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ABSTRACT
Recently, video based flame detection has become an important approach for early detection of fire under complex

circumstances. However, the detection accuracy of most existing methods remains unsatisfactory. In this paper, we
develop a new algorithm that can significantly improve the accuracy of flame detection in video images. The algorithm
segments a video image and obtains areas that may contain flames by combining a two-step clustering based approach
with the RGB color model. A few new dynamic and hierarchical features associated with the suspected regions,
including the flicker frequency of flames, are then extracted and analyzed. The algorithm determines whether a
suspected region contains flames or not by processing the color and dynamic features of the area altogether with a
classifier, which can be a BP neural network, a k nearest neighbor classifier or a support vector machine. Testing results
show that this algorithm is robust and efficient, and is able to significantly reduce the probability of false alarms.
Keywords: Fire Detection; RGB Color Model; Dynamic Features; Hierarchical Features; Feature Fusion

ARTICLE INFO
Received: Mar 17, 2019
Accepted: Apr 30, 2019
Available online: May 15, 2019

*CORRESPONDING AUTHOR 
Yinglei Song, School of Electronics 
and Information Sciences, Jiangsu 
University of Science and Technology, 
Jiangsu, Zhenjiang 212003, China; 
syinglei2013@163.com;

CITATION
Jiaqing Chen, Xiaohui Mu, Yinglei
Song*, Menghong Yu, Bing Zhang.
Flame Recognition in Video Images with
Color and Dynamic Features of Flames
Journal of Autonomous Intelligence 2019;
2(1): 30-45. doi: 10.32629/jai.v2i1.35

COPYRIGHT
Copyright © 2019 by author(s) and 
Frontier Scientific Publishing. This 
work is licensed under the Creative 
Commons
Attribution-NonCommercial 4.0 
International License (CC BY-NC4.0). 
https://creativecommons.org/licenses/
by-nc/4.0/

1. Introduction
Real-time detection and early warning of fire is an important approach to

alleviating the threats from fire hazards. Since fire often occurs randomly and a fire
scene is usually complicated, traditional fire detection methods are often unable to
detect fires and issue warnings in the early stages of fires. Recently, with the
abundance of surveillance video cameras, fire detection technology based on video
has become an important approach for the early detection of fire. Such detection
methods analyze the features of video images and recognize potential occurrences
of flames, fires can thus be recognized and under control before they develop into
disasters[1]. Due to its ability to detect fires in their early stages, video based fire
detection technology has attracted the attention of many researchers in the areas of
fire safety and a large number of methods have been developed to detect the
occurrence of flames by analyzing sequences of video images.

Color features are the most important features of flames and have been
extensively used in methods for video based fire detection[2-9]. For example, a
method of flame recognition based on RGB-HSI hybrid color model is developed
in[2]. Based on a color model, regions that contain flames can be recognized based
on the color features of flames. In[3], an approach that combines a statistical model
with a background subtraction algorithm is developed to identify the regions that
may contain flames. A HSI-YCbCr color model is used in[4] to analyze the color
features of moving targets in a video and flame regions can then be
recognized based on the results of analysis. Similarly, a generic color
model[5], based on YCbCr color space with several rules, is proposed for flame
pixels’ classification. And in[6], potential fire regions are detected by modeling the
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fire color with Gaussian mixture model. Most of these
approaches develop color models to accurately describe
the color features of flames and determine whether a
suspected region contains flames or not by comparing its
color features with those of flames. Dynamic features of
flames provide another important criterion for the
recognition of fires[10-15]. In[10], a Hidden Markov
Model based approach is developed to detect the flicker
dynamic features of a suspected region, interference
from background can be effectively eliminated with this
approach and an accurate description of the flicker
dynamics of the suspected region can be obtained. In[11],
an algorithm is developed to detect flames by combining
the dynamic features extracted from the motion of
moving targets with their color features described based
on a CIE L*a*b* color model. In[12], the dynamic
features of flames are closely analyzed using the HSI
color model. Several dynamic features, combining with
color features, are used in[13] to train the dynamic SVM
classifier, which is applied for fire alarm. In [14], analyses
of growth rate and optical flow rate are applied to
improve the accuracy of fire detection. However, due to
the difficulty of accurately extracting and analyzing the
dynamic features of moving objects in a video, dynamic
features remains less popular than color features in flame
detection.

