
Journal of Autonomous Intelligence (2019) Volume 2 Issue 2.
doi:10.32629/jai.v2i2.45

Reinforcement Learning: A Technical Introduction – Part I

Elmar Diederichs*

Elements of Euclid Berlin, Germany; Email: elmar.diederichs@eoe.science

ABSTRACT
Reinforcement learning provides a cognitive science perspective to behavior and sequential decision making pro-

vided that reinforcement learning algorithms introduce a computational concept of agency to the learning problem.
Hence it addresses an abstract class of problems that can be characterized as follows: An algorithm confronted with
information from an unknown environment is supposed to find step wise an optimal way to behave based only on some
sparse, delayed or noisy feedback from some environment, that changes according to the algorithm’s behavior. Hence
reinforcement learning offers an abstraction to the problem of goal-directed learning from interaction. The paper offers
an opinionated introduction in the algorithmic advantages and drawbacks of several algorithmic approaches to provide
algorithmic design options.
Keywords: Classical Reinforcement Learning; Markov Decision Processes; Prediction and Adaptive Control in Un-
known Environments; Algorithmic Design

ARTICLE INFO
Received: July 10, 2019
Accepted: Aug 1, 2019
Available online: Aug 19, 2019

*CORRESPONDING AUTHOR
Dr. Elmar Diederichs, Elements of
Euclid Berlin, Germany;
elmar.diederichs@eoe.science;

CITATION
Elmar Diederichs. Reinforcement
Learning A Technical Introduction.
Journal of Autonomous Intelligence
2019; 2(2): 25-41. doi:
10.32629/jai.v2i2.45

COPYRIGHT
Copyright © 2019 by author(s) and
Frontier Scientific Publishing. This
work is licensed under the Creative
Commons Attribution-NonCommercial
4.0 International License (CC BY-NC
4.0).
https://creativecommons.org/licenses/b
y-nc/4.0/

Most readers are familiar with two different types of machine learning: On the
one hand we have supervised learning. In supervised learning the algorithm learns
from a training set of labeled examples provided by a knowledgeable external su-
pervisor. In a sense the known label y gives the right and unique answer for every
input x of the machine learning algorithm. However, for many sequential decision
making and other adaptive control problems, it is difficult to provide an explicit
supervision to the algorithm[38]. On the other hand we have unsupervised learning,
where the general task is to find hidden structures in unlabeled data. Surprisingly
reinforcement learning (RL) is different from supervised and unsupervised learning,
since it tries to maximize some utility function concurrent with learning a reward
signal coming from an environment that is under the influence of the algorithm.
Consequently every reinforcement learning algorithm has to exploit what it already
knows about the environment in order to obtain more rewards, but it also has to
explore a still incomplete known, i.e. stochastic or dynamic environment and its
causal relations in order to choose better actions for future situations. Exploration
can be done by Monte-Carlo-Methods, genetic algorithms or genetic programming.
Exploitation uses statistical techniques and dynamic programming methods to es-
timate the utility of taking actions in states of the environment[54].

The obvious dilemma is that neither exploitation nor exploration can be
done by any algorithm without systematically failing at that task. So the only algo-
rithmic solution here is to try a variety of different actions and progressively favor
those that appear to be locally the best. Since this task of balancing simultaneously
local exploration and exploitation does not arise in supervised and unsupervised
learning, reinforcement learning is a generic type of machine learning[22]. The basic
mathematical framework for reinforcement learning is the stochastic Markov deci-
sion process (MDP)[17]. A variety of reinforcement methods come up if we consider
different types of underlying MDPs, auxiliary assumption, different reward

1. Introduction

25

mailto:elmar.diederichs@eoe.science
mailto:elmar.diederichs@eoe.science

Diederichs E

functions as only implicit given learning models adapted
to certain kinds of environments and different algorithms
for exploration and identifying the strategy. Reinforce-
ment learning can generate global near-optimal solutions
to large and complex MDPs.

In sum, reinforcement learning is a general-purpose
framework for weak, human-like artificial intelligence
and dates back to the early days of cybernetics[68,33] and
since then has been successful applied to a large number
of different practical problems like e.g. inventory con-
trol[37], queuing systems[41], maintenance management[47],
transportation problems[69], ecology[34], stochastic short-
est path problems[56], Atari video games[29], the board
game Go[18], in controlling dynamic robotic systems for
manipulation[26], locomotion[46], autonomous driving[45]
and many others. Reinforcement learning algorithms
have also been extensively used as tools for constructing
autonomous systems that improve themselves making
new experiences.

During the decades reinforcement learning
has been become a general framework of various tech-
niques with different origins:
i) The general model of model-based[43] or model-free

RL is given by Markov decision processes and the
recursive Bellman equations for the state and action
value functions. Markov decision processes
have been extend to partial observable Markov de-
cision processes in case of incomplete information
from the responding environment.

ii) Algorithms for RL can be classified into critic-only,
actor-only, and actorcritic methods. In every class
there are model-based and model-free algorithms,
depending on whether the algorithm needs or learns
explicitly transition probabilities and expected re-
wards for state-action pairs.

iii) Iterative learning methods (value and policy itera-
tion) based on models for the environment
have been developed and extended to large state
spaces of the Markov decision processes using ap-
proximations of the value functions.

iv) Model-free iterative methods (several variants of
Temporal Difference Learning) for unknown envi-
ronments have been developed and extended by
new learning methodologies like the ac-
tor-critic-approach.

Contribution of this paper: Recently many articles
that aim to provide some guidance while introducing to
reinforcement learning have been published. They are
either focused on deep reinforcement learning e.g.[30] on
applications of reinforcement learning e.g.[39] or on spe-
cial topics e.g.[24,51,36]. However from an algorithmic
point of view finding the right design for a given prob-
lem requires the description of sufficient technical details
as well as knowledge about their consequences for the
numerical simulations. Very few articles of this sort are
available. Hence the goal of this article is to provide the
mathematical understanding of reinforcement learning
that is needed from an engineering point of view. The
first part of the article gives a sketch of existing classical
approaches. However a comprehensive survey of
RL-algorithms is far beyond the scope of this paper. The
second part to be published in another article will focus
on deep reinforcement learning and the analysis of cases
where deep reinforcement learning is outperformed by
other approaches.

