

motor symptom volatility. However, the initial motor symptoms of PD and HD are distinctive, so 

Parkinsonian signs manifest in many HD patients[7]. Still, with the progression of the disease, it is critical to 

distinguish between these disorders to identify specific NDD characteristics. Furthermore, an investigation of 

various aspects of movement damage in different NDDs based on behaviour for the same mobility task will 

aid in determining the findings[8]. Previous research has found that using Gait data resources results in 

promising NDD identification and assessment via gait recognition using time series data collected by 

chronoscopes and Inertial Measurement Unit (IMU)[9]. Researchers have focused on gait analysis in the last 

decade, notably time series of stride, stance, swing periods, vertical ground reaction force (VGRF), and foot 

pressure. Previous research has demonstrated that unique gait features can be classified using feature 

extraction methods and machine learning. Xia et al.[10] proposed a method for categorizing gait rhythm 

signals in NDD patients and healthy people. It describes how deterministic learning was used to identify 

healthy controls and patients with neurodegenerative diseases. However, gait recognition necessitates a 

wealth of fine-grained features because differences between gait styles are typically much more nuanced than 

those between standard action classifications. In the study of Zeng and Wang[11], different sensors are used to 

collect data that describes multi-modality gait characteristics to capture the subtle features without losing 

other key biomarkers. Research works of Poria et al.[12] examined diverse data collected from accelerometers, 

smartphones, or cameras for classification methods and found that it significantly improved performance 

over modality strategies. The VGRF assessment methods look for abnormal alterations to human foot speed 

by analyzing the force signals from each sensor under the left and right feet. In this regard, mobile or 

wearable health surveillance systems are small. So, for diagnostic applications, a portable sensor device is 

employed to measure kinematic and neurobiological function[13]. Therefore, many attempts have been made 

in this regard to distinguish all three groups, including ALS, PD, and HD patients, from healthy control (HC) 

subjects using various measures[14]. NDDs and healthy subjects have different stride time intervals, which 

show more minor scale adjustments in their feet. The force-sensing information in gait dynamics senses it. 

Gait images[15] depict the overall anatomy of a person’s body, whereas acceleration and 3D skeleton data 

concentrate on the segments, sub of joints and the change in gait speeds. Variations in a series of stride 

intervals between time instants of consecutive ground contact events for either foot showcase subtle changes 

during the steady state of human walking. 

Wu et al.[16] measured signal variations in PD patients’ gait rhythm time-series data using entropy 

metrics. This study for assessing stride fluctuations in PD is used to compute the approximate Entropy, 

normalized symbolic Entropy, and signal turns count parameters. Another challenging factor for real-time 

detection techniques is execution time[17]. Liu et al.[18] and Yu et al.[19] used multi-scale approximate Entropy 

(MAE)[18] and symbolic Entropy[19] to analyze the ground reaction forces on both feet and compute the 

complexity of human gait. Liao et al.[20] applied the multi-resolution entropy analysis of stance time 

fluctuation to investigate the gait asymmetry. The derived phase synchronization and conditional entropy 

features from gait cycle patterns to distinguish them from healthy control (HC) gait patterns. After analyzing 
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the research articles, the entropy-based approaches paved a novelty for the proposed NDDs. 

Time domain (TD) and time-dependent spectral features (PSDTD) were studied by Mengarelli et al.[21] 

to identify different forms of NDD. We analyzed stride-to-stride fluctuation data from various populations, 

including healthy controls (CN) and those with PD, HD, and AS. The study’s findings show that NDD 

identification is accomplished using easily extracted and computationally light TD and PSDTD 

characteristics. These features may also be used to build computer-aided NDD detection systems for gait 

rhythm. 

To categorize neurodegenerative disorders (NDDs) using the vGRF signal, Setiawan et al.[22] used a 

deep learning method in this research. Different force pattern variations compared to healthy control (HC) 

may be indicated by the irregularity of NDD vGRF signals induced by gait disorders. Early diagnosis of 

NDDs, effective treatment planning, and monitoring of illness progression are the primary goals of this 

study. The suggested identification technique successfully distinguishes between HC individuals’ and 

neurodegenerative disease patients’ walking patterns using a time-frequency spectrogram of a vGRF signal. 

A new method for identifying Parkinson’s disease (PD) using speech signals was suggested by Pankaj 

Warule et al.[23] and is based on the Chirplet transform (CT). After using CT to get the time-frequency matrix 

(TFM) of every audio recording, we used this information to extract features based on time-frequency 

entropy (TFE). According to the data, TFE traits may be utilized to distinguish between people with PD and 

healthy controls (HCs) since they capture the alterations in speech resulting from the disease. Using the PC-

GITA database’s vowels and words, we verify the usefulness of the suggested framework. The findings show 

that the suggested entropy characteristics based on CT may accurately diagnose PD from a person’s speech. 

A convolutional neural network (CNN) and a wavelet coherence spectrogram of gait synchronization 

were created by Setiawan et al.[24] to categorize neurodegenerative diseases (NDD) using gait force data. The 

primary goal of this study was to provide medical professionals with tools for NDD screening that would aid 

in early diagnosis, better treatment planning, and disease progression monitoring. The suggested algorithm 

for NDD detection uses a time-frequency spectrogram of gait force signals to distinguish between HC and 

NDD patients’ gait patterns. It achieves an AUC value of 0.97, a sensitivity of 94.34%, a specificity of 

96.08%, and an accuracy of 96.37% through 5-fold cross-validation. 

The summarization of our proposed work is contributed below: 

• The gait time series of four classes, PD, HD, ALS, and HC, were analyzed based on time-frequency 

approaches using FWHT and FSST. 

• Statistical and Entropy-based features have been extracted from the decomposed coefficients of the 

FWHT and FSST. 

• Feature ranking methods, namely t-test, Kulback Leibler Divergence (KLD), and Chernoff bound (CB), 

are utilized to select the best features to maximize the classification performance. 