In addition to color and dynamic features, features
associated with the geometric shape of a segmented
region are also used in the recognition of regions that
may contain flames[16-20]. For example, in[16], the color,
texture and contour features of a suspected region are
obtained based on the HSI color model, and a neural
network based classifier analyzes the features and
identifies regions that contain flames. In[17], a Support
Vector Machine based approach analyzes the static
features related to the circular degree of a suspected
region and the color features extracted with a RGB-HSI
mixture model are combined with these features to
recognize flame areas. Similarly, the color, texture and
scintillation features are combined in[18] with an
information fusion based algorithm to detect flames.
Testing results show that the flame regions can be
efficiently recognized with this information fusion based
approach.

So far, a large number of flame detection methods
have been developed and the accuracy and reliability of
recognition have been significantly improved. However,
since the dynamic features of flames have not been
closely analyzed in most of these methods, the
recognition accuracy is still not completely satisfactory
under complex circumstances. In addition, the color
features related to the spatial distribution of the color of
pixels in a flame region have not been fully studied and
utilized in the recognition of flames.

In this paper, we develop a new approach that
combines the color, dynamic and hierarchical features of
flames to improve the recognition accuracy. Firstly, the
areas that may contain flames are accurately obtained
with a new clustering based two-step approach. A few
new dynamic features related to the change rates, flame
similarity, and flicker frequencies of flames are
extracted by analyzing the regions obtained in the first
step. In addition, the spatial distribution of the color of
pixels in a flame region is also analyzed and the
hierarchical features of a flame region are then
obtained based on the analysis. Flame regions are finally
determined by processing all features with a classifier,
which can be a BP neural network based classifier, a k
nearest neighbor classifier or a support vector machine.

In order to test the recognition accuracy, we test the
recognition accuracy of our approach on 10 videos. Five
of these videos contain flames of forest fires; two of
them do not contain flames and the remaining two
contain flames that are under control and in safe
conditions. In addition, we also use the approaches
developed in[2,3,22], and[23] to process the testing videos
and compare their recognition results with those of our
approach. Our testing results show that, compared with
four other approaches, our approach achieves
significantly improved recognition rates in videos that
contain flames. On the other hand, the false alarm rates
of our approach on videos that do not contain flames or
flames in safe conditions are significantly lower than
those of the four other approaches.

2. The Recognition of Flame Regions
Since the effective identification of suspected

regions that may contain flames is the basis for the
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subsequent recognition of flames, an algorithm is needed
to accurately determine the regions that are likely to
contain flames in a sequence of video images. Color
features of flames are used as the criteria for the
identification of these regions.

2.1 The Recognition of Flame Pixels

The colors of pixels in flame regions in a video
image follow a special distribution in the RGB color
space[2,3]. In RGB color space, the color of a pixel can be
described by the values of three channel components,
namely R, G and B. In most cases, a high value of the R
channel component is characterized by high brightness
and high saturation. Therefore, for any flame pixel in (x,
y) in an image, the following conditions should be
satisfied:

(1)

(2)

where Rt is a threshold value that is often set to be 180.
And R (x, y), G (x, y), B (x, y) are the values of red, green
and blue channel components for the pixel at (x, y).

However, the above screening criteria based on the
RGB color model are only preliminary and may result in
a large number of false positives. It is well known that
the color information of each pixel is described by its R,
G, and B channel components, which can be used to
convert the representation of color in RGB space to that
in other color spaces, such as HSI space, where
the brightness and saturation information can be well
separated. However, the conversion may also lead to the
loss of image information. In this paper, we consider
pairs of R-G, R-B, and G-B channel components in the
RGB space, a statistical model is constructed based on
these pairs to identify the potential flame pixels.
According to the data provided in[3], we use the criterion
as shown in equation (3) to process the pixels that satisfy
equations (1) and (2) and only those that also satisfy the
criterion are considered to be a flame pixel.
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To simplify the notation, we use firep(x, y) in the
rest of the paper to characterize whether the pixel at (x, y)

is a flame pixel or not. firep(x, y) is 1 if the pixel is a
flame pixel, otherwise it is 0. To evaluate the recognition
accuracy of this approach, we compare the recognition
result of this approach with those of the approaches
developed in[2,10], and[17-19]. Most of these approaches
recognize flame pixels with RGB and HSI based models.
The comparison is made among our approach, the
original model and RGB-HSI mixed model. The
approach based on the RGB-HSI mixed model uses a
constraint condition that depends on a threshold, which is
computed based on the RGB model. Details of the
method can be found in[3].

(a) The original image (b) The RGB model

(c) The RGB-HSI model (d) Our approach

Figure 1. A comparison of the recogntion results with

three different approaches

Figure 1 (b), (c) and (d) show the recognition
results obtained with the three approaches respectively
on the same image shown in Figure 1(a). It is evident
from the figure that the background in the original image
is complex and contains many objects whose color is
similar to the color of flames. It can be seen from the
figure that the recognition result obtained with the
original RGB model is the worst. In addition, our
approach achieves the highest recognition accuracy.
However, it is also clear that our approach fails to
identify the center of the flame.