2. Markov Decision Processes
This section briefly introduces into the mathemati-

cal framework behind reinforcement learning. To this
end we denote by 𝔼𝔼[·] the expectation. Further let ℙ
denote a probability measure and Rt a reward at time t,
that can be observed or estimated. In this article all vec-
tors are column vectors.

2.1 Basic Definitions

Intuitively spoken the general MDP-framework
(𝒮𝒮,𝒜𝒜,𝒫𝒫,ℛ, γ) has the following components[4]:

i) a set of time depend states St of a dynamic and
sometimes stochastic system with values
s ∈ 𝑆𝑆 that reprsents the information used to
determine what happens next in the environ-
ment.

ii) a finite set 𝓐𝓐 of deterministic actions At with
values a that as a consequence causes a transi-
tion between s → 𝑠𝑠′. In the following let 𝑠𝑠′
always be a successor state of s.

iii) a not necessary stationary state transition ma-
trix 𝒫𝒫 ∈ 𝐑𝐑|𝑆𝑆|×|𝑆𝑆| where

expresses the frequency of transitions between

26

Reinforcement Learning: A Technical Introduction - Part I

s

different states s and 𝑠𝑠′. Hence our framework
also models non-deterministic environments,
where taking the same action from the same
state could lead to two different outcomes. Ad-
ditionally it is assumed that in case of s → 𝑠𝑠′
the well known Markov property applies to
𝑝𝑝𝑠𝑠,𝑠𝑠′
𝑎𝑎 .

iv) a scalar transition reward function ℛ𝑠𝑠
𝑎𝑎 ≔

𝔼𝔼[𝑟𝑟𝑡𝑡+1(𝑠𝑠′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎] that defines the
goal of the algorithm

v) a discount factor γ∈[0, 1] on the reward that
represents the present value of future rewards,
avoids infinite returns in cyclic processes and
represents further fine-grained future uncer-
tainties. Only for stationary RL-problems, all
rewards should have the same influence.

vi) a state value function 𝑣𝑣 ∶ 𝒮𝒮 × 𝒜𝒜 → 𝐑𝐑 with
𝑣𝑣(𝑠𝑠) ∶= 𝔼𝔼[𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] to be optimized over a

series of system states, that can be considered
as performance metric wrt. a chosen policy,
that that defines behavior of the agent.

Here 𝑅𝑅𝑡𝑡 ∶ 𝓢𝓢 × 𝓐𝓐 × 𝓢𝓢 → 𝐑𝐑 is the immediate re-
turn such that

 (1)
where the algorithm receives a present or future, scalar
(positive) reward or (negative) punishment 𝑟𝑟𝑡𝑡+1 ∈ 𝐑𝐑
for choosing action at in state st. Hence in RL we always
assume that a goal can be described by the maximization
of expected reward. In a narrow sense 𝒫𝒫 can be consid-
ered as the model of the MDP and a full sequence of ob-
served quantities

is called a trajectory 𝒯𝒯 .

Figure 1. Scheme of a sequential decision process: the transfer 𝑠𝑠𝑖𝑖 ↦ 𝑠𝑠𝑖𝑖+1 by ai due to 𝛾𝛾𝑖𝑖+1,, γ𝑟𝑟𝑖𝑖+2, γ2𝑟𝑟𝑖𝑖+3, . . . defines the policy π.

In a more general setting where the information
about the states si is incomplete, one has to substitute
si by the partial observation ωi about si.

For simplicity let us at first assume that 𝒫𝒫 and ℛ𝑠𝑠
𝛼𝛼

are known and the number of is finite system states
|S|.Then the environment can be modeled by an abstract
stochastic process called first-order Markov chain: If we
observe the changing environment, we observe the Mar-
kov chain, which is determined by the trajectory. Recall
that the essential Markov property requires that the
probabilities of arriving in a state 𝑠𝑠𝑡𝑡+1 and receiving a
reward 𝑟𝑟𝑡𝑡+1 in the third assumption of the general
framework only depend on the state st and the action at.

The agent that interacts with the MDP is modeled in
terms of a deterministic policy π ∶ 𝒮𝒮 → 𝒜𝒜 or a sto-
chastic policy π(a|s) : 𝒮𝒮 ×𝒜𝒜 →[0, 1], where

denotes the conditional probability to choose action a in
state s. The general task for a reinforcement algorithm
that aims to learn or to plan is to realize a series of ac-
tions according to a policy that leads to the emergence of
a Markov chain of external states with maximum ex-

pected return i.e.

Remarks: In general, there are different modes of

reinforcement learning. First of all one can differenti-
ate between model based and model free RL: the first is
concerned with problems from planning, where the algo-
rithm has full knowledge about the environment and in-
tends to improve the policy without interaction with the
environment. The second one is concerned with prob-
lems of evaluating and optimizing the future: In predic-
tion problems the RL-algorithm tries to learn the optimal
state value function from the responses to its own actions
for the uniform random policy in an unknown environ-
ment. In adaptive control problems the RL-algorithm
tries to learn the optimal value function over all possible
policies in order to identify the optimal policy[75].

Recall that on-policy methods have to be separated
from off-policy methods in RL. In the first case one at-
tempts to evaluate or improve the policy that currently
guides the decisions of the agent influencing the re-
sponding environment. In the second case the agent tries

27

Diederichs E.

to learn from series of states that are obtained from other
policies that are only intended to generate trajectories in
a state space. Non-policy based methods usually intro-
duce a bias when used with a replay buffer since the tra-
jectories are usually not obtained solely under the current
policy. This makes off-policy methods sample efficient
as they are able to make use of any experience.