• The proposed technique attained the maximum accuracy using the ANN technique with 99.58% for PD 

vs. HC, 99.95% for HD vs. HC 100% ALS vs. HC using FWHT & 99.76% for PD vs. HC, 99.86% for 

HD vs. HC and 100% ALS vs. HC using FSST. 

The rest of the paper is organized as follows. Section 2 presents the proposed framework and feature 

extraction and ranking techniques; the experimental results with the considered classification tasks are 

depicted in section 3; the conclusion of the proposed method and the future directions are given in section 4. 

2. Methods and materials 

2.1. Dataset used 

Data sets for analysis and categorizing are derived from gait time series data in the neurodegenerative 
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database[25], accessible online in PhysioNet. The database contains 64 gait recordings from 16 healthy 

controls, 13 subjects with ALS, 20 with HD, and 15 with PD. The healthy control group consists of subjects 

aged 20–74, the ALS group of subjects aged 36–70, the HD group of subjects aged 29–71, and the PD group 

of subjects aged 44–80[26]. 

 
Figure 1. Functional block diagram of the proposed work. 

Gait analysis is recorded from the gait signal as shown in Figure 1. Participants were instructed to walk 

at their comfortable pace for 5 min down a 77-meter-long passageway. Force-sensitive switches were placed 

in the subjects’ shoes, and the output of these switches provided a force that was applied to the floor[27]. At a 

frequency of 300 Hz, a 12-bit built-in analog-to-digital converter was employed to collect data from the foot 

switches. The data included the temporal patterns of stride time (both left and right), stance time (both left 

and right), and swing time (both left and right). To mitigate initial fluctuations, the initial 20 s of recorded 

data were omitted, and a median filter was applied to eliminate data points that deviated significantly from 

the median value, as described in the work of Soubra[28]. The primary source of these outliers was the turning 

manoeuvres performed at the end of the hallway. 

2.2. Fast Walsh Hadamard Transform 

The Fast Walsh-Hadamard Transform (FWHT) is a highly effective algorithm employed for calculating 

the Walsh-Hadamard transform (WHT)[29]. The FWHT simplifies the computational complexity by using a 

divide-and-conquer strategy. 

The FWHT procedure depicts the WHT through recursive steps[30] to fragment the sequence into 

smaller sub-sequences and merge their outcomes to achieve the ultimate transformation. It relies on the 

Walsh-Hadamard matrix[31], a square matrix with dimensions that are powers of 2. 

Let’s denote the input data sequence as y(n), where n is the sequence length[32]. The FWHT equations 

can be defined as follows: 

Base scenario: When n equals 1, the transformation equals the original input sequence. 
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Recursive scenario: In cases where n exceeds 1, you can compute the FWHT by splitting the sequence 

into two equal parts, applying the FWHT to each part, and subsequently merging the outcomes. The visual 

representation of the healthy signal from the Parkinson signal using FWHT is shown in Figure 2.  

 
Figure 2. The visual representation of Hadamard coefficient decomposition using FWHT concerning NDDs. 

The data samples of y(n) and 𝑛 = 1,2, . . . , 𝑁 is given as below[33]: 

𝑋𝑌𝑤(𝑘) = ∑ 𝑦(𝑛)𝑤𝑓𝑛 , 𝑘 = 1,2, … , 𝑁

𝑁

𝑛=1

 (1) 

In this context, where N represents the number of samples and 𝑤𝑓𝑛  denotes the Walsh function or 

Walsh matrix, which is determined by the following equation: 

𝑤𝑓𝑛 =
1

2
𝑛
2

(
𝑤𝑓𝑛−1 𝑤𝑓𝑛−1

𝑤𝑓𝑛−1 −𝑤𝑓𝑛−1
) (2) 

In a 1 × 1 matrix, the value of 𝑤𝑓0 is equal to 1. So that 𝑤𝑓1 and 𝑤𝑓2 can be written as: 

𝑤𝑓1 =
1

√2
[
1 1
1 −1

] (3) 

𝑤𝑓2 =
1

2
[

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] (4) 

The Walsh function can alternatively be expressed as: 

𝑤𝑓𝑛 = ∏(−1)𝑛𝑖𝑘𝑚−𝑖

𝑚

𝑖=1

 (5) 

The FWHT results from multiplying a data sequence with a length of 1 × N by a Walsh matrix with 

dimensions of the N × N matrix. 

2.3. Fourier synchrosqueezed transform 

The Fourier Synchrosqueezed Transform (FSST) is a technique for analyzing time-frequency content 

that combines the strengths of the Fourier Transform (FT) with the synchrosqueezed transforms[34,35]. It is 

beneficial for studying signals with varying frequencies over time, including non-stationary signals or those 

exhibiting rapid changes in frequency[36]. 
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Over the last decades, various approaches have been suggested to expand the principles of Fourier 

signal analysis to encompass non-stationary signals[37]. The FT of a signal, as expressed as 

𝑓(𝑞) = ∫ 𝑓(𝑡)𝑒−𝑖2π𝑞𝑡

∞

−∞

 (6) 

FT is suitable for stationary signals but is not well-suited for non-stationary signals. The Short-Time 

Fourier Transform (STFT) was introduced to address this limitation. STFT divides the signal into short 

intervals and applies the FT to each segment. In other words, STFT can be considered obtaining a local 

version of the FT using a sliding window (ꞷ) approach. 

