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ABSTRACT
Recent hand pose estimation methods require large numbers of annotated training data to extract the dynamic

information from a hand representation. Nevertheless, precise and dense annotation on the real data is difficult to come by
and the amount of information passed to the training algorithm is significantly higher. This paper presents an approach to
developing a hand pose estimation system which can accurately regress a 3D pose in an unsupervised manner. The whole
process is performed in three stages. Firstly, the hand is modelled by a novel latent tree dependency model (LTDM) which
transforms internal joints location to an explicit representation. Secondly, we perform predictive coding of image sequences
of hand poses in order to capture latent features underlying a given image without supervision. A mapping is then
performed between an image depth and a generated representation. Thirdly, the hand joints are regressed using
convolutional neural networks to finally estimate the latent pose given some depth map. Finally, an unsupervised error term
which is a part of the recurrent architecture ensures smooth estimation of the final pose. To demonstrate the performance of
the proposed system, a complete experiment was conducted on three challenging public datasets, ICVL, MSRA, and NYU.
The empirical results show the significant performance of our method which is comparable or better than the
state-of-the-art approaches.
Keywords: Hand Pose Estimation; Convolutional Neural Networks; Recurrent Neural Networks; Human-machine
Interaction; Predictive Coding; Unsupervised Learning.

ARTICLE INFO
Received: Apr 7, 2019
Accepted: Apr 28, 2019
Available online: May 6, 2019

*CORRESPONDING AUTHOR 
Jamal Firmat Banzi, School of 
Information Science and Technology, 
University of Science and Technology 
of China, 230026, China; Sokoine 
University of Agriculture, Morogoro, 
3167, Tanzania;
jbanzi@mail.ustc.edu.cn;

CITATION
Jamal Banzi, Isack Bulugu, Zhongfu Ye.
Learning Hand Latent Features for
Unsupervised 3D Hand Pose Estimation
Journal of Autonomous Intelligence 2019;
2(1): 1-10. doi: 10.32629/jai.v2i1.36

COPYRIGHT
Copyright © 2019 by author(s) and 
Frontier Scientific Publishing. This 
work is licensed under the Creative 
Commons
Attribution-NonCommercial 4.0 
International License (CC BY-NC4.0). 
https://creativecommons.org/licenses/
by-nc/4.0/

1. Introduction
Hand pose estimation from depth is the first step for several human-computer

interaction applications. It has been widely applied to human-machine interaction
(HMI) since it provides the possibility for future multi-touchless interfaces. An
accurate hand pose estimation provides a natural way of interaction between human
and virtual space that achieves greater user experience. Different from the
conventional human-machine interactions which are limited to 2D plane display, and
which are only suited where users sit behind the computing devices, hand pose
estimation offers 3D user interaction without direct contact with the computing device.
This provides a possibility for the new interface leading towards seamless
human-computer interaction Figure 1.

However, hand pose estimation is still a difficult task owing to some challenges
that a human hand possesses[1-3]. The hand is very dextrous, has many degrees of
freedom. Similarly, fingers have high self-similarities and severe self-occlusion[4,5].
The input depth image is accompanied by the large amount of noise which will
probably mislead the pose estimator and distort the output results[6].
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Indeed, there are significant progress in developing
fast and accurate hand pose estimation systems thanks to
the advent of low-cost depth sensors[7-12]. State-of-the-art
methods for 3D hand pose estimation from depth rely
heavily on large numbers of depth images annotated with

hand joints[10-15]. These methods have demonstrated
promising results
using deep learning approaches[16-18] which are all fully
supervised.

However precise annotation of 3D hand joints on real
data is difficult to come by and time-consuming.
Additionally, the computation complexity of the
annotation process increases the chance of generating
multiple residual errors[19,25]. This reduces the utility of
deep neural networks on hand pose estimation domain.