2.2 The Bellman Equations

A Bellman equation expresses some recursive rela-
tionship e.g. between the value of a state and the value of
its successor states and it can be used to efficiently solve
RL-problems. It averages over all possibilities
weighted by their probability of occurrence. Starting
from v(s) := 𝔼𝔼[Rt|St = s] we can decompose the state
value function in the immediate reward rt and the dis-
counted value of successor states 𝛾𝛾𝛾𝛾(𝑆𝑆𝑡𝑡+1):

 (2)
Using matrix notation the linear Bellman-type equa-

tion (3) follows, that obviously relates the state value
function to itself via the problem dynamics:

 (3)
where v ∈ R|S| and 1 is the unit matrix in R|S|×|S|. For a
finite state space, (3) yields a finite set of |S| linear equa-
tions, which obviously can be solved using standard nu-
merical methods having computational complexity of
𝒪𝒪(|S|3).

A cheaper alternative for large MDPs up to certain
accuracy is the use of dynamic programming[6]. To that
end we consider the right hand side of (3) as contractive
operator T(v) mapping one state value function v to an-
other state value function. From that point of view v is
the unique fixed point of a contraction mapping T in a
metric and complete space[64]. Due to Banach’s fixed
point theorem we can find the optimal v at a linear con-
vergence rate of γ by iteratively applying T to some ini-
tial state value function. Recall that in dynamic pro-
gramming one assumes full knowledge of the transition,
environment and reward models. A drawback of DP is
that they involve operations over the entire state set of
the MDP. If the state space is very large, this becomes

computationally prohibitive.
Now we let things become a little bet more complex.

In order to model the behavior of the algorithm, we in-
troduce the policy π : S → 𝒜𝒜 and define

 (4)
then we can derive some Bellman equations analogously:

(5)

In (5) it is not assumed that the policy is probabilis-
tic, only the transitions 𝑠𝑠 → 𝑠𝑠′ have a distribution.

Let us consider the case of a stochastic policy π(a|s)
= ℙ[At = a|St = s]. Additionally we introduce the ac-
tion-value or quality function qπ : S × 𝒜𝒜 → R with qπ(s,
a) as the expected return starting from state s, taking
action a in following policy π:

 (6)
From that we conclude from (4) with (6):

 (7)
Now if we decompose (6) as in (2), we find:

(8)

Now (8) and (7) give us:

 (9)
This is the Bellman expectation equation for the

state-value function that allows us to rewrite the ac-
tion-value function as:

 (10)

This is the Bellman expectation equation for the ac-
tion-value function. The optimal action value function
specifies the best possible performance in the MDP and
can be considered as the solution of the RL-problem. So
finally we are interested in the following optimal value
functions:

28

Reinforcement Learning: A Technical Introduction - Part I

It is well known that for any finite MDP, that there
is an optimal, deterministic policy π* s.t. ∀s ∈ S, ∀π :

vπ(s) ≤ vπ* (s). In that case we also have vπ*(s) = v*(s) and
qπ*(s, a) = q*(s, a)[58]. Here 𝑞𝑞𝜋𝜋∗ (s, a) can be considered as
optimal control policy. An optimal policy π* can be
found by

 (11)
Both optimal value functions are recursively relat-

ed by the Bellman optimality equation[5]

Obviously one can use numerical expensive Monte

Carlo methods by performing several simulations from
the state space while following π to get some empirical
estimates for qπ(s, a) and vπ(s). In practice for limited
data the performance of this approach is low.

Extensions: In the past different types of MDPs
have been characterized. MDPs have be classified as
stationary if 𝒫𝒫, 𝒜𝒜 and the immediate rewards are not
Time dependent. Otherwise the MDP is called
non-stationary[50]. The number of states and actions
can be finite, countable and simply Borel measurable[14].
The planning horizon |S| can be either finite or infinite[57].
The system states can be partially, only indirect or fully
observable and the decision epochs can be discrete or
continuous[70]. A partially observable Markov decision
process (POMDP) is an MDP with hidden states.
Roughly spoken it is a Hidden Markov model with ac-
tions[36]. Moreover semi-MDPs have been introduced,
where an additional parameter of interest is the time
spent in each transition. In practice optimal control pri-
marily deals with continuous MDPs.

In the following this paper only considers stationary,
discrete and complete observable MDPs with finite
horizon. This is the most frequent case from an engi-
neering point of view. The next chapters discuss different
algorithmic, modelbased and model-free approaches to
exploit information that can represented as MDP.

3. Critic-Only Methods for finite
MDPs

Value Iteration and Policy Iteration are both mod-
el based critic-only algorithms, which are based on the
idea to first find the optimal value function using ℙ and

then to derive an optimal policy from this value function.
Examples are numerical methods to solve the system of
S linear equations generated by the Bellman-equations
directly. Fixpoint methods, that will be described below,
are critic-only methods also.

3.1 Model-based Algorithms

Due to the nonlinearity of the Bellman optimality
equations, there are in general no closed form solutions
for MDP-problems, but many iterative schemes exist,
that have to cope with different numerical and stochastic
problems.

3.1.1 Value Iteration

The advantages of policy-based schemes are well
known: They show better convergence properties and are
effective even in higher dimensions. The bad news is that
the evaluation of a policy is inefficient and comes with a
high variance[64,50,23,70]. In the literature RL-problems
with known MDP are based on a model of the environ-
ment. Hence criteria for the best policy π are known and
such problems are called planning problems. Since in
practice there are only finitely many policies in a fi-
nite-state, finite-action MDP, we expect termination of
such algorithms in a finite number of iterations.

Let us introduce the value iteration[53] that also
works with loopy, stochastic MDPs and compare it to the
so called policy iteration.

