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ABSTRACT 

LiDARs are utilized in various applications, such as self-driving vehicles and robotics, to aid in sensing the 

environment. However, LiDARs do not provide instantaneous images and they generate noise, adding to measurement 

errors. This noise, often referred to as motion blur phenomenon also observed in other imaging sensors results in 

decreased sensing accuracy for moving objects. This study introduces HPRDenoise, a noise reduction method based on 

hidden point removal, specifically designed to reduce motion blur during sprinting motion. This method capitalizes on 

the occlusion produced by a fixed-position LiDAR. We propose a comprehensive denoising approach to filter points 

from a point cloud without resorting to supervised learning, unlike most existing denoising algorithms. The number of 

correct frames and accuracy were compared for Raw, ScoreDenoise, which is the state-of-the-art method for random 

point cloud denoising, and HPRDenoise (Ours). Accuracy is defined as the ratio of the number of correct frames to the 

total number of frames. Experimental results demonstrate that the detection accuracy of point clouds processed with 

HPRDenoise is 72.73%, achieving better accuracy than those using conventional methods. 
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1. Introduction 

The 100-meter race is one of the most renowned athletic 

disciplines, known for pushing the limits of the human body. 

Sprinting is an intense activity that engages the entire body in 

maintaining a high level of effort. Sprinting, as a motor learning 

skill, can be honed through repeated practice. Consequently, athletes 

must not only be fast but also consistent, and biomechanical science 

plays a crucial role in determining the optimal sprinting form. One 

area of focus is the study of the gait cycle, which describes the 

typical motion of sprinting, particularly the leg’s kinematics. To 

achieve this, researchers must accurately capture the entire body’s 

motion using either camera-based or inertial sensor-based motion 

capture systems[1]. 

However, such equipment necessitates a meticulous and costly 

network of cameras that must be calibrated, making it more suited 

for laboratory environments[2]. Alternatively, using multiple sensors 

mounted on different segments of a sprinter’s body can be 

obstructive and potentially impact their performance, especially 
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during competitions where data collection is most valuable. 

In recent years, LiDARs have become increasingly popular in a variety of applications, particularly in 

the fields of self-driving vehicles and robotics[3–5], where they help capture the geometry of the surrounding 

environment. LiDARs can rapidly generate extensive 3D point clouds at both close and long ranges. As a 

non-intrusive solution, these sensors can be used to capture the complete motion of a pedestrian in the form 

of a 3D point cloud[4]. In order to analyze a pedestrian’s motion from the point cloud, it is necessary to 

identify the cluster of points corresponding to the target and extract their posture at various time intervals. 

However, as depicted in Figure 1, LiDARs tend to produce noisy images of dynamic objects. This issue, 

commonly referred to as motion blur, is present in images captured by all sensor types, including video and 

thermal cameras[6]. The extent of motion blur is influenced by the scanning time of the sensor and increases 

with the relative difference between the tracked object’s speed and the scanning speed. 

 
(a) (b) 

Figure 1. An example of noise caused by scanning time, (a) tracked object; (b) 3D point cloud data with noise caused by scanning 
time. 

Motion blur is particularly noticeable in LiDARs with high-density coverage, such as non-repeatable 

scanning LiDARs, which are well-suited for capturing small-profile objects like pedestrians. In the context 

of this study, where the tracked object is both fast and deformable, motion blur poses a significant challenge 

to achieving robust 3D object detection and pose estimation. In particular, the ability to detect a person in a 

sprinting motion, which is the target of this research, is expected to be applied to person detection by 

vehicle-mounted Lidar and to environmental recognition. 

This paper addresses the issue of motion blur in 3D object detection, especially during sprinting motion. 

First, we provide an overview of state-of-the-art techniques for object tracking and denoising, allowing for 

comparison with our proposed method. Next, we introduce HPRDenoise, a solution based on the hidden 

point removal algorithm for motion blur elimination, which utilizes a combination of arbitrary algorithms 

that do not require supervised learning, as previously employed. Finally, we evaluate the effectiveness of our 

proposed method using experimental data from a sprinter acquired with a LIVOX LiDAR Tele 15. 