Inspired by the discussed challenges; this paper
presents a deep neural network algorithm with a predictive
coding model (deep PCM) to contends the overhead of
annotating large numbers of training examples required for
initial training of the supervised networks. The proposed
model predicts hand joint positions recursively using deep
recurrent convolutional networks with bottom up and top
down connections in an unsupervised fashion. The LTDM
hand topology improves hand detection with much better
accuracy, discussed in detail in section 2. The generated
hand topology is fed into deep predictive coding (Deep
PCM), get encoded to generate a hand representation
which will be mapped with the decoded depth maps.
Finally, we regressively train end to end, a stable and
accurate pose estimator based on depth images. The
included long-short-term memory (LSTM) layer as a part
of the recurrent architecture, provides an error correction
population used to improve the estimation accuracy of the
final hand pose.

Our contributions can be summarized as follows:
 We propose a new way of modeling a hand topology

using LTDM. The LTDM transforms internal joint
locations to an explicit representation, which is
compact and invariant in scale and view angles.

 We innovatively integrate an LTDM with the deep
PCM to learn the internal representation of the hand
geometry that is well suited to subsequent recognition
and decoding of the latent hand parameters which are
used for hand pose estimation.

 The error regression scheme provides error back
propagation that allows our network to learn from its
own mistakes and automatically correct them to
improve the accuracy of the estimation.

Figure 1. Demonstration of our hand pose estimation system

2. The Proposed Approach
This section explains in details about the whole

process of hand joints position estimation in the given
hand depth. Ideally, we formulate the hand topology of a
human hand using a novel LTDM. Then, the
data-dependent method[29] is used to jointly learn LTDM
which generates latent variables of the posterior pose
appearance, and the deep PCM which generates pose
configuration. The mapping is performed between the two
individual domains.

Eventually, the complete network is then trained end
to end for the pose estimation process.
A. Representation of a hand topology

Using LTDM to represent hand structure is a viable
choice. More precisely, unlike previous works[30-33] which
utilized the traditional latent tree model (LTM) to represent
a hand topology, the proposed LTDM model is devoted to
resolving ambiguity, avoid redundant hidden nodes and
more certainly reduces complexity. Furthermore, LTDM
models dependencies between random variables with a
structure that can change dynamically based on the
variable values. It is therefore capable of modeling
context-specific independencies.

Early works, e.g. Wang et al[31] employed LTM to
represent the articulation of body parts[31]. They applied
recursive grouping and Chow-Liu Grouping (CL
grouping)[32] to learn structures directly from observation.
However, their method had the following drawbacks:
 The learned LTM contain no latent node, all node

represents observable variables i.e. skeletal parts.



Banzi J., Bulugu I., Ye Z.

3

 They defined 14 single parts and 10 combined parts
to mimic the latent node, resulting in an LTM which
diverges from true representative topology for the
human body. To eliminate these limitations, Tan et
al[32] applied LTM to represent human hand topology
with a coarse-to-fine search paradigm to reduce the
training samples and testing complexity. The method
learns an LTM automatically to capture hand
topology in a coarse-to-fine manner. Their proposed
LTM requires no prior knowledge of physical joint
connections nor predefined combined parts and
can be applied to many articulated objects. However,
Tan’s LTM algorithm is still complex and requires
many computations, there is a possibility for
redundancy for hidden joints, and also the
dependencies between variables are fixed.
Inspired by the work of Tan et al[32], we propose the
latent dependencies tree model LTDM as a new type
of modeling hand topology. LDTMs encode the
relations between variables with a dependency tree. A
distribution over all possible dependency trees given
the current assignment of variables is specified using
the first-order non-projective Dependency Grammars
(DG) presented in the literature of[32]. The probability
of a complete assignment can then be computed by
adding up weights of all the dependency trees. We
provide an example of using LTDM to compute joint
probability of the assignment of a given variables in
Figure 2.