Algorithm 1: Scheme of Value Iteration for RL (syn-
chronous backups)

input: 𝒫𝒫,ℛ,𝒮𝒮
k=0
Initialize ∀s : v(k)(s) := 0.
while no uniform convergence in v(s) do

k=k+1
for t=1 to |S| do

Compute the Bellman expectation backup:

end

end
The optimal value function v* can also be found by

solving a linear programming problem[64].
Recall that asynchronous algorithms back up the

values of states in any order whatsoever, using whatever
values of other states happen to be available. In particu-

29

Diederichs E.

t

lar the values of some states may be backed up several
times before the values of others are backed up once. In
the case of a synchronous update, the algorithm can be
viewed as implementing a ”Bellman backup operator”
that takes a current estimate of the value function, and
maps it to a new estimate. Alternatively, we can also
perform asynchronous updates where we would loop
over the states (in some order), updating the values one
at a time.

Note that here there is no explicit π* and the opti-
mality of the state value function is always restricted to
the so called horizon |S| < ∞. However the corresponding
optimal policy can be generated from

The value iteration needs more iterations than the

policy iteration but only a complexity of 𝒪𝒪(|𝒜𝒜||𝒮𝒮|2)
per iteration. It converges exponentially fast to the opti-
mal value function, but only asymptotically for the dis-
counted infinite horizon.

3.1.2 Function Approximation

Recall that for large state spaces the value functions
can not have the form of a lookup table due to memory
limitations. Then function approximation is the method
of choice[25]. Its error reads as:

 (12)
where θ ∈ RK with K < |S| is a parameter or weight
vector, the estimator 𝑣𝑣�(s, θ) is assumed to be differentia-
ble wrt. θ and the occupation frequency d(s) denotes the
fraction of time the agent spent in s according to π:

 (13)
In (13) h(s) denotes the probability that an epi-

sode begins in states s and e(s) the average time steps
spent in s according to π in a single episode. One option
to minimize (12) is the local converging gradient method.
Then we get:

with 𝔼𝔼[u(st)] = vπ(st) since vπ(st) is not available during
computation. Here α is the step size parameter. If u(st) is
an unbiased estimator for every t than θt is guaranteed to
converge to a local optimum for a decreasing series of

values of α. A special and often used representation of
u(st) is given by linear projections:

where 𝜙𝜙(s) is a feature vector. For most tasks the fea-
tures are hand picked.

3.1.3 Policy Iteration

The pseudocode of policy iteration[7] reads as fol-
lows:

Algorithm 2: Scheme of Policy Iteration for RL (syn-
chronous backups)
input: 𝒫𝒫,ℛ,𝒮𝒮
Initialize π(k)(s) randomly for all states s. Set k = 0.
while no uniform convergence in π(s) do

k=k+1
1.evaluation of π(k)(s): iterative application of Bell-
man expectation backup:
for t=1 to |S| do

end
and solve directly for vπ(k) with complexity O(|S|3).
2. Improve the current policy by acting greedily with
respect to vπ(k):
for t=1 to |S| do

evaluate 𝑞𝑞𝜋𝜋(𝑘𝑘)(st, a) using (8)
solve π(k)(st) = arg max𝑎𝑎∈𝒜𝒜𝑞𝑞𝜋𝜋(𝑘𝑘)(𝑠𝑠𝑡𝑡 , 𝑎𝑎).

end
end

Policy iteration needs fewer iterations than the value

iteration[53], but comes with a higher complexity O(|S|3)
per iteration. Another advantage is that there is no re-
striction to a horizon. Policy iteration is guaranteed to
converge and at convergence, the current policy and its
value function are the optimal policy and the optimal
value function.

A more detailed discussion of the complexity of it-
erative methods of MDP can be found in[5,44,63,73]. Due to
higher numerical costs several variants of policy iteration
were discussed e.g. the modified policy iteration and
asynchronous backups e.g.[56]. Both value iteration and
policy iteration are standard algorithms for solving
MDPs.

Approximation & Acceleration: Recently several
new methods for finding optimal or approximately opti-
mal policies for the MDP were invented, that intend to

30

Reinforcement Learning: A Technical Introduction - Part I

cope with large system state spaces S, since these stand-
ard methods require excessive computation to get
close-to-optimal solutions. Accelerating methods speed
up the convergence of exact iterative methods by reduc-
ing the computational complexity e.g.[7,73,74,35,55]. Ap-
proximation methods give us the possibility to solve a
wider class of MDP problems e.g.[13,12, 49, 76,8].

3.1.4 Dyna-Q

The Dyna-Q algorithm[59] integrates learning, acting,
and planning, by not only learning from real experi-
ence, but also planning with simulated trajectories from a
learned model. In this case the learning step uses real
experience from the environment and planning step uses
experience simulated by a model. This leads to the fol-
lowing architecture:

This idea leads to the following pseudocode:

Algorithm 3: Scheme of Dyna-Q
input: ℙ,ℛ,𝒮𝒮
Initialize Q(s, a).
while no uniform convergence in Q(s, s) do

a ← action for s, derived by Q, s, a e.g. ϵ-greedy
observe r’ and s’
direct reinforcement learning step:

model learning step:
M(s, a) ← r, s’
planning step:
for i=1 to N do

a ← random state previously observed
s ← random action previously
r, s’ ← M(s, a)

i + +
end

end

Recall that in the planing step, the algorithm ran-
domly samples only from stateaction pairs that have pre-
viously been experienced. Hence the learning model is
never queried with a pair about which it has no prior
information.

3.2 Model-free Algorithms

Obviously in real applications 𝒫𝒫 or even ℛ are
unknown but must instead be estimated them from data.
In other words the agent must learn from his experiences
without having a model from the environment. But how
do we know whether the action just taken is a good one,
when it might have far reaching effects? How can we
solve the prediction problem without MC-simulations?

3.2.1 Temporal Difference Learning

An obvious way of estimating the value function is
to compute an average over multiple independent reali-
zations started from the given state i.e. to use a Mon-
teCarlo method (MC method). However the variance of
the returns can be very high for MC methods. A second
drawback is the interaction of algorithm and system:
when estimation happens while interacting with the sys-
tem, it might be impossible to reset the state of the sys-
tem to some new state that is stochastically independent
of its predecessor state. Hence a MC-method cannot be
applied without introducing additional bias. Temporal
Difference Learning (TD) address these issues by com-
bining the dynamic programming approach with the
MC-approach: there is no need for a model of the envi-
ronment and updates are available at each state of the
incremental procedure.