2.2 Refinements of recognized flame regions

It can be seen from the results shown in Figure 1
that our approach is unable to accurately recognize the
center of a flame region. The recognized flame regions
thus need to be refined to further improve the recognition
accuracy. We use a method often used in clustering
algorithms to find pixels that are close to the fire pixels
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that have been found in color and these pixels are very
likely to be part of a flame.

Firstly, the mean value of the channel components
of all the flame pixels that have been detected can be
calculated with equation (4) as follows.
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where Rf (x, y), Gf (x, y) and Bf (x, y) are the values of R,
G, and B channel components for the flame pixel at (x, y),
K is the total number of flame pixels that have been
detected.

Each pixel that is not determined to be a flame pixel
is then processed by comparing the values of its three
channel components with those of μR, μG and μB. The
dev(x, y) computed with Equation (5) is used to
characterize the difference between the three channel
components of such a pixel at (x, y) and the flame pixels
that have been discovered, where Rnf (x, y), Gnf (x, y) and
Bnf (x, y) represent the R, G, and B channel components
of the pixel respectively.

BnfGnfRnf yxByxGyxRyxdev   ),(),(),(),(

BnfGnfRnf yxByxGyxRyxdev   ),(),(),(),(
(5)

As shown in Equation (6), the value of Rnf (x, y) is
compared with μR, the pixel is set to be a flame pixel if
the Rnf (x, y) is larger than or equal to μR since such a
pixel has a brightness value larger than the
average brightness value of all flame pixels that
have been detected. Otherwise, dev(x, y) is compared
with a threshold value τ and the pixel is considered to be
a flame pixel if dev(x, y) is less than τ.
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Our testing results show that the recognition

accuracy can be optimized in practice when the value of
τ is around 30.

The approach described above is able to find pixels
that are not detected to be a flame pixel based on

equation (3) but are likely to be part of flames in the
image. The detected flame regions can thus be refined
after the approach is applied to an image. Since the flame
region in the original image in Figure 1(a) is small, the
effect of refinements created by our approach is not
obvious. The image in Figure 2 (a) is thus used to test
the actual effect of the refinements. Figure 2 (b) shows
the flame regions recognized by our approach before the
steps of refinements are applied and the flame regions
obtained after the steps are applied to the image are
shown in Figure 2 (c). It can be seen clearly from Figure
2 that the above approach for refinements can
successfully detect the flame pixels that are missing in
the results generated by preliminary recognition.

(a) The original image

(b) Before the growth (c) After the growth

Figure 2. The effect of flame region refinements

3. Feature Extraction and Analysis
Flame recognition that only uses the color features

of flame pixels is simple and fast, it can achieve
satisfactory recognition results on some video images.
However, since the background of a scene monitored by
video cameras is generally more complex. Different
types of interference sources thus may appear in the
video images. These interference sources may cause a
high false alarm rate if we only consider the color
features in flame detection. Therefore, other types of
features of flames are also needed to be extracted and
analyzed to improve the recognition accuracy.

For example, many researchers have focused on the
study of features related to the geometric shapes of flame
regions, such as roundness, cusp number[17-19]. However,
similar to the color features, these features are also static
features and do not contain the information on the
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motion of flames. In this section, we develop new
features to describe the dynamics and hierarchical
structures of flames, which can be combined with the
color features to significantly improve the recognition
accuracy. The dynamic features we consider include the
change rate of flame areas, flame similarity and flame
flicker frequency. The hierarchical features characterize
the distribution of the difference between the R channel
components of two adjacent flame pixels.

3.1 The Change Rate of Flame Areas

When a fire breaks out, it generally experiences a
process from scratch to extinction, which is in
accordance with the Gauss distribution. In the early stage
of fire, the fire flames demonstrate a trend of continuous
growth. On the other hand, the areas of many
interference sources, such as candles, lights etc remain
relatively stable. The change rate of flame areas can
thus be used as an important criterion to recognize
flames that are expanding with a certain rate.

The flame area change rate can be computed based
on the change of the number of flame pixels in two
frames that are adjacent in the video. Specifically, if I1,
I2 represent the two frame images adjacent in the video,
NI1 and NI2 represent the total number of flame pixels that
have been detected in I1 and I2, the change rate of flame
areas at I2 can be computed as follows.