2. Related work 

2.1. Point cloud object detection 

Previous research[7–10] has developed a variety of neural network architectures to enhance detection 

performance. PointPillars[8] proposed a novel encoder consisting of vertical columns, or “pillars,” using 

PointNet[11] to learn point cloud representations. CenterPoint[7] introduced an anchor-free method. Traditional 

approaches like PointPillars perform a matching search within the detection area using a bounding box 

reference, known as an anchor. Objects whose Intersection over Union (IoU) exceeds a certain threshold are 
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then learned. Anchor-based methods can only efficiently learn objects if the search method and thresholds 

are correctly determined. Therefore, a heuristic parameter search must be conducted to ensure more objects 

exceed the IoU thresholds. In contrast, anchor-free methods learn object centers as heatmaps without using 

anchors, enabling them to detect objects of various shapes. This algorithm is a state-of-the-art approach on 

the nuScenes dataset[4], and as of 2021, it is the highest performing object detection algorithm in the LiDAR-

Only category on the Waymo dataset[5]. However, noise created by fast-moving objects, due to the LiDAR 

sensor’s laser scanning time, hampers further improvements in the accuracy and robustness of 3D object 

detection. 

It is common practice to train supervised learning-based 3D object detection models on primary 

datasets[3–5] and evaluate their detection performance on these datasets. These datasets include 3D point 

clouds, images, and semantic labels under various circumstances. Waymo Open Dataset[5] classifies objects 

into four labels: vehicles, pedestrians, cyclists, and signs, while the KITTI Vision Benchmark Suite[3] divides 

them into six labels: car, van, truck, pedestrian, person\_sitting, and cyclist. Unlike the two previous datasets, 

nuScenes adds additional descriptors to simple object detection. Specifically, these descriptors aid in 

discriminating between different types of pedestrians and further determine if they are moving or stationary. 

Fast-moving and deformable objects are more likely to generate motion blur, making it difficult to label 

them. Therefore, among the significant datasets, only nuScenes assigns status such as pedestrian.moving. 

Both the KITTI Dataset and nuScenes utilize Velodyne LiDAR to generate their respective point clouds, 

which are characterized by a parallel, repeating scanning pattern with a low density of coverage. 

Furthermore, the point clouds of pedestrians in these datasets exhibit little to no motion blur. These 

observations underscore the importance of investigating denoising techniques to improve detection rates, 

especially when aiming to detect fast-moving objects in a blurry point cloud. Various other object detection 

methods based on deep learning have also been studied[12–14]. 

2.2. Point cloud denoising 

Point cloud data is often perturbed by noise due to inherent limitations of the acquisition devices and 

ambiguity in matching during reconstruction from images. Noise present in point clouds can significantly 

impact downstream tasks such as rendering, reconstruction, and analysis, as it can cause fundamental 

structures to be deformed. Therefore, noise removal from point clouds is crucial for related 3D vision 

applications, but it is challenging due to the irregular and unordered nature of point cloud noise[15]. 

Early point cloud denoising methods[16–19] were optimization-based and heavily relied on geometric 

priors, making it challenging to balance detail preservation and noise removal effectiveness. In recent years, 

the emergence of neural networks designed for point clouds[11,20,21] has led to the development of supervised 

learning-based approaches[22–25] that have achieved promising noise removal performance. Most supervised 

learning-based noise removal models predict the displacement from the base surface of the noisy point cloud 

and apply the inverse displacement to the noisy point cloud. In particular, ScoreDenoise[15] achieved the best 

performance for the supervised learning-based denoising models. 

However, all these noise removal methods are applied to point clouds scanned for the entire object. 

LiDAR sensors installed in automatic driving and robots often only scan a part of an object. Moreover, when 

the scanning target is moving too fast, it is difficult to scan the target entirely for each frame. There has been 

little research on removing noise caused by scanning time from real-time point clouds obtained from a static 

LiDAR. Furthermore, these noise removal methods have the problem of being dependent on training data, as 

they are based on supervised learning. 

There is scant research on motion blur removal for point clouds, with the exception of Lin and 

Zhang[26]. In their study, two methods were proposed to mitigate motion blur for LiDAR Odometry and 

Mapping (LOAM). The first approach divides the input frame into three consecutive subframes, each of 
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which is independently matched to the same accumulated map. The second strategy employs linear 

interpolation based on the LiDAR’s pose. The first technique is beneficial for mapping, as there is a ground 

truth in the form of the accumulated map, and a sufficient number of point clouds can be obtained for 3D 

mapping of the environment. even when a single frame is divided. However, in object detection where the 

target is in motion, motion blur can’t be effectively eliminated by merely dividing the point cloud, since 

there is not necessarily a ground truth to support the motion blur removal. Furthermore, the second method 

hinges on estimating two consecutive LiDAR poses to correct motion blur, and therefore, it is incapable of 

eliminating the blur produced by a moving target object. 