𝑆(𝑞, 𝑡) = ∫ 𝑥(𝜏)

∞

−∞

𝜔(𝜏 − 𝑡)𝑒−𝑖2π(𝜏−𝑡)𝑑𝜏 (7) 

Under the assumption of gradual changes in instantaneous frequencies, FSST offers a time-frequency 

representation of signals with multiple components. Therefore (𝑞, 𝑡)  , the synchrosqueezed transform 

decomposed the coefficients, which are defined as 

(𝑞, 𝑡) → (𝑞, 𝜑̃(𝑞, 𝑡) 

 
Figure 3. The visual representation of Fourier decomposition using FSST concerning NDDs. 

where 𝜑̃ corresponds to the instantaneous frequency of the time series expressed by 

𝜑̃(𝑞, 𝑡) =
1

2π

𝜕(arg 𝑆(𝑞, 𝑡))

𝜕𝑞
= 𝑅𝑒 (

1

2π𝑖

1

𝑆(𝑞, 𝑡)

𝜕(𝑆(𝑞, 𝑡))

𝜕𝑞
) (8) 

The visual representation of fourier decomposition using FSST is shown in Figure 3. The SST’s second 

crucial component is “vertical reconstruction,” provided that the window function is continuous and does not 

disappear at zero. 

𝑠(𝑞) =
1

𝜔(0)
∫ 𝑆(𝑞, 𝑡)d𝑡

∞

−∞

 (9) 

This allows for the definition of the FSST, which involves limiting the integration domain in the above 

equation to the interval determined by the expression, 𝜑̃(𝑞, 𝑡) = 𝜑 can be written as 

𝑇(𝑞, 𝜑) =
1

𝜔(0)
∫ 𝑆(𝑞, 𝑡)𝛿(𝜑 − 𝜑̃(𝑞, 𝑡))d𝑡

∞

−∞

 (10) 

The FSST addresses certain constraints of the conventional FT[38], which offers a fixed time-frequency 
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resolution. The synchrosqueezing transform is employed on the FT spectrum within FSST to enhance the 

time-frequency precision of signal components. FSST furnishes a time-frequency portrayal of the signal that 

focuses the energy within the time-frequency domains where the signal components are situated. This 

enhances the ability to visualize and scrutinize the time-varying frequencies within the signal. 

2.4. Feature extraction 

Feature extraction involves extracting relevant information from raw data to create a concise 

representation. This process eliminates unnecessary data, improving the efficiency and accuracy of 

analysis[39]. Feature extraction was conducted on the transformed coefficients obtained from FWHT and 

FSST. This process yielded a total of twelve features, comprising eight statistical features (minimum, 

maximum, mean, STD, NSTD, kurtosis, skewness, and energy) and four entropy features (Log-Energy, 

Shannon, Renyi, and Tsallis). These features were computed from both the right and left foot gait series. The 

statistical features are calculated using Table 1. 

Table 1. Mathematical expressions of the statistical features. 

Features Formula Features Formula 

Minimum M1 = Min(𝑦𝑖) Kurtosis 
Kurt =

1

𝑛
∑ [

(𝑦𝑖 − 𝑦)

𝜎
]

4𝑛

𝑖=1

 

Maximum M2 = Max(𝑦𝑖) Skewness 
Skew =

1

𝑛
∑ [

(𝑦𝑖 − 𝑦)

𝜎
]

3𝑛

𝑖=1

 

Mean 
𝜇 = ∑ 𝑦𝑖

𝑛

1

𝑛⁄  
Energy 

Energy = [∑|𝑦𝑖|

𝑛

𝑖=1

]

2

 

STD 
𝜎 = √∑(𝑦𝑖 − 𝜇)2 𝑛⁄  

NSTD 𝜎̌ = 𝜎
𝑀2 − 𝑀1⁄  

Entropy functions as a measure of uncertainty, quantifying the level of disorder in a signal[40]. Higher 

entropy values signify heightened uncertainty and greater chaos within the signal. 

Log Energy entropy is specifically employed to assess the engagement of non-stationary signals. Its 

mathematical definition is as follows: 

𝐸log = ∑ log(𝑦𝑖
2)

𝑁

𝑖=1

 (11) 

where N represents the signal yi’s total length and the signal’s i-th sample. 

Shannon’s Entropy is a metric that quantifies related parameters that exhibit a linear relationship with 

the logarithm of the number of possible outcomes. It is a measure used to assess the dispersion of data and is 

primarily employed to evaluate the dynamic structure of a system. One notable advantage of Shannon’s 

Entropy is its suitability for characterizing data that follows a normal distribution[41]. 

𝐸Shannon = − ∑ 𝑦𝑖log(𝑦𝑖)

𝑁

𝑖=1

 (12) 

Rényi entropy is an extended version of Shannon entropy, and it finds application in computing the 

spectral complexity and non-linearity of a time series signal. It can be expressed as[42,43] 

𝐸Renyi =
1

1 − 𝛿
log2 ∑ 𝑦𝑖

𝛿

𝑁

𝑖=1

 (13) 

In equation (13), 𝛿 corresponds to spectral order; when 𝛿 = 2, it establishes a lower limit for its smooth 

Entropy. In contrast, when 𝛿 = 1, it is analogous to Shannon’s Entropy and tends to yield a relatively low 
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amount of smooth Entropy. 

Tsallis entropy is a valuable tool for characterizing the physical behaviour of various systems. It is 

particularly effective in describing systems that exhibit long-term memory effects, involve long-range 

interactions, or are subject to multifractal space-time constraints. In the context of EEG signal analysis, 

Tsallis coefficients derived from Tsallis entropy can be instrumental in distinguishing between different gait 

patterns, such as spikes, bursts, and continuous rhythms. It can be mathematically expressed as[44,45] 

𝐸Tsalli′s =
1 − ∑ 𝑦𝑖

𝑞𝑁
𝑖=1

𝑞 − 1
 (14) 

2.5. Feature ranking 

Ranking holds significant importance in the realm of information retrieval. Although there has been 

extensive research on algorithms for learning ranking models, the same cannot be said for feature selection 

despite its significance[46]. Many feature selection techniques designed for classification are adapted for 

ranking tasks. However, we contend that due to the pronounced distinctions between ranking and 

classification, creating distinct feature selection methods explicitly tailored for ranking is more 

advantageous. This study uses five different feature ranking methods to select the optimum features. 