(7)

(a) Screenshot of fire (b) Screenshot of sunset

Figure 3. Screenshots of videos of a fire scene and a

sunset scene

To compare the change rates of flames and other
interference sources, we select two videos and compute
the change rates of flame areas for each of them. One of
the two videos records a fire scene while a sunset scene
is recorded in the other one. The frame rates of both
videos are 25 frames per second and the change rate of
flame areas for the first 75 frames of each video are

computed for the comparison. Figure 3 (a) and (b) show
screenshots of the two videos respectively while Figure
4 (a) and (b) show the areas of flame regions computed
for the first 75 frames in both videos respectively.

It can be seen clearly from Figure 4 that the area of
a flame region changes in a fashion completely different
from that of a suspected region without real flames. In
Figure 4 (a), the fire spreads, the area of the flame
region gradually becomes larger. Finally, the area of the
flame region tends to be stable. On the other hand,
Figure 4 (b) shows that the area of the suspected region
in the sunset video undergoes two different stages.
Although the area of the suspected region in each stage
remains stable, a sudden change in the area of the
suspected region is observed when a switch between two
stages occurs.

(a) The fire scene

(b) The suset scene

Figure 4. The areas of the suspected regions in the

selected 75 frames of the videos of a fire scene and a sunset

scene.

Figure 5 compares the change rates of flame areas
computed for the selected 75 frames in both videos. It is
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evident from Figure 5 (a) that the area change rate is in
the range of [0.01,0.27] during the observation period.
The value of the area change rate is relatively larger
when the fire starts and spreads. However, its value is
gradually stabilized and maintains at around 0.05 after
the fire stops its expansion. On the other hand, as shown
in Figure 5 (b), the area change rate for the sunset scene
is a small value in the range of [0.001,0.04]. In addition,
its value remains relatively stable and is less than 0.015
in most of the observation time.

(a) The fire scene

(b) The sunset scene

Figure 5. A comparison of the change rate of suspected

areas in the videos shown in Figure 3

3.2 Flame Similarity

The shape similarity of flame in the adjacent two
frames is also found to follow certain principles. Our
experiments on objects such as sun, lamp, street lamp etc
show that the value of the shape similarity varies in
different ranges for different objects. We use Ii-1 (x, y), Ii

(x, y) to denote the binary images obtained from the
images of frames i-1 and i respectively, where Ii-1 (x, y)
or Ii (x, y) is 1 if the pixel at (x, y) is determined to be a

flame pixel in frame i-1 or i and their values are 0 if
otherwise. The flame similarity between Ii-1 and Ii can be
computed with Equation (8) as follows.
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Where Ω is the set of all pixels in Ii-1 or Ii ,  is an

operator for “and” and  is an operator for “or”. It is
not difficult to see that the numerator in the above
equation is the number of pixels that are recognized to be
flame pixels in both Ii-1 and Ii , while the denominator is
the number of pixels that are recognized to be flame
pixels in one of Ii-1 and Ii.

To show how the flame similarity varies in videos
that contain flames and compare the results with those
obtained on videos that do not, the two sets of videos that
have been shown in Figure 3 are tested, and the first 50
frames of each video are analyzed. Figure 6 shows the
values of the flame similarity obtained on these frames in
the two videos. As shown in Figure 6, the flame
similarity of adjacent frames in a fire video may vary in a
wider range. Figure 6 (a) shows that the values of the
flame similarity between adjacent frames varies in a
range of [0.8,1]. By contrast, Figure 6 (b) shows that and
the similarity values between two adjacent frames in the
video of the sunset scene is mainly concentrated in the
range of [0.95,1].

(a) The fire scene
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(b) The sunset scene

Figure 6. The flame similarity values obtained on the two

videos shown in Figure 3

3.3 Flame Flicker Frequency

The flicker of flame appears to be random and
irregular. But it in fact has special spectrum
characteristics. Recent work has revealed that the flame
flicker frequency is mainly concentrated in the range
of 7-12 Hz[18,21], and has nothing to do with the flame
size. In a short period of time, when the influence of
external factors such as wind power can be neglected, the
motion of flames is relatively stable, and the distribution
of flame pixels is determined by the flickering motion of
flames. Therefore, we start the analysis with the
distribution of the difference between flame pixels in two
adjacent frames, and we show later that the flame flicker
frequency can be characterized based on this distribution.