Figure 2. An example of using LTDM to compute joint

probability from three joint representations (Thumb, Little, and

Middle)

These three joints are more reliable and are chosen as
the foundation to construct new coordinates(branches). X1

and X2 are variables which form a pairwise dependency

WnXn. Each dependency has a weight which is used to
grow a tree and calculate the probability of joint
distribution.

Figure 3. LDTM representing a hand model geometry

Compared with the existing probabilistic models, the
LTDM has the following unique features;
 LTDM models the latent dependencies between

random variables i.e. dependencies are dynamically
determined based on the assignment of random
variables.

 LTDM considers all possible tree structure at the
same time resulting in easier learning.

 LTDM removes all possible latent node dependencies,
and hence improves hand joint detection as shown in
Figure 3.

B. Model definition
An LTDM is a tree-structured graphical model where

leaf nodes are observed, and internal nodes can either be
observed or latent as for the conventional latent tree
model, but further LTDM encodes relations between
variables with a dependency tree. We denote the tree
model as,

)( 21 WXXT  (1)

where the vertices are composed of observable vertices

1X , and latent vertices }{ 22 xX  , where 22 Xx  ;
and W denotes pairwise dependencies among variables.
The strength of each pairwise dependency is independent.
The dependency strength from node ix and node jx is
denoted by an edge weight ijw .
C. Edge weight function

The edge weight function xF is the sum over the
weights of all possible dependency branches for a given
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assignment x , which represents the weight of the
assignment. It is given as;

 
 


)( ),)(( 2

)(
x TixNSS ExxNSS

ijx wTwF (2)

where S is a spinning tree, and )( xNS is a set of all
possible dependency nodes.

The LTDM model requires that the weight of each
dependency ),( 2xxi is the conditional probability.
Therefore, the vertices 1X and 2X are given
assignment ixX 1 or the root node and its probability
is given as

ij xxw / such that 10 / 
ij xxw . For all

nodes, there are given assignment, ),...,,( 21 nxxxX 
which are generated recursively in a top-down manner.

We grow a tree with 1n nodes uniformly at
random. The root node is given as 0x . Then starting from

this root node, we recursively traverse the tree in pre-order
such that at each non-root node, a variable to value pair is
generated conditioned on the variable to value pair of its
parent node. The probability of generating an assignment x
is given as:

(3)

Where C is constant, representing the uniform
probability of the tree structure. Note that some variables
may be assigned to multiple nodes and therefore there
might be missed variables. However, since we are only
interested in the node space of the valid assignments i.e.
no redundancy nor missing variable assignment, we define
the joint probability of a valid assignment x as;

(x)

F(x)(x)
x

x
p

p
A




 
 (4)

Where A is the set of valid assignments and  is the
normalization factor.
D. Unsupervised learning

We describe an algorithm to learn LTDM from the
depth where the dependency structure of each training
instance is unknown. For each internal node as in the
Chow-Liu tree[32], a recursive joining method scheme is
applied by identifying its neighborhood. This method can
produce consistent LTDM s without redundant latent nodes.
Applying log-likelihood to the function given in equation
(3), we obtain;

(5)
Where ||

1}{ D
nnxD  is the training sample. It is

noticeable that the log-likelihood is computed on p(x), the

probability of generating an assignment, and not of φ(x),
the probability of a valid assignment. This makes our
learning algorithm tractable, and also encourages the
learned model to be more likely to produce valid
assignments.

3. Deep PCM Network
We present the deep learning architecture with the

predictive coding model for prediction and subsequent
regression of hand joint positions, Figure 4.

A predictive coding[36,39] is an RNN with the
following features:
 The start time, holds 00 t , while 1 , and 

is constant.
 The initial input state 0S of a time series constitutes

the initial components of the start vector 0x .
 It has linear activation applied to all neurons
 The initial weight inW and relative weights reW

are random, independent, and identically distributed
from the standard normal distributions, whereas the
output weight outW are learned.