2.5.1. t-test 

The t-test is a statistical method used to select the best features. Its primary objective is to ascertain 

whether a substantial disparity exists between the means of two groups or variables of data. Through the 

application of the t-test[47], one can discern which features hold the greatest relevance or impact when 

predicting the target variable. The t-test calculates a p-value to determine the statistical significance within a 

chosen confidence interval. If the p-value is less than 0.05 (with a 95% confidence interval), it signifies 

different means concerning the group; otherwise, a p-value greater than 0.05 suggests identical means of the 

two groups. 

t-test that can defined by 

𝑇 =
(𝑦1̅̅ ̅ − 𝑦2̅̅ ̅)

√𝑠𝑣1
2

𝑛1 +
𝑠𝑣2

2

𝑛2

 
(15) 

where y1, y2 are the samples from two different groups, and 𝑠𝑣1 and 𝑠𝑣2 are the computed variance of the 

samples of two groups that can be written as 

𝑠𝑣𝑖̅̅ ̅̅ =
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑁
𝑗−1

𝑁 − 1
 (16) 

In the above equation 𝑦𝑖̅ corresponds to the sample mean. 

2.5.2. Kullback Leibler divergence (KLD) 

Kullback-Leibler Divergence (KLD) is used to simplify the clutter of non-dominant hypotheses by 

combining them into one event. It’s also commonly used to identify discrepancies between two classifiers, 

which calculate posterior class probabilities for decision-making. However, KLD treats all class probabilities 

equally and doesn’t emphasize the dominant hypotheses, which are especially important in classification 

scenarios[48]. 

Considering two group samples, y1, y2 and class probabilities are 𝑃𝑗 and 𝑄𝑗. 

The KLD of 𝑄𝑗from 𝑃𝑗 is expressed as 

𝐷𝐾(𝑃, 𝑄) = ∑ 𝑄𝑗log
𝑄𝑗

𝑃𝑗
𝑗

 (17) 
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2.5.3. Chernoff bound 

Chernoff bound is also called Bhattacharya distance. The Chernoff bound describes how the tail 

distributions of sums of independent random variables decrease exponentially. Considering the two classes’ 

𝑦𝑝 and 𝑦𝑞, the minimum attainable classification error can be written as[49]: 

𝑃error ≤ 𝑃(𝑦𝑝)
𝑠
𝑃(𝑦𝑞)

1−𝑠
∫ 𝑃(𝑥|𝑦𝑝)

1−𝑠
d𝑥 ≡∈𝐶𝐵

∞

−∞

 (18) 

∈𝐶𝐵 is called Chernoff bound. This minimum bound and special bound are computed concerning s. it can be 

given as 

𝑃error ≤∈𝐶𝐵= √𝑃(𝑦𝑝)𝑃(𝑦𝑞) ∫ √𝑃(𝑥|𝑦𝑝)𝑃(𝑥|𝑦𝑞)d𝑥
∞

−∞

 (19) 

where ∈𝐶𝐵= √𝑃(𝑦𝑝)𝑃(𝑦𝑞)exp (−𝐵) 

𝐵 =
1

8
(𝜇𝑝 − 𝜇𝑞)

𝑇
(

𝜖𝑝 + 𝜖𝑞

2
)

2

(𝜇𝑝 − 𝜇𝑞) +
1

2
ln

|(𝜖𝑝 + 𝜖𝑞) 2⁄ |

√|𝜖𝑝||𝜖𝑞|

 
(20) 

and |. | denotes the determinant of the respective matrix, and B indicates the Bhattacharya distance. 

2.6. Artificial neural network classifier 

An artificial neural network (ANN) classifier is a machine learning model influenced by the 

organization and operation of biological neural networks. Its primary purpose is categorizing input data into 

predefined classes or categories. ANN classifiers comprise layers of interconnected artificial neurons called 

nodes or units. The initial layer is the input layer, which receives the input data. The final layer is the output 

layer, which is responsible for generating the classification outcome. Between these layers, one or more 

hidden layers may exist tasked with processing input data to identify pertinent features and formulate 

predictions. 

The classification of ANN types depends on the arrangement of neurons (network topology) and the 

training method. In this study, a well-established ANN type was employed, characterized by a layered, feed-

forward network topology and the back-propagation training algorithm. The term “feed-forward topology” 

indicates that in this ANN, neurons are interconnected in a way that avoids feedback loops. 

 
Figure 4. The Function Architecture of ANN classifier. 

The Levenberg-Marquardt (LM) algorithm is an optimization technique applied to train artificial neural 

networks (ANNs). Its design is particularly well-suited for functions that take on the structure of a sum of 

squared errors, a common occurrence in the training of feed-forward neural networks. A total of 8 statistical 
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and 4 entropy features have been trained using the ANN classifier, 50 hidden neurons considered in the 

hidden layer, and the output layer consists of the different classes of NDDS and HC, as shown in Figure 4. 

In this paper, the consideration of the ANN classifier is given below: 

• Total No. of layers: Five 

• No. of hidden layers: Three 

• No. of Input neurons: Equivalent to the size of the features 

• No. of hidden neurons: Fifty 

• No. of output neurons: Two  

• The transfer function of the hidden layer: Hyperbolic tangent sigmoid 

• The transfer function of the output layer: SoftMax 

• Training function of the network: Levenberg-Marquardt (LM) algorithm 

• Number of epochs: 100 

• Performance function: Mean squared error 

The classification performance is computed for individual HC, PD, HD & ALS subjects based on the 

classification results such as classification accuracy, sensitivity, specificity, positive predictive value and 

negative predictive value that are given by following formulas: 

Classification accuracy (AC) =
True(+) + True(−)

True(+) + True(−) + False(+) + False(−)
× 100 (21) 

Sensitivity (SE) =
True(+)

True(+) + False(−)
× 100 (22) 

Specificity (SP) =
True(−)

True(−) + False(+)
× 100 (23) 

Positive predictive value (PPV) =
True(+)

True(+) + False(+)
× 100 (24) 

Negative Predictive Value (NPV) =
True(−)

True(−) + False(−)
× 100 (25) 

where True(+) indicates True positive, True(−) refers to True negative, False(+) corresponds to False 

positive and False(−) implies False negative. 