Consequently, in this study, we endeavor to formulate a method to eliminate noise caused by an object 

moving in front of a static LiDAR, using an array of empirical algorithms as opposed to supervised learning. 

3. Method 

3.1. Hidden point removal 

The method we propose uses point occlusion to remove motion blur. In our context, occlusion refers to 

areas of the point cloud where data is missing, due to the characteristic of LiDAR only returning 

measurements of surfaces in direct line of sight. Our proposed method involves extracting the surface 

portions of the point cloud as correct, and removing the parts recognized as occlusions, that is, the areas 

beyond the surface. More specifically, we propose a novel application of the hidden point removal algorithm. 

This algorithm extracts only the points visible from a specific viewpoint by projecting the point cloud onto a 

sphere[27]. 

In our case study, we aim to eliminate the motion blur generated by a sprinter running towards the 

LiDAR. This motion blur causes a local deformation of the point cloud, stretching the image of the sprinter 

along his path. We then seek to retain only the foremost points in order to reconstruct the surface of the 

sprinter’s body. The proposed method enables the detection of persons even during sprinting motion, and is 

expected to detect persons whose motion exceeds the resolution of LiDAR in certain environments. 

3.2. HPRDenoise 

Figure 2 shows an overview of the developed noise reduction filter in one frame. First, ground removal 

is performed using the RANSAC algorithm[28,29] to search for the largest plane. The tolerance error for 

RANSAC is defined as ransac_error and is used for this process. Next, clustering is performed using the 

HDBSCAN algorithm[29,30]. HDBSCAN is an extension of the DBSCAN algorithm and can automatically 

determine the number of clusters by considering the distance between clusters during clustering. 

 
Figure 2. An overview of the proposed filter that can be applied overall: Ground removal using RANSAC, clustering using 
HDBSCAN, outlier removal using statistical outlier filter, noise removal using hidden point removal, and finally, merging with the 
ground. 

Then, the statical outlier filter is applied to each clustered point cloud to remove outliers, which ensures 

the size of each point cloud cluster. This is important for improving the accuracy of the hidden point 

removal, as the size of the point cloud cluster is considered when specifying the sphere radius for hidden 

point removal. The statical outlier filter is defined by Equations (1) and (2). In the Equation (1), 𝜇𝑖 is the 

average distance to the 𝑘 nearest neighbors of 𝑥𝑖, 𝑘 is the number of neighbors and 𝑑(𝑥𝑖 , 𝑥𝑗) is the distance 

between 𝑥𝑖 and 𝑥𝑗 . 
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𝜇𝑖 =
1

𝑘
∑𝑑

𝑘

𝑗=1

(𝑥𝑖 , 𝑥𝑗) (1) 

The overall average distance �̅� and standard deviation 𝜎𝜇 are calculated from the individual distances 𝜇𝑖 

for each point. Then, points that satisfy the Equation (2) are judged to be outliers and are removed. 

�̅�𝑖 ≥ �̅� +𝑚 × 𝜎𝜇 (2) 

The number of neighbors 𝑘 in Equation (1) and the coefficient 𝑚 for the standard deviation in Equation 

(2) are specified as parameters. After clustering, hidden point removal algorithm is applied to each point 

cloud cluster to remove noise caused by scanning time. Hidden point removal can only extract the visible 

points from a viewpoint by specifying the viewpoint and sphere radius. The determination of the hidden 

point removal sphere radius and viewpoint coordinates is described in subsections 3.3, 3.4. Finally, we 

merge the points with the ground to reconstruct the complete point cloud for a single frame. 

In this paper, motion blur can be removed as occlusion by applying HPRDenoise as shown in Figure 3. 

Hidden point removal must be specified in terms of viewpoint coordinates and projected sphere radius. The 

specification methods are shown in sections 3.3 and 3.4. 

 
Figure 3. Planar observation of 3D point clouds in various situations from directly above. 