Firstly, the change in the distribution of flame pixels
in two adjacent frames i-1 and i can be computed with
Equation (9), we use Pr(i) to denote the change. The
variables in equation (9) are defined the same way as
they are defined in section 2.2. In the equation, the
numerator represents the number of the pixels that are
determined to be flame pixels in frame i but not in frame
i-1, while the denominator is the total number of flame
pixels in frame i-1. Figure 7 shows the values of Pr(i)
computed for the selected 50 frames in the fire video in
Figure 3 (a).
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Figure 7. The computed values of Pr(i) for the selected 50

frames in the fire video shown in Figure 3(a)

We then use the zero detection method to compute
the flicker frequency of flames, the method needs to
determine the zero point of Pr(i). Specifically, the mean
value μP of all Pr(i)s can be computed with Equation (10).
We choose the mean value μP as the zero point, a
statistics related to the flame flicker frequency can
then be computed with Equation (11). It is not difficult to
see that Equation (11) computes the number of times
where the value of Pr(i) turns from a negative number
into a positive one. The value of sgn(x) is 1 if x is
positive and -1 otherwise. Note that the value of Pr(1) is
not defined, we set Pr(1) = 0 for the convenience of
computation.





N

i
rP iP

N 2

)(
1

1

(10)



























 


0)1(
)0(   1
)0(   1

)(s

))1(sgn())(sgn(
2
1

2

r

N

i
PrPrf

P
x
x

xgn

iPiPN 

(11)
After Nf is computed, the flicker frequency f of

flames in the video observation time can be obtained
with Equation (12):

1



N
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f fFPS

(12)
where FFPS represents the video frame rate, N is the total
number of frames where the analysis is performed.

To assess the effectiveness of the above method for
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flicker frequency calculation, we use the method to
evaluate the flicker frequency of the potential flame
regions in six different videos as shown in Figure 8.
Videos shown in Figure 8 (a), (b), (c), (d) contain flames
while the remaining two only contain mobile headlights
and a sunset scene respectively. In addition, due to the
fact that the flicker frequency of flames is around 7-12
Hz, the frame rate of the videos must be a value of at
least 24 frames per second from the Nyquist sampling
theorem. Therefore we set the video frame rate to be 25
frames per second for all six videos. The obtained
experimental results are shown in Tables 1 and 2.

(a) Video ① (b) Video ②

(c) Video ③ (d) Video ④

(e) Video ⑤ (f) Video ⑥

Figure 8. Screenshots of videos tested for flame flicker

frequency

Video

Number

Frame

Rate(frames/s)

Flicker

Frequency(Hz)

Video ① 25 8.5

Video ② 25 7.8

Video ③ 25 7.5

Video ④ 25 7.8

Table 1. The flicker frequencies of flame regions in videos

that contain flames

Video

Number

Frame

Rate(frames/s)

Flicker

Frequency(Hz)

Video ⑤ 25 4.8

Video ⑥ 25 6.0

Table 2. The flicker frequencies of suspected regions in

videos that do not contain flames

It is clear from Table 1 that the flame flicker
frequency is in the range of 7-12 Hz. By contrast, Table
2 shows that the flashing frequencies of the automobile
headlights and the setting sun are 4.8 Hz, 6.0 Hz
respectively, and are not in the range of the flame’s.

To further demonstrate the difference in the flicker
frequencies of fire flames and other interference sources,
we select Video ① in Figure 8 (a) and Video ⑤ in
Figure 8 (e) for a closer analysis. For comparison, each
group that contains 25 frames (i.e. 1s) is chosen as a
sampling interval, a flicker frequency is then calculated
for each group. Figure 9 (a), (b) show the flicker
frequencies computed for a few groups from Videos ①

and ⑤ respectively. To add that, in practice, regions
with high brightness may appear suddenly in a video of
moving vehicles, which may generate a significant
amount of interference for fire recognition, so we choose
Video ⑤ for further testing. We are able to see clearly
from Figure 9 that the flicker frequencies remain
relatively stable. Due to the disturbance from the smoke
in the video, flicker frequencies fluctuate around a value
of 8 Hz. By contrast, the flicker frequencies of vehicle
headlights in Video ⑤ are always lower than 6 Hz
(since Video ⑤ lasts only for 5 seconds, Figure 9 (b)
has less sampling points).

(a) Flicker frequencies obtained on video ①
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(b) Flicker frequencies obtained on video ⑤

Figure 9. A comparison between the flicker frequencies

obtained on video ① and video ⑤

3.4 The Statistics of Gray Difference of R
Channel Component

The layering features of flames are used to describe
the percentages of flame pixels in different gray levels,
they are often used as a criterion to strengthen the flame
recognition results, so that the interference from other
sources can be eliminated and the recognition accuracy
can be improved.

For a given pixel p at (x, y), we consider the four
pixels in the neighborhood of p and compute the
difference between the R channel component of p and
that of each of the four pixels. The distribution of these
difference values for all pixels in a flame region is then
used to obtain the layering features of the flame region.
Figure 10 shows a pixel at (x, y) and the surrounding 4
neighborhood pixels (x-1, y), (x+1, y), (x, y-1) and (x,
y+1) to compute the differences of R channel
components of adjacent flame pixels.