The stochastic approximation algorithm TD learns
online and iteratively variants of the value functions di-
rectly from incomplete experience with some TD error.
This methods differs from other approaches as it tries to
minimize the error δt of temporal consecutive predictions
instead of an overall prediction error. To that end TD
uses some variance reducing bootstrap-methodology wrt.
the sample data, since the update is based on an existing
estimate. The simplest update rule for a value function in
every state s is called TD(λ = 0) and is for the case of the
state value function given by:

 (14)

31

Diederichs E.

where αt = ct−η with η ∈ [0.5,1], v(𝑠𝑠𝑡𝑡+1) − v(st) is the
temporal difference and c ≥ 0 denotes a learning rate at
time t. The case of waiting only one step until the update
is computed, is denoted by λ = 0. This parameter deter-
mines the trade-off between bias and variance of the up-
date target and the trade-off has a large influence on the
speed of learning. In (14) the state st+1 can also be chosen
according to some policy. Recall that TD(λ = 0) must be
computed after each transition between states. Obviously
the choice of αt determines the convergence behavior
since for (14) a fixpoint equation can be derived also[61].

Algorithm 4: Scheme of TD (λ = 0)
input: 𝜋𝜋,ℛ,𝒮𝒮
k=0
Initialize 𝑣𝑣𝜋𝜋

(𝑘𝑘)(𝑠𝑠) arbitrarily, but according to π.
while no uniform convergence in v(s) do

k=k+1
for t=1 to |S| do

Choose at according to π for st.

end

end

In practice a constant step-size is used often a
choice that is justified based on two grounds: First, the
algorithm is often used in a non-stationary environment
and second, for a small sample regime the algorithm the
parameters converge in distribution. Hence the variance
of the limiting distribution will be proportional to the
step-size chosen. For methods that tune step-sizes auto-
matically, see[49]. Here we introduce

denotes the so called TD error, that in fact is the target of
the update rule. However it is always required that the
reward or at least some utility of s → s’ for the user is
known. The obvious advantage is that TD can learn
online after every step without knowing the final out-
come. It is well known that TD has a low variance, but
some bias and is sensitive to the initial values.

As a way to unify the Monte-Carlo-approach and
TD(λ = 0), λ can be chosen from [0, 1] that allows one to
interpolate between the Monte-Carlo and TD(λ = 0) ap-
proach[4]. This is helpful, when only partial knowledge of
the state space is available or when function approxima-
tion is used to approximate the value functions in very

large state spaces.
Multi-Step Bootstrapping: As a new feature TD(λ)

for λ ≠ 0 considers the so called multi-step return pre-
dictions

 (15)
where the mixing coefficients γ are functions of the ex-
ponential weights (1 −λ)λk with k ≥ 0. TD(λ = 0) con-
verges to solution of max likelihood Markov model. Ob-
viously by (15) so called eligibility traces of states s are
introduced. The eligibility trace works as a short-term
memory, usually lasting within an episode and assists the
learning process, by affecting the weight vector. It helps
with the issues of long-delayed rewards and non-Markov
tasks.

Eligibility traces are used to speed up the slow con-
vergence of the TD(λ). The slow convergence is due to
the fact that only a single state-action pair is updated per
time step. However in eligibility traces the value function
is updated for all earlier states in the trajectory. Eligibil-
ity traces z(s) are not unique. Hence TD(λ) exists in cor-
respondingly many multiple forms. As an example we
note the TD(λ) update rule of the so called accumulating
traces:

The role of zt(s) is to modulate the influence of the

TD error on the update of the value stored at state s. Re-
call that for λ = 0 we get

i.e. TD(0). On the other hand TD(1) corresponds to the
Monte-Carlo-method. In practice, the best value of λ is
determined by trial and error and can be changed even
during the algorithm, without impacting convergence[64].
It is well known that TD(λ = 0) converges in mean with
probability equal one at higher rate than Mon-
te-Carlo-Methods if α decreases sufficiently fast with the
number of iterations[11].

Note that a new variant of temporal difference
learning, the true online TD(λ) algorithm[2], has recent-
ly been proposed, that has better theoretical properties
than conventional TD(λ) and has in faster learning also.

32

Reinforcement Learning: A Technical Introduction - Part I

3.2.2 Q-Learning

Analogously, off-policy TD for control problems,
the so called Q-learning, learns an optimal policy by ap-
proximating for a given a some variant of the well
known action value function, with the following update
rule for all states s∈S :

Q(st, at)←Q(st, at) + αt[rt+1 +

 (16)
It is well known[4], that for an operator B : (𝒮𝒮 ×𝒜𝒜

→ R) → (𝒮𝒮 ×𝒜𝒜 → R) with Qt+1 = BQt, B is a contrac-
tion mapping with ||BQt+1−BQt||∞ ≤ γ||Qt+1−Qt||∞. This
guarantees algorithmic convergence exponentially fast.

Obviously (16) can be interpreted as stochastic gra-
dient descent where δt = rt+1 + γ maxa’ Q(st+1, a’) − Q(st,
at)] is the derivative of the Bellman error that measures
the discrepancy between Q* (s, a) and

The learning rate αt should decay (e.g., as αt = 1/t)

as the number of updates goes to infinity[61]. The key
observation is that unlike the optimal state values, the
optimal action-values can be expressed as expectations,
that allows one to estimate the action-values in an incre-
mental manner. Also multi-step versions of Q-learning
exist[4]. In a closed-loop situation, some frequently used
strategies are to sample the actions following e.g. the
s-greedy action selection scheme.