3.3. How to determine the sphere radius 𝒓 

The sphere radius 𝑟 is defined by Equations (3)–(5), where 𝑥all, 𝑦all, 𝑧all represent the x-coordinates, y-

coordinates, and z-coordinates of the point cloud within a single frame, respectively. In this context, �⃗�max 

signifies the respective maximum values in 𝑥all , 𝑦all , 𝑧all , while �⃗�min  denotes the respective minimum 

values. The term 𝑛 serves as the coefficient for the sphere radius. 

�⃗�max = (

max(𝑥all)
max(𝑦all)
max(𝑧all)

) (3) 

�⃗�min = (

min(𝑥all)
min(𝑦all)
min(𝑧all)

) (4) 

𝑟 = 𝑛 × |�⃗�max − �⃗�min| (5) 

The magnitude of |�⃗�max − �⃗�min| ensures that the sphere radius 𝑟 varies in accordance with the size of 

the point cloud cluster. Furthermore, the coefficient 𝑛  influences the number of points visible from the 

viewpoint when the hidden point removal algorithm is applied. 

3.4. How to determine viewpoint coordinates �⃗⃗⃗�𝒗 

The coordinate of the viewpoint �⃗�𝑣 (see Figure 4) is obtained by Equation (6) using the similarity of 

triangles, where the origin 𝑜 is the origin of the LiDAR, 𝑣𝑜  is the position of the target object and the 

distance between the center of the target object and the viewpoint is 𝑑𝑣 . This enables the appropriate 

placement of the viewpoint. Moreover, by placing the viewpoint along the straight line connecting the 
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LiDAR and the target object, only the surface point cloud visible from the LiDAR can be extracted. 

�⃗�𝑣 = �⃗�𝑜 × (1 −
𝑑𝑣

√𝑥0
2 + 𝑦0

2 + 𝑧0
2
) (6) 

 
Figure 4. How the viewpoint coordinates are determined. The object is the center coordinate of the point cloud cluster from which 

the noise is removed, and the origin 𝑜 is the location of the LiDAR. The viewpoint is placed at a point 𝑑𝑣 away from the object in a 
straight line connecting the object and LiDAR. 

4. Experiments 

4.1. Setup 

The experiment took place at an official training facility responding to the standard of the discipline. 

The test was run with a healthy semi-professional male sprinter, who was asked to run several 100 m 

sprinters with enough time to rest between trials. Point clouds were collected using LiDAR LIVOX Tele 15, 

which collects points at a rate of 240,000 points/s (strongest return) within a field of view of 14.5° × 16.2°, 

under an angular precision of 0.03°. Obtained point clouds are then sampled into frames every 100 ms (10 

Hz), which is the time needed for full coverage of the LiDAR FOV. The LiDAR was installed facing toward 

the start line and placed behind the finish line (see Figure 5). Note that the parameters of HPRDenoise are 

shown in Table 1. The ransac_error is the RANSAC error tolerance, k, m are arbitrary constant parameters in 

the Equations (1) and (2). 

 
Figure 5. The experimental environment where point clouds were acquired. The distance from the start line to the finish line was 100 
m. The LiDAR was installed facing towards the start line and placed behind the finish line. 

We processed a total of 154 frames containing motion blur. We conducted a comparative experiment 

with ScoreDenoise[15], which is the state-of-the-art method for random point cloud denoising. For each 

frame, we prepared point cloud data with ScoreDenoise[15] applied to only the sprinter cluster, point cloud 

data with HPRDenoise filter (Ours) applied to the entire point cloud, and raw point cloud data. The 

parameters used in the HPRDenoise filter (Ours) for the statistical outlier filter and RANSAC are listed in 

Table 1. Ransac_error is the error tolerance for RANSAC. k, m are arbitrary constant parameters in the 

Equations (1) and (2). 

Table 1. Parameters of HPRDenoise. Ransac_error is the RANSAC error tolerance. k, m are arbitrary constant parameters in the 
Equations (1) and (2). 