Figure 10. The selection of pixels to compute the

differences of R channel components in the surrounding

neighbor of the pixel at (x, y)

Since the inner regions of the flame are generally
connected, a single pixel that is determined to be a flame
pixel is often due to interference. We therefore simply
omit these pixels and only analyze the regions that
contain a large number of flame pixels. For a flame pixel
at (x, y), the four pixels that are adjacent to (x, y) are
investigated and the flame pixels in them are grouped
into a connected region (i.e., a flame block). The
difference between the R channel components of each
pair of adjacent pixels in the group is then computed.
Finally, the mean of all these difference values is
computed by using Equation (13).
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where μD is the mean of the differences of channel R
components of all adjacent pairs of flame pixels, M
denotes the total number of the connected regions as
described above, Λ represents all the remaining flame
regions after single flame pixels are removed, R’ is the R
channel component of the flame pixel that is adjacent to
(x, y). R’ is computed with Equation (14).
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where the value of firep(x, y) is 1 if the pixel at (x, y) is
determined to be a flame pixel. Otherwise, its value is 0.

We now use the two videos shown in Figure 3 to
test whether the layering features of flame regions are
different from those of suspected regions that do not
contain flames. Figure 11 (a) and (b) show the values of
μD computed on frames in the videos that record a fire
scene and a sunset scene respectively. Figure 12 (a) and
(b) show the histograms that describe the distributions of
the difference values in both videos. Since a threshold Rt

of value 180 is used to obtain the suspected flame
regions in both videos and the gray value of the R
component is in the range of [0, 255], the horizontal
coordinates in Figure 12 (a) and (b) vary in a rang of
[0, 75].

It can be seen from Figure 11 (a) that the value of
μD is larger when the fire starts and becomes stable
afterwards, it fluctuates around 5 in Figure 11 (a). Our
experiments on other available videos of fire scenes also
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show that although the stable value of μD is not a
constant and may vary in different fire scenes, the values
of μD change in a fashion similar to the one shown in
Figure 11 (a) for all these videos. Therefore, this
property is highly likely to be an important layering
feature for flame regions. By contrast, Figure 11 (b)
shows that the value of μD is small and varies in the
range of [1.2,1.45], which is quite different from what
we have observed in videos of fire scenes, the sunset
scene can thus be excluded from fire flames based on its
layering feature.

From Figure 12 (a) and (b), we are able to see that
the difference values in a flame region are distributed in
a larger range than that of a region that does not contain
flames. The difference value in a flame region could be
up to 75. The counts on values in interval [0, 75]
gradually decrease and the rate of decline is smaller in
Figure 12 (a). For R gray level difference score of 1, its
count in the fire scene is 2.4×104, which accounts for
about 60 percent of the total counts. On the other hand,
the count in the sunset scene is 7.2×104, which accounts
for 80 percent of the total counts. This shows further that
fire flames and sunshine interference sources are also
different in this particular layering feature.

(a) The fire scene

(b) The sunset scene

Figure 11. A comparison of the values of μD computed in

videos shown in Figure 3

(a) The fire scene

(b) The sunset scene

Figure 12. Histograms on the distribution of the

difference of R channel components between adjacent flame

pixels in the videos shown in Figure 3

3.5 The coefficient of R channel gray difference
variation

Since the Coefficient of Variance (CV) provides
a better measure of the degree of data dispersion than the
variation itself, the differences between the R channel
components of adjacent flame pixels are used to obtain
CV, which is another characteristic parameter that can be
used to recognize flames. Given the distribution of a
random variable, the value of its CV is computed by
dividing the mean value of the variable by its standard
deviation. Here, for the convenience of calculation, we
compute the square of CV as the value of the measure, in
other words, we divide the square of the mean by the
variance, as shown in Equation (15):
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where all variables are as defined in Section 2.4. Here,
we use the data obtained in Section 2.4 and select the
videos in Figure 3 to obtain the values of CVs for videos
of a fire scene and a sunset scene. Figure 13 (a) and (b)
show the values of CV obtained on all frames in the two
videos respectively. From Figure 13 (a), it is clear that
the value of CV increases sharply when the fire starts
and becomes stable at around 1.9 after 40 frames. In
addition, the CV of fire flames is mainly concentrated in
the range of [1, 2.5] and the amplitude of fluctuations is
around 0.1. By contrast, Figure 13 (b) shows that the
values of CV in the video of a sunset scene vary in the
range of [3.8, 4.8] and the amplitude of the fluctuations
is much larger. The value of CV can thus be used as
another important criterion for the identification of fire.