Recall that in an ϵ-greedy approach, an agent real-
izes a tradeoff between exploitation and exploration by
selecting a so called greedy action s.t. a = arg maxa Q(s,
a) with probability 1 − 𝜖𝜖, 𝜖𝜖 ∈ [0, 1] and selects in s a
random action with probability 𝜖𝜖. Thus the agent ex-
ploits the current value function estimation with proba-
bility 1 − 𝜖𝜖 and explores with probability 𝜖𝜖. Hence in
the 𝜖𝜖 -greedy procedure, exploration and exploitation
can be easily balanced. The disadvantage of the 𝜖𝜖
-greedy method is that very unfavorable actions can oc-
cur by chance. One way to avoid this is to select actions
according to a probability distribution based on the al-
ready estimated q(x, a) values. Greedy actions should
have the highest execution probabilities. Procedures of
this kind are called softmax procedures. At this time the
action a is chosen according to the Boltz-
mann-distribution

where τ > 0. If τ is large, then the action is chosen almost
according to the uniform distribution. For τ → 0, the
softmax procedure becomes the greedy procedure. The
𝜖𝜖-greedy approach is motivated by the following theorem:

For every 𝜖𝜖-greedy policy π, the s-greedy policy π’
wrt. qπ is an improvement i.e. vπ’ (s) ≥ vπ(s) .

3.2.3 State-Action-Reward-State-Action

SARSA is an iterative TD-control method that
learns a Q-function via action selection. Moreover
SARSA balances between exploration and exploitation.
The update rule for all states S reads as:

Note that if st+1 is the last state, then Q(st+1, at+1) is

set to zero. SARSA is an onpolicy algorithm which
means that while learning the optimal policy it uses the
current estimate of the optimal policy to generate
the behavior. For a RobbinsMonroe sequence of
step-sizes SARSA converges in the limit to an optimal
policy as long as all state-action pairs are visited an infi-
nite number of times. There are some modifications of
that method in order to reduce its variance, see e.g.[60]. In
comparison on-policy methods typically outperform
off-policy methods.

Algorithm 5: Scheme of SARSA for On-Policy Control

input: ℛ,𝒮𝒮
Initialize Q(k)(s, a) arbitrarily. Set k = 0.
while no uniform convergence in Q(s, a) do

k=k+1
Choose at according to π derived from Q(s, a) (e.g.
𝜖𝜖-greedy).
for t=1 to |S| do

Take at and observe rt and s’.
Choose at according to π derived from Q(s, a)
(e.g. 𝜖𝜖-greedy). Q(k)(st, at) ← Q(k)(st, at) + αt[rt+1
+ γQ(k)(st+1, at+1) −Q(k)(st, st)]
st = st+1, at = at+1

end
end
SARSA converges to the optimal action-value function

under the following conditions: all state-action pairs are
explored infinitely many time, the policy converges in a

33

Diederichs E.

greedy policy

and the learning rate behaves like

In simulations it may become very difficult to fulfill

these requirements.

4. Actor-Only Methods for finite
MDPs

Actor-only methods search directly in policy space.
Typically a class of policies is parameterized by a re-
al-valued parameter vector θ. Fortunately a definition of
such a class allows to integrate prior knowledge about
the task and thus reduce the search complexity.

4.1 Model-free Methods

There are three major classes which emerged inde-
pendently: genetic algorithms, evolutionary strategies[10],
and genetic programming. Here for the sake of transpar-
ency we focus on the most popular genetic algorithms.

4.1.1 Evolutionary Algorithms

There are many classical, deep learning and hybrid
combinations of evolutionary algorithms as a tool for
finding good representations with polynomial complexity
and approaches from the reinforcement learning algo-
rithmic family, since they sometimes outperform
TD-algorithms[42], can deal with partial observability and
are in contrast to TD-methods independently from the
Markov property. In this first part of the paper we restrict
ourselves to classical approaches.[71] gives a survey of
evolutionary methods to deep reinforcement learning
approaches.

Evolutionary algorithms are randomized direct sto-
chastic optimization algorithms inspired by concepts of
evolution theory. They are robust methods dealing with a
stochastic population of solution candidates, called phe-
notypes, that can be adapted by the suitable choice to
evolutionary operators to the domain of every discrete
optimization problem where the solution has a strict
compositional structure[40]. To this end every problem
needs to be translated to the evolutionary framework
where the representations of the solution candidates are
called genotypes:

Moreover the genetic operators selection, crossover

and mutation must be tailored to the application on focus
and convergence e.g. in genetic algorithms means an
dramatic increase of homogeneity in the population of
the solution candidates[10]. However the behavior of
evolutionary algorithms heavily depends on the choice of
the representation and the values of the hyperparameter
that needs to be changed in every iteration. In fact their
computation requires to solve a second optimization
problem e.g. by an adaptive particle swarm method.
The basic algorithms reads as:

Algorithm 6: (offline) Basic Genetic Algorithm

1)Encode the optimization problem f in terms of integer
arrays.
2)Initialize a population of N solution candidates (chro-
mosomes) randomly.
3)Calculate a fitness Fi for every individual i from the
population.
4)Set population size, crossover and mutation rate and
probability.while some fitness value != termination cri-
terion do

i)Preserve the best chromosomes of current popula-
tion (elitism).
ii)Selection of fitter chromosomes, skip unfit chro-
mosomes.
iii)Crossover of fitter chromosomes.
iv)Break the dominance of elitists by mutation of
some chromosomes.
v)Increase rate of convergence by applying local
search (hybrid) to generate final offspring.
vi)Compute fitness of next generation of all solution
candidates.

end
Get acceptable approximation of global minimum in
polynomial time.

34

Reinforcement Learning: A Technical Introduction - Part I

The general approach of combining evolutionary
computing with reinforcement learning is a direct sto-
chastic search in the space of policies for one the policy
that maximizes the expected cumulative reward consid-
ered as objective.