3. Experimental results and discussion 

This study presents a publicly available dataset on gait dynamics related to neurodegenerative diseases 

to identify gait impairments in affected individuals. The dataset includes a total of 64 records from 

individuals with NDD, categorized as follows: 15 records from PD patients aged between 44–80 years, 20 

records from HD patients aged between 29–71 years, 13 records from ALS patients aged between 36–70 

years, and 16 records from healthy control subjects aged between 20–74 years. Each recording comprises a 

five-minute-long time series of gait signals collected using force-sensitive resistors placed under the patient’s 

foot and sampled at a rate of 300 Hz. The dataset contains gait signals of 90,000 samples each, recorded 

from the left and right foot of four different groups of individuals. We utilized two effective feature 

extraction methods to analyze these gait signals: the FWHT and FSST. These techniques allowed us to 

perform frequency domain and time-frequency domain analysis on the gait series, enabling the 

decomposition of the NDD gait signals. A set of features was extracted from the decomposed coefficients, 

including eight statistical features and four entropy features. The study involved the analysis of gait signals 

from various groups, removing a wide range of features using FWHT and FSST, resulting in a substantial 

feature set for classification consisting of 1024 statistical features and 512 entropy features. The features 

extracted were used as input data for an ANN classifier. The ANN was trained using the Levenberg-
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Marquardt training algorithm and configured with a hidden layer containing 50 neurons. This architecture 

and training approach were employed to classify the gait data based on the extracted features. Table 2 shows 

the PD vs. HC classification performance in view of individual features using FWHT and FSST. 

Table 2. Classification performance of PD vs. HC using FWHT & FSST (Considering single features). 

PD vs. 

HC 

Classification results using FWHT 

(%) 

Classification results using FSST 

(%) 

Classification results using FWHT- FSST 

(%) 

Features AC SE SP PPV NPV AC SE SP PPV NPV AC SE SP PPV NPV 

Minimum 91.90 91.21 91.53 92.54 91.79 91.96 91.37 91 91.84 90.45 92.08 91.25 92.95 91.75 90.12 

Maximum 91.68 91.41 92.70 91.37 91.79 91.08 90.12 93.6 92.34 92.45 92.95 91.75 92.58 91.32 91.87 

Mean 92.12 91.33 91.75 90.12 92.79 92.95 89.87 91.37 91.33 91.75 92.34 91 92 91.96 91.87 

STD 88.4 88.61 89.32 89.87 90.91 90 91.87 91.01 88.61 89.32 93.61 91.32 92.82 91.57 91.01 

Kurtosis 91.59 91.57 91.96 91.87 91.16 88.61 89.32 92.82 91.57 91.96 93.37 90.35 92.12 92.37 92.82 

Skewness 91.5 91.01 91.08 89.25 90.95 91.37 90 90.12 93.6 91.08 93.01 91.21 92.87 92.33 92.75 

Energy 92.12 92.82 92.95 91.75 92.58 91.01 91.21 89.87 91.37 92.95 93.82 92.62 92.61 91.61 92.32 

Nstd 91.84 90.45 90.34 91 90 92.82 92.62 88.61 92.34 92.45 92 91.87 92.01 91.57 91.96 

Log-
Energy 

92.34 92.45 92.34 93.6 92.45 93.4 93.61 91.57 91.33 91.75 93.61 91.32 92.82 91.90 91.96 

Shannon 91.57 91.96 91.87 91.37 90 91.59 91.57 91.01 91.37 91.79 92.37 90.36 90.12 92.68 91.08 

Renyi 92.95 91.75 92.79 91.01 91.21 91.87 91.37 92.82 90.12 92.79 92.01 91.21 91.87 92.12 93.95 

Tsallis 93.34 93 91 92.82 92.62 92.58 91.01 91.34 91 91.45 94.31 92.59 93.57 93.4 94 

As illustrated in Table 2, the proposed technique performed better even with a single feature. The 

classification performance of PD vs. HC using FWHT attained the accuracy ranges between 88.4%–93.34%, 

sensitivity between 88.61%–92.82%, specificity between 89.32%–92.79%, positive predictive value between 

89.87%–93.6%), and negative predictive value 90%–92.79%). Entropy features attained maximum accuracy 

compared to statistical features. Tsallis entropy outperforms with 93.34% classification accuracy for the 

classification of PD vs. HC using FWHT, whereas log energy features outperform with classification 

accuracy of 93.4% using FSST. Table 3 demonstrates the classification result of HD vs. HC. 

Table 3. Classification performance of HD vs. HC using FWHT & FSST (Considering single features). 

HD vs. 

HC 

Classification results using FWHT 

(%) 

Classification results using FSST 

(%) 

Classification results using FWHT-FSST 

(%) 

Features AC SE SP PPV NPV AC SE SP PPV NPV AC SE SP PPV NPV 

Minimum 92.82 91.57 91.96 91.33 91.75 91.59 91.57 92.58 91.01 90.58 91.28 91.37 93.10 91.96 91.08 

Maximum 92.34 93.6 92.90 91.3 91 91.01 91.37 93.6 92.34 92.45 90.15 91.12 90.91 92.05 92.56 

Mean 91.01 91.37 92 90.56 93.10 88.88 89.78 90.37 90.12 91.21 92.38 91.50 90.32 90.95 91.28 

STD 92.82 90.12 89.32 89.87 90.91 91.01 91.08 89.25 91.61 90.32 92.57 91.01 91.96 91.79 90.15 

Kurtosis 91.55 91.50 91.02 91.16 91.28 88.61 89.32 92.82 91.57 91.96 92.37 92.83 92.82 92 91.37 

Skewness 91.5 91.01 91.08 90.12 90.15 91.33 91.89 91.67 91.45 92.05 92.01 92.87 91.01 91.96 90.12 

Energy 92.23 92.83 92.56 92.34 92.38 91.87 91.01 88.61 89.32 90.95 93.58 92.32 92.4 92.05 91.01 