(a) The fire scene

(b) The sunset scene

Figure 13. A comparison between the values of CV

obtained on the videos in Figure 3

4. Putting all features together
In view of the fact that using a single feature for

flame recognition may lead to high false positive rates
and may suffer from other interference sources, we use a
k-nearest neighbor (kNN) classifier, a support vector
machine (SVM) and a BP neural network (BPNN) to
process the five features that we have described in
section 3 and identify flames respectively. We denote the
five features with Ar , α , f , μD and CV, where Ar

represents the flame area change rate; α is flame
similarity; f denotes flame flicker frequency; μD denotes
the mean value of gray difference of R channel
component and CV is the variation coefficient of R
channel gray difference.

As an example, Figure 14 shows the flowchart of
the flame recognition algorithm where a BP neural
network is used for classification. The BP neural network
consists of three layers. The input of the BP neural
network is the five features Ar , α , f , μD and CV as
described above. The decision of recognition is
made based on the value of its output. Specifically, a fire
alarm is triggered only when the output value is in the
range of [0.5,1]. The network has five nodes in the input
layer, 10 nodes in the intermediate layer and one node in
the output layer. The standard gradient based algorithm is
used to train the BP neural network. The flowcharts of
the algorithms based on a kNN classifier and a SVM
differs from the one in Figure 14 only in the step of
classification, where a kNN classifier or a SVM is used
to determine whether a flame exists in the video
sequence. The parameter k in the kNN classifier is
selected to be 5 and all three classifiers are trained with
the same training dataset. Specifically, the data in 250
frames is selected as the training set. 150 frames of the
250 training frames contain flames and the remaining
100 frames contain other interference sources.
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Figure 14. Flowchart of the flame recognition algorithm

5. Testing results and analysis
To test the recognition accuracy of the proposed

flame detection algorithm, we have implemented it in
Matlab 2011b with three different classifiers and tested
the recognition accuracy on ten videos shown in Figure
15. And a description of each testing video is shown in
Table 3. The testing is performed in a computer system
that has window 8 operating system installed. The CPU
in the system is Intel (R) Core (TM) Duo CPU 1.80 GHz
and the main memory of the system is 4 GB.

(a) video 1 (b) video 2

(c) video 3

(d) video 4 (e) video 5

(f) video 6 (g) video 7

(h) video 8

(i) video 9 (j) video 10

Figure 15. Screenshots of testing videos

From Table 3, we are able to see that videos 1
through 5 are videos of fire flames, interference sources
for these videos include smoke, wind and moving objects.
Videos 6 through 8 do not contain flames. Videos 9
through 10 contain flames that are under control and in
safe conditions, a fire alarm should not be generated for
these videos. The recognition results on videos that
contain flames are shown in Table 4. Table 5 shows the
recognition results on videos that do not contain flames.
Table 6 shows the recognition results on videos of
flames that are under control and in safe conditions.

Video

Number
A description of the video

video 1
Forest fire, many flame regions and little

interference in background

video 2
Forest fires, many flame regions, smoke

contains small flame regions

video 3
Forest fires, many flame regions

accompanied by smoke

video 4
Forest fires, many flame regions, there is

smoke and wind disturbance
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video 5

In the early stage of the fire, two men took

a torch and walked back and forth in a red

sign.

video 6
An incandescent lamp is on in an indoor

dark environment

video 7
Night highway video, many cars passing,

the ground is illuminated by the lights

video 8
Evening sunset video, the sky has a larger

area of color interference

video 9 Indoor lighter flame

video 10 Indoor burning candle

Table 3. Descriptions of the testing videos

We also use the approaches developed in[2,3,22],
and[23] to detect flames in all the testing videos and
compare their recognition results with those of our
approach. The approach in[2] uses a method that
combines the RGB-HSI color model and motion
detection for fire recognition. The approach in[3] uses a
statistical color model of RGB and a similar background
subtraction to detect flames. The algorithm in[22]

recognizes flames with an approach based on YCrCb
color space and K-means clustering. The algorithm
developed in[23] uses a combination of radiation domain

features to identify flames.
It can be seen from Table 4 that all tested

approaches are able to achieve good recognition results
in videos 1 through 4, where the recognition rates of our
approach are even higher than those of two other
approaches when a BPNN is used as the classifier.
However, the performance of our approach with all three
classifiers on video 5 is not ideal and the recognition
rates achieved on this video are slightly lower than those
of the other four approaches. However, a closer analysis
of the recognition results on this video shows that most
of the frames where our approach fails to recognize
flames are located within the first 100 frames. This is
possibly due to the fact that the video starts to collect
information from the early stages of the fire and the size
of the flames is small in the beginning. In addition, the
video also contains color interferences from two objects
that move back and forth and the occlusion caused by the
two moving objects interferes with the flame feature
extraction, which results in a high false alarm rate. The
testing result on this video shows that the process of
image segmentation and feature extraction in our
approach needs to be further improved.
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Video 1 250 250 98.4% 100% 99.6% 100% 100% 97.2% 97.6%