 The input and output are arbitrarily connected and
there is no clear distinction between them.

A. Operation of Predictive coding Network
On the first time of operation, the input, prediction

layer and the error representation layer are equivalent to a
deep convolutional network[26]. On the other side, the
recurrent representation layers are equivalent to a
generative deconvolutional network with local recurrence
at each stage. This architecture is general and can be
adapted to model different kinds of data. The architecture
was originally proposed by[38] and then modified to meet
hand pose estimation demand, trained end to end using
gradient descent, with a loss function implicitly embedded
in the network as firing rates of the error neurons.

Basically, each module of our network consists of
four basic deep layers:
 An input convolutional layer ( iP ),

 An estimation (prediction) layer ( lP ) ,

 An error regression layer ( lE ),

 A recurrent representation layer ( lR )

For representation neurons, we explicitly use
convolutional LSTM units[37]. This is a recurrent
convolutional layer responsible for the generation of
estimations from the input layer.

(x) !F Fx xp C 

| | | |

1 1
log ( ) log F  C

n

D D

n x
n n

p x
 

  
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B. Long short-term memory (LSTM)
LSTM model correlation between observed and

hidden state with a memory unit. This provides significant
improvement over RNNs. We apply LSTM to extend our
predictive coding with two advantages. Firstly, induce the
memory information. Secondly, handles sequential
data better and avoids the gradient vanishing problem. We
show how LSTM handles the vanishing problem and
perform backpropagation error as in[37]. The core idea of
LSTM is to encode the information of the inputs ( tx and

1ty ) that has been thrown away from the cell state tC
and output of ty . Further LSTM has gates which control
states with a sigmoid function. These are forget gate tf ,
input gate ti , output gate to , and modulation gate tg .
Therefore, for a given image sequence },......{ 1 Txx , we
have the following gate definitions;

(6)

(7)

(8)

(9)

(10)

As for RNN, to make a prediction, we add a linear
model over the hidden state th , and output the likelihood
with softmax function.

(11)

Given ground truth at time t as ty we can minimize

the least square 2)(
2
1

tt zy  to estimate hand

parameters.
Hence for the top layer classification, with weight

zW , we now take derivates w.r.t tz , and zW
respectively

t t tdz y z  (12)

(13)

(14)
Where the gradient is considered only w.r.t Th .

However, for any time step t its gradient will differ a little,
see equation (15) below.

(15)
This will then be back propagating it with every time

step t.
C. Error regression scheme

Initially, the input image sequence enters the model
and the local estimation of this input is made. This
estimated input is subtracted from the actual input and
passed along to the next layer. The network takes the
difference from the input iP and the estimated hand lP̂ ,
and output an error representation ( lE ) which splits into
separate rectified positive and negative error populations.
The error lE , is then passed forward through the
convolutional layer to become the input of the next layer

1iP .
The recurrent representation layer ( lR ) receives a

copy of the error signal lE , along with the top-down
input from the representation layer of the next level the
network layer 1iR as shown in Figure 5. To improve the
accuracy of the location estimates of hand joints, this step
is iterated several times while forwarding an error to an
input to allow the network learn from its own previous
mistake.

Figure 4. Overview of the proposed system showing the

network architecture. Fc stands for fully connected layers and

Conv. stands for convolutional layers

Figure 5. Illustration of the data flow within the proposed

deep PCM

1( [ , ]t f t t ff W y x b   

1( [ , ]t i t t ii W y x b   

1tanh( )t c t y t cg W x W y b  

1( [ , ] )t o t t oo W y x b  

tanh( )t t th o C g

max(W )t h t zz soft h b 

z t t
t

dW h dz
T z Tdh W dz

1 1 1h ht t z td d W dz   
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ALGORITHM 1: Updating States of the PCM