Nstd 89.25 90.95 91.37 91.59 91.57 90.91 92.4 91.87 90.12 92.79 93 92.96 91.87 92.12 92.4 

Log-
Energy 

91.53 92.54 91.79 91.59 91.57 93.61 91.57 93.61 91.33 91.75 92.56 92.34 92.38 90.91 92.4 

Shannon 88.4 88.61 91.70 91.78 91.30 88.61 91.57 91.01 91.37 91.79 92.37 92.82 92.82 91.21 92.33 

Renyi 91.59 91.57 93.61 91.57 91.21 92.33 91.37 92.82 91.32 92 92.56 92.34 92.67 93.62 92.58 

Tsallis 94.24 93 93.58 93.45 93.62 94.58 94.01 95.34 94.06 94.45 95.89 93.67 92.12 92.15 92.36 
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For the classification of HD vs. HC, the Tsallis entropy feature attained maximum accuracy of 94.24% 

and 94.58% using FWHT and FSST, respectively is shown in Table 4. Skewness from statistical features 

and Tsallis entropy attained maximum accuracy using the FWHT & Energy feature from statistical, and 

Tsallis Entropy attained maximum accuracy compared to other features. 

Table 4. Classification performance of ALS vs. HC using FWHT & FSST (Considering single features). 

ALS vs. 

HC 

Classification results using FWHT 

(%) 

Classification results using FSST 

(%) 

Classification results using FWHT-FSST 

(%) 

Features AC SE SP PPV NPV AC SE SP PPV NPV AC SE SP PPV NPV 

Minimum 91.50 91.76 91.70 91.76 91.24 91.30 91.70 91.90 92.26 92.60 91.56 91.32 91.84 91.40 90.79 

Maximum 92.42 91.67 92.19 91.22 91.62 92.65 92 91.56 92.31 90.00 92.43 91.50 92.45 91.49 92.60 

Mean 91.87 92.57 91.16 91.17 91.56 91.68 91.29 91.06 90.78 91.96 91.90 91.67 91.76 91.40 90.64 

STD 91.24 91.03 91.46 91.46 91.02 90.74 90.55 91.92 90.79 91.21 92.67 91.58 92.23 91.53 92.69 

Kurtosis 92.07 92.75 91.41 92.42 91.72 90.20 91.65 91.76 92.60 91.84 91.87 92.77 91.56 90.27 91.57 

Skewness 92.79 92.71 91.86 92.86 91.71 91.77 91.84 91.70 92.70 91.84 91.65 92.90 91.45 91.39 91.34 

Energy 92.83 91.48 91.20 91.21 92.45 92.75 92.03 91.47 92.56 91.01 91.19 92.19 91.23 90.20 91.45 

Nstd 92.52 92.17 92.89 92.90 92.15 92.67 92.46 91.88 91.58 91.40 91.23 92.34 91.28 91.05 91.75 

Log-
Energy 

94.31 94.08 94.54 94.54 94.07 93.42 93.71 93.13 92.45 93.66 93.54 93.07 93.42 93.78 93.13 

Shannon 93.81 93.99 92.74 92.76 93.85 93.58 93.10 93.05 93.37 93.05 92.76 93.45 93.78 93.17 93.09 

Renyi 94.54 94.45 94.86 94.87 94.20 94.25 94.73 94.77 94.82 94.70 94.87 94.20 94.25 94.73 94.77 

Tsallis 94.54 94.34 94.00 93.06 94.01 94.53 94.87 94.79 94.83 94.86 95.06 94.01 94.53 94.87 94.79 

In classifying individuals with ALS from HC, it’s important to highlight that single features yielded the 

best performance compared to other classification tasks. Specifically, Tsallis entropy achieved the highest 

classification accuracy of 96.54% when using the FWHT method. Similarly, Tsallis entropy demonstrated 

strong performance with an accuracy of 94.53% when using the FSST method. These results indicate that 

Tsallis entropy, when applied to the gait signals processed with either FWHT or FSST, was highly effective 

in distinguishing between individuals with ALS and healthy controls, achieving a very high classification 

accuracy in both cases. 

To improve the classification performance, we employ three feature ranking techniques to select the 

best features from the Hadamard coefficients, which help reduce dimensionality with maximum 

classification results. 

Table 5 demonstrates i) the classification performance of all three classification tasks considering all 

statistical features (length of 1024), all entropy features (Length of 512) and combined statistical and 

Entropy (Length of 1536), ii) features selected by t-test ranking method which result in dimensionality 

reduction of features with the length of 128 statistical and 128 entropy measures in all the cases. Similarly, iii 

& iv are the classification performance of the three cases using KLD and CB, respectively. 

Table 5. Classification performance of NDD using FWHT and feature ranking (t-test, KLD, CB). 

FWHT PD vs. HC (%) HD vs. HC (%) ALS vs. HC (%)  

ST EN ALL ST EN ALL ST EN ALL 

Without feature ranking AC 94.75 96.03 97.47 94.90 94.26 96.60 94.71 95.34 96.17 

SE 94.67 96.46 97.88 94.29 95.31 96 94.83 94.82 95.62 

SP 94.42 95.71 96.13 94.06 95.78 96 94.47 94.31 95.06 

PPV 94.58 96.10 96.05 94.92 95.79 96.21 94.54 94.15 96.87 

NPV 94.25 96.73 96.77 94.76 94.60 96.84 94.69 94.61 95.60 
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Table 5. (Continued). 