Video 2 250 250 97.2% 97.6% 99.2% 98.8% 100% 97.6% 98.4%

Video 3 250 250 95.2% 95.6% 96.0% 96.4% 97.6% 96.0% 97.2%

Video 4 250 250 97.6% 96.0% 98.0% 98.4% 99.6% 99.2% 98.8%

Video 5 375 375 90.7% 88.5% 86.1% 86.4% 85.9% 86.7% 86.4%

Table 4. Testing results on videos that contain flames

Indoor lighting, moving lights and sunlight are
some common bright colors, and the testing results show
that our approach can effectively eliminate interferences
from these sources. Table 5 clearly shows that our
approach significantly outperforms the other two
approaches on false alarm rates in videos 6 through 8. Of
course, since video 7 contains slow moving lights and

many sources of interference, our approach generates
false alarms on 3.2%, 6.5%, and 4.8% of the frames
respectively when three different classifiers are used for
classification. This also suggests that our approach needs
to be further improved on the elimination of
interferences from sources other than flames.
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Video 6 250 0 6% 0% 2% 1.2% 0% 0.8% 1.2%

Video 7 124 0 75.8% 43.5% 25.8% 19.4% 3.2% 6.5% 4.8%

Video 8 123 0 19.4% 27.4% 16.3% 13.8% 0% 8.1% 4.9%

Table 5. Testing results on videos that do not contain flames

Since fire alarms do not need to be issued for flames
in candles, lighters and other types of flames that are
under control and in safe conditions, it is a challenging
problem to accurately recognize these types of flames
from flames that may lead to fire hazards. It is clear from
Table 6 that our approach is able to achieve significantly
improved false alarm rates on videos that contain these
types of flames. Specifically, the person in video 9
ignites the lighter in his hand and the flame of the lighter
is not stable since the hand that holds the lighter is
shaking and the flame region is also large. All these may
generate adverse effects on the identification process and

the false alarm rates thus reach 12.1%, 15.4%, and
13.4% respectively for three different classifiers. On the
other hand, since the location of the burning candle in
video 10 remains fixed throughout the video, the false
alarm rates are only 4.8%, 8.7%, and 7.1% respectively.
Table 6 shows that our approach is effective on
recognizing flames that are under control and in safe
conditions and can achieve significantly reduced false
rates in the presence of these types of flames. Testing
results in Tables 4-6 also suggest that our approach
can be combined with a BP neural network to achieve
the best overall recognition accuracy.
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Video 9 149 149 79.9% 80.5% 53.7% 36.9% 12.1% 15.4% 13.4%

Video 10 126 126 77.0% 87.3%
65.1% 31.7%

4.8%
8.7% 7.1%

Table 6. Testing results on videos that contain flames in safe conditions

5. Conclusions
In this paper, we develop a new approach for

video based flame recognition, the approach processes
video images and recognizes regions that may contain
flames with the RGB color model and a clustering based
two-step approach. A few new dynamic and hierarchical
features of the suspected flame regions are then extracted
for further analysis. The final decision on whether fire
occurs is made by a BP neural network that processes the
features as its input. Our testing results show that, the
approach is robust and able to identify the presence of

flames under complex circumstances where other
interference sources may also exist. In addition, our
approach is able to accurately identify flames that are
under control and in safe conditions. A comparison of
our approach with four other existing flame recognition
methods show that our approach can achieve improved
recognition rates in most of the testing videos that
contain flames and significantly improve on false alarm
rates in testing videos that do not contain flames or only
contain flames that are in safe conditions.

However, our testing results also show that the
performance of the approach is still not satisfactory in
cases where occlusions of flames exist or flame regions
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are small. The false positive rates are especially high in
the initial stage of a fire. New techniques thus need to be
developed to further improve the segmentation of the
suspected flame regions and the extraction of relevant
features. In addition, since more computation time is
needed to analyze the dynamics of suspected regions and
obtain their layering features, our approach is
computationally less efficient than approaches that only
use static features of flames. Additional work is thus
needed to improve the real-time performance of our
approach.

The five features adopted by this approach for
classification are based upon previous research results.
So far, we have no knowledge on whether these features
are indeed the best features that can be utilized for flame
recognition or not. However, we believe that the recently
developed methods in deep learning can be used to
extract optimal or near optimal features for classification
and the recognition accuracy can probably be
significantly improved. This also constitutes an
important part of our future work.
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