Input: A sequence of image tx
Output: An estimated hand pose t

lP
Procedure update t

lR states

Let ,0i and 0t Initialize i and t

0  t
tP x

Initial Estimates
for 1 to t T do

for  to 0l L do
if  l L then

First iteration
else

1
1L S T M ( , ,  S A M P L E ( ))t t t l t

l t l lR E R U P R 


for 0  to  l L do Second iteration
If 0l to L then

else
( ( ))t t

l lP R E LU C O N V R

[( ) ( )]t
l l t lE E E  

if then

Total Estimation +
error

Send lR to the next iteration

Return
end

4. Experiment
We perform a complete experiment to unveil the

performance of the proposed approach.
A. Experimental settings

The Model was implemented with the python library,
using Theano[35] and Keras[21]. The model parameters are
optimized using gradient descent Adam algorithm[34] with
all parameters set to default values.

System requirement Specifications

Central processing unit (CPU) Intel(R)Core i7-4790@

3.6GHz

Operating system (OS) Microsoft window

Random access memory (RAM) 16GB

System architecture 64bit

Table 1. Implementation specification of our system.

B. Data pre-processing
Before the training stage, we first need to pre-process

the raw data from the dataset. The input of the pose
estimator is the cropped image, but the original ground
truth of the image is the used.
absolute position in the entire raw image Therefore, there
is a need to first transform the ground truth into a relative
position with respect to the center of the hand. Finally, the
cropped images are re-sized to 128X128 as the input of a
deep PCM.
C. Regressive training

We train our deep PCM regressively with the learning
time gradually decreased.

The model was based on the pre-trained model[38] and
was trained to predict hand joints position. The loss was
taken as the sum of the firing rates of the error neurons in
the zeroth pixel layer. A random hyperparameter search
was performed over fourth- and fifth-layer models of the
posterior position. The deep PCM model consists of 5
layers with 3 by 3 filter sizes of all convolutions and stack
size per layer of (1,32,64,64,128,256). The initial training
rate is set to 0.001 dropped by learning ratio of 10 after
every 60 epochs.

5. Evaluation with the state-of-the-art
This section discusses the comparison of our

approach with the existing state-of-the-art approaches. We
evaluate the performance of our approach on three publicly
available datasets for hand pose estimation: The NYU
datasets[22], ICVL dataset[20], and MSRA dataset[15]. Table
2 below presents the details of the datasets used.

Table 2. Datasets used for validation of the experiment

A. Evaluation metrics
Two different commonly used criteria to evaluate our

method, namely:
 The fraction of sample error distance within a

threshold. Here we measure the fraction of success
frames whose error distance of each joint is less than
a certain threshold. This is the most challenging
evaluation criterion since the single mistaken joint
may decline the judgment of the entire hand pose.

Dataset No.

Subjects

No.

joints

No.

Frame

Depth

resolution

ICVL 10 16 17K 320x320

NYU 2 36 81K 640x480

MSRA1 9 21 76K 320x240

MSRA 6 21 2K 320x240

0 0, 0l lR E 

1L S T M ( , )t t t l
L t LR E R 

0 0( ( ))t tP R E LU C O N V R

l L

1 ( ( )t l
l tP M AX PO O L C O N V E 

1t l
l t lP E R  
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 Mean error distance of different joints and their
average. This is recognized as the most commonly
used criteria in the literature of hand pose estimation
and allows comparison with many
contending baselines, because of the simplicity of the
evaluation.

B. Self-Comparisons
We first evaluate the impact of modeling hand

topology using LTDM. We utilize NYU dataset to depict
the number of success frame over a certain threshold. As
illustrated in Figure 6, the impact of LTDM based on hand
topology on the estimated joints is presented, it shows that
LTDM performed better than the traditional LTM. Also,
the proportion of success frame is higher with the LTDM

than LTM and assumption-based method. This indicates
the effectiveness of LTDM in modeling the hand topology.
C. Comparison with the state-of-the-art

The proposed deep PCM is compared with 12
state-of-the-art methods: Feedback loop[24], 3D CNN[27],
Bighands[45], DeepPrior++[28], Regional Ensemble[23], Tang
et al[20], Tompson et al[22], PointNet[46], Zhou et al[40],
Hand3D[43], CrossingNets[46] and Madadi et al[41].