Content Value 

Ransac_error 0.1 

𝑘 (Equation (1)) 20 

𝑚 (Equation (2)) 2.0 
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For the object detection algorithm, we used livox detection[31]. Livox detection is a ROS-based point 

cloud object detection application by livox, based on CenterPoint[7]. We used CenterPoint because it is a 

state-of-the-art algorithm on some datasets. As a pre-trained model for livox detection, we used the one from 

the official livox detection repository (livox\_model\_2)[31]. Livox detection uses not only the 3D point cloud 

coordinates but also the reflectivity as input. Therefore, for the point cloud data to which the 

ScoreDenoise[15] filter was applied, the reflectivity of the nearest neighbor points of the raw point cloud data 

was used. 

The number of correct frames and accuracy were compared for Raw, ScoreDenoise, and HPRDenoise 

(Ours). Accuracy is defined as the ratio of the number of correct frames to the total number of frames. 

Typically, the evaluation metrics for object detection models are calculated using recall, precision, and 

average precision (AP). However, in this study, we used accuracy at the frame level as the evaluation metric. 

This is because it is assumed that there is only one person to be detected in each frame. For evaluation, we 

adopted the method used in nuScenes[4], which calculates accuracy by assigning true/false values based on 

the threshold distance between object centers. However, unlike in nuScenes, we set the threshold to a 

distance of 2 m between centers in this study. This decision was made because we used the average 

coordinates of the human point cloud cluster as the center coordinates in the correct frame, which could 

potentially introduce errors in the center coordinates of the correct answers. For each method, an answer was 

considered correct if the detected object was classified as a pedestrian and the distance between the center 

coordinates of the detected object and the actual point cloud cluster was less than 2 m (in the 𝑥 − 𝑦 

coordinate system that is in a plane parallel to the ground). The specific filter application procedure is 

described below. 

(1) Obtain 3D point clouds from Livox LiDAR as lvx files. 

(2) Convert lvx files to rosbag files using Livox Ros Driver[30]. 

(3) Output a ROS PointCloud2 type topic from the rosbag file, convert it to pcd and save it frame by frame. 

(4) The continuous frames with dynamic noise are filtered to remove the noise. In hidden point removal, 

the viewpoint dv and the spherical radius n are set to the following values. 𝑑𝑣 = 5, 10, 𝑛 = 800, 3000. 

(5) Dynamic object detection evaluation is performed through Livox detection of the respective point 

clouds of Raw, ScoreDenoise, and HPRDenoise (Ours). Here, if the center point of the detected object 

is less than the threshold distance (2 m) from the center point of the correct object, it is counted as the 

correct answer. 

(6) The accuracy, which is the ratio of the number of correct frames to the total number of frames, is 

compared for each result. 

4.2. Results 

Table 2 shows the number of correct frames and accuracy results when 𝑛 in the Equation (5) is changed 

to 800, 3000 and 𝑑𝑣 in the Equation (6) is changed to 5, 10. Table 2 shows that the highest accuracy is 

obtained when 𝑛= 800, 𝑑𝑣 = 5. In our experiments, we determined the parameters 𝑛, 𝑑𝑣 empirically based on 

our experience. Table 3 shows the results of the correct frames, accuracy and average processing time 

between each frame of HPRDenoise against a conventional method and raw data. 𝑛, 𝑑𝑣 values are those with 

the highest accuracy in Table 2. As shown in Table 3, the accuracy when HPRDenoise is applied is higher 

than the accuracy for raw point cloud data. Furthermore, it was found that our method achieved higher 

accuracy compared to ScoreDenoise, which was a significant denoising filter in conventional methods. The 

raw point cloud data, the resulting point cloud after applying ScoreDenoise and the resulting point cloud 

after applying HPRDenoise for the set of parameter 𝑛 = 800, 𝑑𝑣 = 5 for a randomly picked frame are shown 

in Figure 6. Furthermore, a comparison of the average processing time between frames showed that it was 

91.83 for the raw data, 93.01 for the ScoreDenoise, and 91.88 for the HPRDenoise. In other words, the 

processing time of the proposed method is almost the same as that of the raw data. 
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From Figure 6, it can be observed that the raw point cloud data displays a scattered point cloud of the 

person in the direction of movement. However, with ScoreDenoise, the scattered point clouds appear to 

cluster a bit more closely. Furthermore, HPRDenoise illustrates the extraction of a point cloud from the 

surface. 