FWHT PD vs. HC (%) HD vs. HC (%) ALS vs. HC (%)  

ST EN ALL ST EN ALL ST EN ALL 

t-test AC 97.84 98.59 99.09 97.70 98.70 99.84 96.70 97.81 99.81 

SE 97.61 98.00 99.23 96.47 98.56 99.01 96.60 97.98 99.60 

SP 97.41 97.51 99.32 97.88 98.58 99.40 96.99 97.17 99.92 

PPV 97.76 97.79 99.73 98.13 98.45 99.66 96.77 97.33 99.07 

NPV 97.28 98.08 99.48 97.05 98.37 99.05 96.20 97.25 99.97 

KLD AC 98.91 98.39 99.43 97.77 98.82 99.70 96.42 98.13 99.55 

SE 97.44 98.81 99.07 97.79 98.83 98.86 96.70 98.65 99.00 

SP 98.25 98.71 99.80 97.13 98.14 99.69 96.46 98.66 99.95 

PPV 98.72 99 99.92 97.12 98.13 99.65 96.04 98.51 99.79 

NPV 97.20 98.39 99.01 97.70 98.70 99.84 96.29 98.29 99.93 

CB AC 98.15 98.17 99.58 98.71 98.13 99.95 98.39 98.51 100 

SE 98.55 98.83 99.27 98.10 99.05 99.37 97.20 98.62 99.34 

SP 98.79 99.36 99.21 98.73 98.77 99.82 97.03 98.18 99.16 

PPV 98.48 98.93 99.03 98.87 98.79 99.83 97.33 98.15 99.51 

NPV 98.92 99.15 99 99.69 98.13 99.14 97.42 98.54 99.95 

Without features selection, the proposed framework (FWHT) attained a maximum accuracy of 97.47% 

for PD vs. HC, 96.60% for HD vs. HC and 96.17% for ALS vs. HC with all the statistical and Entropy 

features. Using the t-test, the classification performance improved to 99.09% PD vs. HC, 99.84% for HD vs. 

HC and 99.81% for ALS vs. HC. The same was evaluated using KLD, which attained the classification 

accuracy of 99.43% (PD vs. HC), 99.70% (HD vs. HC) and 99.55% (ALS vs. HC). Comparatively, CB 

feature ranking outperforms in all the classification cases with an accuracy of 99.58%, 99.95% and 100% for 

classification between PD vs. HC, HD vs. HC and ALS vs. HC—the comparative results of the classification 

scheme depicted in Figure 5. 

 
Figure 5. Comparative result of all the classification tasks using FWHT, FSST and Feature ranking techniques. 
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Table 6 shows the efficiency of the proposed work using FSST with feature raking techniques. The 

ANN classifier classified the statistical entropy features obtained from the Fourier decomposed coefficient. 

They attained the maximum accuracy of 97.98%, 97.23% and 95.87% for PD vs. HC, HD vs. HC and ALS 

vs. HC, respectively. The classification accuracy increased by 100% for ALS vs. HC using the CB feature 

ranking technique. Figure 6 depicts the radar graph of the outcome, considering all features in every 

categorization method. 

Table 6. Classification performance of NDD using FSST and feature raking (t-test, KLD, CB). 

FSST PD vs. HC HD vs. HC ALS vs. HC 

ST EN ALL ST EN ALL ST EN ALL 

Without feature ranking AC 94.86 96.67 97.98 94 94.73 97.23 94.70 95.34 95.87 

SE 94.56 96.78 97.87 94.89 95.78 96.78 94.89 94.82 95.92 

SP 94.45 95.67 96.56 95.89 94.78 96.93 94 94.78 95.96 

PPV 94.43 96.56 96.85 94.45 95.76 97.21 94.67 94.15 97.88 

NPV 94.43 96.45 96.43 94.39 94.78 96.67 94.79 94.60 96.80 

t-test AC 97.67 98.39 99.34 97.76 98.87 99.86 96.67 97.63 99.89 

SE 97.23 98.89 99.98 96.86 98.68 99.78 96.63 97 99 

SP 97.45 97.92 99.24 97.78 98.73 99.65 96.46 97.19 99.80 

PPV 97.64 97.46 99.79 98.45 98.49 99.90 96.34 97.75 99.30 

NPV 97.02 98.81 99.40 97.29 98.38 99.76 96.29 97.43 99.54 

KLD AC 98.03 98.05 99.34 97.60 98.05 98.90 96.93 97.50 100 

SE 97.50 98.90 99 97.98 98.70 98.87 96.60 98.98 99.10 

SP 98.25 98.94 99.90 99.65 98.20 99.90 96.64 98.70 99.45 

PPV 98.65 98.05 99.90 99.76 98 99.87 96.59 98.78 99.54 

NPV 97.54 98.89 99.87 99.09 98.25 99.88 96.67 98.27 99.37 

CB AC 98.43 98.67 99.76 98.71 98.13 99.40 98.90 98.91 100 

SE 97.76 98.07 99.95 98.56 99.03 99.32 97.54 98.39 99.94 

SP 98 99.23 99.09 98.67 98.09 99.80 97.43 98.93 99.95 

PPV 98.56 98.09 98.90 98.45 98.45 99.78 97.03 98.60 99.48 

NPV 98.67 99.22 98.45 99.34 98.38 99.07 97.67 98.48 99.45 

 
Figure 6. The overall classification performance of the proposed framework. 
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Table 7. Classification performance of NDD using FWHT-FSST and feature raking (t-test, KLD, CB). 