In an early example[32] shows that a genetic algo-
rithm can be applied to the problem of reinforcement
learning by representing every action a in the language
of the evolutionary framework by a gene’s value. Then
the evolutionary fitness of a policy reflects the expected
accumulated fitness of 𝑎𝑎 ∼ 𝜋𝜋𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒. Let k count the
number of generations. Than the pseudocode reads as:

Algorithm 7: EARL

Initialize a population of policies P(k) randomly.
Evaluate every policy from P(k) in the objective space
and set k = 0.
while termination criterion is not fulfilled do

k = k + 1
Select high-payoff policies for mating from P(k −
1).
Mate the selected policy according to some evolu-
tionary strategy.
Mutate some policies such that they are still feasi-
ble solutions. Merge P(k − 1) and P(k) according to
some evolutionary strategy.
Evaluate the merged P(k).

end
In comparison to TD, that evaluates series of sub-

sequent individual decisions, in evolutionary computing
every single decision of an agent is evaluated inde-
pendently. EARL is much better than a TD-method to
cope with the occurence of rare states. However an ob-
vious disadvantage of EARL is that this algorithms only
works in offline-learning. Note that this kind of approach
can be extended to the problem of cooperative
co-evolution[48], where each chromosome represents a set
of rules and at least two populations are evolved sepa-
rately.

A more detailed survey of extending reinforcement
learning algorithms to vast state spaces, partially ob-
servable environments, rarely occurring events and non-
stationary environments is given in[16].

4.2 Model-based Methods

4.2.1 Policy Gradient Methods

Policy gradient methods learn a policy π parameter-
ized by θ ∈ Rd, i.e.

that selects actions without using additional information
about the MDP, computing approximate estimations of
gradients with respect to policy parameters. To this end a
performance measure

is introduced. J(θ) is typically the value of the initial
state vπ(θ)(st=0). Then the gradient is given by

The policy is often approximated by the so called

Gibbs policy

For that case the policy gradient theorem holds:
Let π and π’ be deterministic policies with Q(s, π’(s))

≥ vπ(s) for all s ∈ S, than vπ’(s) ≥ vπ(s) for all s. More-
over if Q(s, π’(s)) > vπ(s) for one s ∈ S, than vπ’(s’) >
vπ(s’) for some s’∈ S. Particularly this is true for s’ = s.

This theorem applied to the policy gradient method
using little algebra and the so called derivative trick
∇θπ(a|s, θ) = π(a|s, θ) ∇θ log π(a|s, θ) gives the exact ex-
pression for the gradient:

 (17)
The performance gradient with respect to the policy

parameters is estimated from interaction with the envi-
ronment and the parameters are adapted by gradient as-
cent along ∇J(θ). According to (17) only a sampling of
this expression is needed.

Moreover the unknown value function Qπ(s, a) in
(17) can be replaced some approximator fω :𝒮𝒮 × 𝒜𝒜 →
𝐑𝐑𝑚𝑚 with ω ∈ Rm that satisfies the convergence condi-
tion

If fω satisfies the convergence condition and is

compatible with the policy parametrization in the sense
that it is linear in the corresponding features i.e.

then

35

Diederichs E.

Different policy gradient methods[25,65,3] vary in the
way the performance gradient is estimated and the value
function is approximated. Cao provides an unified view
of these effects based on a perturbation analysis[9].

Recall that at least an unbiased gradient can com-
pute the right solution. Sufficient conditions for being
unbiased are:

i) The value function approximator is compatible to
the policy i.e.

ii) The parameters w minimize the mean-squared

error i.e.

where w denotes the parameter of the value function.

Compared with value-based methods, policy-based
methods usually have better convergence properties, are
more effective in high-dimensional or continuous action
spaces, and can learn stochastic policies. However, poli-
cy-based methods usually converge at a speed that de-
pends on the direction of the gradient to some local op-
timum. Furthermore a bad chosen step size leads to a bad
policy, that controls the data sampling. Hence recovering
is not guaranteed. Policy methods depend not on the the
policy parametrization, but on the policy itself, they are
more inefficient to evaluate, and typically encounter a
high variance[18]. Other optimization methods can be
used e.g. hill climbing, simplex methods or genetic algo-
rithms. However gradient methods tend to be more suc-
cessful e.g. in the case of the so called natural gradient
methods that are also independent from the parametriza-
tion.

4.2.2 Reinforce

The policy gradient method REINFORCE[72] up-
dates directly an deterministic or stochastic approxima-
tion π(a|s; θ) of the original policy in the direction of

where θ is the parameter vector of the approximation.
This algorithm uses Rt as an unbiased sample of Q(st, at).
Given that the estimation of the gradient is unbiased,
some advanced stochastic optimization techniques e.g.
the stochastic gradient descent method converge to a
local optimum. However trapping-problems and its nu-
merical complexity make the algorithm in its naive form
less attractive.

Since the rate of the convergence depends on the
variance of the method a baseline bt(st), that is inde-
pendent from action a, is subtracted in order to reduce
the variance and hence accelerate its convergence. This is
motivated by

Hence we get as update step:

where bt(st) is chosen s.t. the expectation is shifted to
zero. bt(st) can be estimated by Monte-Carlo-methods.
This leads to the following pseudocode:

Algorithm 8: REINFORCE with baseline (episodic)

input: π(a|s; θ), 𝑣𝑣�(s, w)

parameter: 0 < α, β
output: π(a|s; θ)
Initialize policy parameter θ and state value weights w
while no uniform convergence do

generate a random episode s0, a0, r1, . . . , sT−1, aT−1,
𝑟𝑟𝑇𝑇 ∼ 𝜋𝜋(·|·, θ)
for t=0 to T − 1 do

Rt ← return from step t
δ ← Rt − 𝑣𝑣�(s, w)
w ← w + βδ∇w𝑣𝑣�(st, w)
θ ← θ + αγtδ∇θ log π(at|st, θ)

end
end

4.2.3 Trust-Region Policy Optimization

In general abandoning the experience of former up-
dates is not advisable. Hence let us consider some former
estimated policy πold and define the advantage functio
wrt. π by Aπ(s, a) := Qπ(s, a) − Vπ(s). The advantage func-
tion can significantly reduce the variance of policy gra-
dient by the prize of some bias[20]. Additionally we can
make another approach to the computation of the gradi-
ent of the performance measure using

However the occupation frequencies are unknown.