 
(a) (b) (c) 

Figure 6. Comparison of each method; (a) raw point cloud data in an arbitrary frame, viewed from the side; (b) point cloud data with 
ScoreDenoise applied in an arbitrary frame, viewed from the side; (c) point cloud data with HPRDenoise (Ours) applied using 

parameters 𝑛= 800, 𝑑𝑣 = 5 in an arbitrary frame, viewed from the side. 

Table 2. Number of correct frames for 𝑛,𝑑𝑣 settings, and accuracy results. 𝑛, 𝑑𝑣 are arbitrary constant parameters in the Equations 
(5) and (6). It can be seen that the accuracy varies depending on the parameters. 

Method Correct frames Accuracy (%) 

𝑛 =800 𝑑𝑣 =5 113 73.38 

𝑑𝑣 =10 105 68.18 

𝑛 =3000 𝑑𝑣 =5 73 47.40 

𝑑𝑣 =10 112 72.73 

Table 3. The number of correct frames and accuracy results for each method. Raw refers to point cloud data without any processing, 
ScoreDenoise refers to point cloud data processed by a conventional noise reduction method[15], and HPRDenoise refers to point 

cloud data processed by our proposed method. 

Method Correct frames Accuracy (%) Ave. process time (ms) 

Raw 20 12.99 91.83 

ScoreDenoise 44 28.57 93.01 

HPRDenoise 113 73.38 91.88 

5. Discussion 

As shown in Table 2, the accuracy varies depending on the value of 𝑛, 𝑑𝑣. Table 3 shows that our 

proposed method achieves higher accuracy than the conventional method. 

When the viewpoint of the hidden point removal method and the viewpoint of the LiDAR are aligned in 

the same direction, this method is able to remove motion blur accurately. In other words, if hidden point 

removal is used when a dynamic object is moving toward or away from the LiDAR, accurate dynamic noise 

reduction is possible, and object detection accuracy is expected to be improved. In this experiment, the 

effectiveness of the method was verified when the scanning target was moving toward the LiDAR, but the 

method is expected to be effective even when the target is moving away from the LiDAR. When moving 

toward the diagonal or lateral direction, accurate noise reduction is complex, and no improvement in 

accuracy may be seen. 

In some cases, the application of a filter does not result in an improvement in accuracy. There are 

mainly two factors that can explain this phenomenon. The first is that the person is not recognized as a 

person due to factors other than noise. For example, if there is not enough training data similar to the 

unrecognized frame, it cannot be accurately recognized. Second, hidden point removal only partially 
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removes dynamic noise in all frames. The proposed method must be revised to handle situations involving 

lateral movements, such as transitioning from an open position to a closed one. In such situations, the hidden 

point removal algorithm will fail to distinguish the different movement transitions since all points already 

face the sensors. 

From the experimental results, this method is effective for LiDARs with non-repeating scan patterns. 

However, it is also expected to be effective for LiDARs with repeating scan patterns less prone to noise 

generated by scanning time. In addition, considering that HPRDenoise has the ability to denoise multiple 

clusters, it should also prove effective for denoising multiple individuals, even though this experiment 

involved denoising only a single person. 

However, it was difficult to identify other methods that are readily available to specifically remove 

motion blur affecting a moving object inside a larger point cloud for our experiment. In addition, the 

resource needed to implement multiple solutions in parallel where limited, de facto, we focus our time on the 

method that we thought to be the most promising (ScoreDenoise) and on the proposed method. This is 

because ScoreDenoise assumes that all surfaces have been scanned, so it is not possible to remove motion 

blur itself. 

6. Conclusion 

This paper proposes a motion blur filtering method based on the hidden point removal algorithm when 

tracking a fast-moving object using static LiDAR. The proposed method is a step-by-step methodology 

applied on each point cloud frame to extract and denoise the target point cloud locally. Unlike the supervised 

learning approach mentioned in this paper, the proposed methodology uses unsupervised learning, allowing 

us to avoid the problem of training data dependence. Experimental results show that the proposed method is 

promising, with an accuracy of up to 75% and thus outperforming existing techniques. In the future, we 

intend to extend our approach to handle lateral motion and thus extend our methodology to any random fast-

moving object into a linear trajectory. With the progress of this research, it is expected to be able to detect 

people even when using Lidar, which has low resolution. Therefore, it is expected to be applied not only to 

the detection of runners, but also to the estimation of people with uncertain movements in urban areas, which 

has been difficult to achieve with in-vehicle systems, for example. 
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