The proportions of good frames over a certain error
threshold are presented in Figure 7. Generally, the
empirical results show an outstanding performance of the
proposed method over many contending approaches while
it works comparably with few methods that also have
attained the state-of-the-art performance.

Figure 6. Left: The success rate of the hand detection for the two methods. Right: Error rate of the two methods of modeling a hand

Figure 7. Comparison with the state-of-art on ICVL [20] (left), NYU [22] (middle), MSRA [15] right. It shows the fraction of

samples whose distance between all estimated joints and ground truth is less than a certain threshold
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Figure 8. Comparison with the state of the arts on NYU [22] (left), ICVL [20] (middle), MSRA [15] (right). It measures the error

distance of different joints and their average. (P: palm, T: Thumb, I: Index, M: Middle, L: Little)

The reason for this superiority is attributed by the
following. Firstly, the robust hand topology using a novel
LTDM capable of modeling context-specific
independencies, such that the estimation of the final pose
of the hand is based on the prior knowledge of the detected
hand representation. This is different from many previous
works which are based on a very weak detector or based
on the strong assumption that the nearest object behind the
camera is the hand. Secondly, the proposed approach has
an intrinsic error regression paradigm which smooths the
estimated values allowing the network to learn its own
mistakes and rectifies to finally increase the accuracy of
estimation. For example, on ICVL dataset[20], we compare
our work with the five state-of-the-arts works. We use the
three joints to define the pose space based on deep PCM.
Figure 7 (left) illustrates the result that show the
achievement of our method using first evaluation metric.
For example, when the error threshold is 20mm, the
proportions of good frames of our approach achieve 10%
and 15% better than DeepPrior++[28] and Zhou et al[40]

respectively, whereas others more than 20%. This shows
that the proposed deep PCM works very well.

On NYU dataset[22], when the error threshold is
taken between 20mm and 30mm the proportion of good
frames of our method is comparable to DeepPrior ++[28],
and 10% better than the CrossingNet[47]. Similarly, On
MSRA dataset[15], when the error threshold is
considered between 20mm and 30mm, the proportion of
good frames is comparable to PointNet[46], 5% better than
DeepPrior++[28] and 25% better than CrossingNet[47],
BigHand[45], and Madadi et al[41]. These results indicate
that our proposed method is robust and it can accurately
estimate the location of the hand joint positions. On the

other hand, using the second metric, the error distance of
different joints and their average are presented, Figure 8.
We only compare the mean error distance of 11 joints as
most of works did[25,42]. The results show that our method
outperformed state-of-the-art methods on showing the
lowest error of 12.2mm on NYU dataset, 7.4mm on ICVL
dataset. However, on MSRA dataset, PointNet[46]

performed better than our method in overall mean error
attained lowest error of about 8.4mm where as ours is
8.9mm. Nevertheless, if the error distance of different
joints is considered, our method achieves better results
than theirs for most of the significant joints.

The visualization of some of the samples drawn from
the proposed system are presented in Figure 9 showing
accurate joint location of most of the poses.

Figure 9. Visualization of the estimated results of our

method

6. Conclusion
In this paper, we present a novel approach to model

hand topology based on LDTM which captures hand latent
features and observable features to construct hand joint
representation. Then we integrate LDTM with the deep
PCM using a data-independent method to encode the hand
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representations and map with the decoded hand depth map.
Finally, the multi-layered convolutional neural
network based on deep PCM was utilized to regress a 3D
pose space based on the joints location. As a result, our
system can accurately estimate a hand pose based on the
prior knowledge of the hand representation. This confers
robust and reliable hand pose estimation system that can
achieve greater user experience.
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