FWHT-FSST PD vs. HC HD vs. HC ALS vs. HC 

ST EN ALL ST EN ALL ST EN ALL 

Without feature ranking AC 95.56 97.59 97.56 95 95.73 97.23 95.70 96.34 96.97 

SE 95.55 97.49 97.80 95.89 96.78 97.78 95.89 95.82 96.90 

SP 95.45 96.39 97.87 96.89 95.78 97.94 95 95.78 96.95 

PPV 95.45 97.30 97.46 95.45 96.76 97.21 95.67 95.15 97.80 

NPV 95.59 97.42 97.44 95.39 95.78 97.67 95.79 95.60 97.81 

t-test AC 97.37 99.08 99.59 97.76 99.87 99.86 97.67 97.63 99.91 

SE 97.30 99.21 99.97 97.86 99.68 99.78 97.63 97 99.05 

SP 97.39 97.90 99.4 97.78 99.73 99.65 97.46 97.19 99.85 

PPV 97.29 97.29 99.78 99.45 99.49 99.90 97.34 97.75 99.43 

NPV 97.28 99.56 99.42 97.29 99.38 99.76 97.29 97.43 99.54 

KLD AC 99.27 99 99.52 97.60 99.05 99.90 97.94 97.50 100 

SE 97.90 99.06 99.20 97.99 99.70 99.87 97.60 99.99 99.12 

SP 99.39 99.95 99.90 99.65 99.20 99.90 97.64 99.70 99.40 

PPV 99.40 99.05 99.90 99.76 99 99.87 97.59 99.78 99.51 

NPV 97.56 99.89 99.87 99.09 99.25 99.88 97.67 99.27 99.30 

CB AC 99.40 99.68 100 99.71 99.13 100 99.90 99.91 100 

SE 97.40 99 99.96 99.56 99.03 99.22 97.54 99.39 99.06 

SP 99.40 99.67 99.09 99.67 99.09 99.81 97.43 99.94 99.90 

PPV 99.30 99.57 99.90 99.45 99.45 99.70 97.03 99.60 99.41 

NPV 99.28 99.28 99.45 99.34 99.38 99.54 97.67 99.48 99.45 

Classification performance of NDD using FWHT-FSST and feature raking (t-test, KLD, CB) is shown 

in Table 7. In a previous research study, wavelet transform was employed to detect gait abnormalities. 

Specifically, the Haar wavelet achieved a maximum classification accuracy of 90.32% for both right swing 

and left stance intervals and 100% accuracy for all left leg gait parameters combined. In the work of Joshi et 

al.[8], the distinctive characteristic of the Haar wavelet is its ability to emphasize sudden changes or 

discontinuities in data, making it well-suited for highlighting specific objects or patterns. This capacity to 

capture discontinuities, essential for efficient classification, is referred to as a transient phenomenon. In the 

current study, the higher classification accuracy achieved with the Haar wavelet suggests that one group’s 

time series of gait variables exhibited abrupt changes compared to the other group. Additionally, the study 

compared different time series to elucidate their utility in assessing symmetry for detecting 

neurodegenerative diseases. Notably, the research introduced a novel classification method based on a sparse 

non-negative least squares (NNLS) coding strategy, which was employed for the first time to identify gait 

time intervals in patients with neurodegenerative diseases from those of healthy individuals. 

Table 8 illustrates the classification accuracy of the proposed method compared to existing methods. 

Additionally, various classifier models were integrated into the classification task to enhance the detection of 

gait abnormalities. 
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Table 8. The comparative results of the proposed method and the existing method. 

Proposed method Classification 

task 

Extracted Features Classifier Result 

Topological Motion Analysis[50] HC vs. PD Stance, stride, swing intervals Random Forest (RF) AUC-0.9667 

HC vs. HD 0.9906 

HC vs. ALS 0.9135 

Nonparametric Parzen- 
window[51] 

HC vs. ALS Frequency-based features Support vector machine 
(SVM) 

82.8% 
AUC-0.869 

Topological Data Analysis[52] HC vs. PD. Topological features Naive Bayes (NB), 
Decision tree, RF 

90.32% with 
RF. 

HC vs. HD 94.44 with DT 

HC vs. ALS 86.21% with 
KNN 

SVD[53] HC vs. PD Stride, swing intervals K-Nearest Neighbor 96.3% 

Radial basis function[54] HC vs. PD Minimum, maximum, average, 
standard deviation 

SVM 89.33% 

HC vs. HD 90.28% 

HC vs. ALS 96.79% 

HC vs. NDD 92.87% 

Mutual Information analysis[55] HC vs. PD Auto-correlation-based features, 
Data-driven features 

DT 92.3% 

HC vs. HD 88.5% 

HC vs. ALS 96.2% 

HC vs. NDD 87.5% 

Phase synchronization and 
conditional entropy[56] 

HC vs. PD Stance, swing, stride intervals 
Stance, swing, stride intervals 

Principal component 
analysis 

AUC-0.928 

HC vs. HD 0.959 

HC vs. ALS 0.824 

Proposed Method FHWT HC vs. PD Statistical and Entropy features 
(Minimum, Maximum, mean, STD, 
kurtosis, Skewness, NSTD, Energy, 
Log-energy, Shannon, Renyi, 
Tsallis) 

ANN classifier 99.58 

HC vs. HD 99.95 

HC vs. ALS 100 

Proposed Method FSST HC vs. PD 99.76 

HC vs. HD 99.86 

HC vs. ALS 100 

Proposed Method FWHT-FSST HC vs. PD 100 

HC vs. HD 100 

HC vs. ALS 100 

4. Conclusion 

In this study, an effective method was developed for the early detection of neurodegenerative diseases. 

The remarkable level of accuracy achieved by this method demonstrates the effectiveness of the proposed 

approach. The framework was designed to distinguish between three neurodegenerative diseases (NDDs) by 

analyzing human gait time series data. This involved performing frequency (FWHT) and time-frequency 

(FSST) based analyses on the gait time series to break down the gait signals into coefficients. Statistical and 

Entropy features were then computed from these decomposed coefficients and ranked using feature ranking 

techniques. The most highly ranked optimal features were utilized with an ANN classifier, resulting in 

excellent classification performance across all experimental tasks, with maximum accuracies of 99.58% for 

PD vs. HC, 99.95% for HD vs. HC, and 100% for ALS vs. HC using FWHT. Similarly, using FSST, an 

accuracy of 99.76% for PD vs. HC, 99.86% for HD vs. HC, and 100% for ALS vs. HC was achieved. In our 
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future research activities, we plan to explore several aspects. Firstly, we intend to investigate how age, 

gender, and medication might impact the classification performance of our proposed tool. Additionally, we 

aim to expand upon our current work by incorporating various pattern recognition techniques and utilizing 

transformer architecture models. These enhancements will further enhance our classification performance’s 

efficiency and effectiveness in future studies. 
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