But we can compute the update in the quality measure.
Then we get the main idea of the Trust-Region Policy

36

Reinforcement Learning: A Technical Introduction - Part I

Optimization (TRPO)[21]:

This is called the relative policy performance iden-

tity. It states that if we substitute the reward by the ad-
vantage function than independently of pi this will shift
the objective by a constant. Using the discounted state
visitation frequency

where st is chosen according to π, i.e. 𝑇𝑇 ∼ 𝜋𝜋, the rela-

tive policy performance identity can be rewritten as

Now by applying importance sampling using the

assumption d(s|πθ) = d(s|𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜), we get:

The approximation quality of 𝐿𝐿𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝜃𝜃) is deter-

mined by

 (18)
where KL is the Kullback-Laibler divergence. The im-
plication of (18) is

which means that we are interested in solving the opti-
mization problem

 (19)
where C is unknown. The remaining task is to rewrite
(19) as an constrained optimization problem, that can be
solved by a trust-region method. Recall that here the

Kullback-Laibler divergence can be sampled by a Mon-
te-Carlo-Method.

4.2.4 Proximal Policy Optimization

A second way to solve (19) was proposed in[19] by
the Proximal Policy Optimization (PPO) approach:

Since the computation of the Hessian is a numeri-

cal bad conditioned problem and the importance sam-
pling coefficients

tend to an unbounded growth, PPO uses clipping as a
penalty for importance sampling i.e.

and switches to

Then using a stochastic gradient method wrt. θ leads

to a much more stable procedure. However numerical
experiments show that the influence of the KLterm is
rather small.

5. Actor-Critic Methods for finite
MDPs

We have seen in the last sections, that on the one
hand in actor-only methods policies were directly modi-
fied with high variance and value function evaluation is
dispensed. In general there are two ways in policy-based
approaches for improvement: greedy improvement,
where the current policy is moved towards the greedy
policy underlying the Q-function estimate obtained from
the critic, and policy gradient, that perform stochastic
gradient descent on the performance surface of the pa-
rameterized policy. On the other hand low-variance crit-
ic-only algorithms evaluate value functions and a policy
is only implicitly used. One drawback of actor-only
methods is, that a new gradient is estimated inde-
pendently of past estimates such that no learning in the
sense of accumulation and consolidation of older infor-
mation occurs. A well known disadvantage of critic-only

37

Diederichs E.

methods is that they do not try to optimize directly over a
policy space and hence lack reliable guarantees in terms
of near-optimality of the resulting policy.

Actor-critic architectures combine the
vantages both approaches. They learn a value function
and a policy, while the actor and critic are both repre-
sented explicitly and learned separately. The critic up-
dates action-value function parameters e.g. by TD(λ) and
the actor updates policy parameters in a direction sug-
gested by the critic e.g. by policy gradient[65].

To be more precise about the general scheme the
actor-critic algorithms implement a generalized policy
iteration, alternating between a policy evaluation and a
policy improvement step: Some critic evaluates the re-
sponses, estimates the value of the current policy and
updates the action-value function:

where w here denotes the parameter of the value function
and where δ is the estimated error in evaluating the state
s. The actor is responsible for generating control and
updates the policy in the direction suggested by the crit-
ic:

where Gt is the evaluation of long-term returned by the
critic for st. In other words the role of the critic is to pre-
dict and the role of the actor is to evaluate and estimate
the Q-function. This is illustrated in the next figure:

Figure 2. Actor-critic RL-architecture.

This architecture shows that in fact there are two
different policies in use: the behavior policy of the actor
is used to generate the samples and the typically stochas-
tic target policy is evaluated by the critic and im-

proved by the actor[1].
On the one hand these policies should not be iden-

tical. Hence update steps can make things worse. On the
other hand this allows the critic to learn about the actions
not preferred by the target policy and therefore improve
the target policy. Since the actor uses Q-values to choose
actions, the critic must estimate the Q-function. Note that
the greater the difference between these policies is,
the better is the performance of actor-critic method[52]. If
the critic is modeled by a bootstrapping method this re-
duces the variance leading to a more stable behavior of
the algorithm.

For small 𝓢𝓢 the critic is a Q-function estimator and
the actor is ϵ-greedy or a Boltzmann policy estimated
using tabulars. For large 𝓢𝓢 the critic and the actor use
function approximation. In general actor-critic methods
work with deterministic and stochastic policies,
have better convergence properties and are more effec-
tive in high dimensional spaces. Moreover the policy
space can be tailored to the problem. Recall that ac-
tor-critic architectures are more like a framework and
can be combined with other approaches. Combined e.g.
with a policy gradient method they will also have a high
variance and might be expensive to compute.

Since the actor-critic architecture in fact is a special
type of strategy that can be used to combine several
types of already discussed approaches to solve subprob-
lems occurring in reinforcement learning, in this section
we restrict ourselves to the structural changes in this
strategy and refer the reader to the details in the sections
above.

5.1 Model-based Algorithms

One-Step-Actor-Critic (QAC): Note that θ always
denotes the parameter of the policy and w the value
function.

38

Reinforcement Learning: A Technical Introduction - Part I

Algorithm 9: basic actor-critic scheme (episodic)

input: π(a|s; θ), vˆ(s, w), 0 < α, β
output: π(a|s; θ)
Initialize s, I ← 1
while no uniform convergence do

for t=0 to T − 1 do
take action 𝑎𝑎 ∼ 𝜋𝜋 (·|s, θ), observe s’, r
δ ← r + γ𝑣𝑣�(s’, w) − 𝑣𝑣� (s, w) (if s’ is terminal,
𝑣𝑣�(s, w) = 0)
w ← w + βδ∇w𝑣𝑣�(st, w)
θ ← θ + αtIδ∇θ logπ(at|st, θ)
I ← γI, s ← s’

end
end

Sometimes this scheme also is known as

one-step-actor-critic (QAC). For convergence it is re-
quired that the critic’s estimate at least is asymptotically
accurate. This condition is fulfilled if the step sizes are
deterministic, non-increasing and satisfy the well known
conditions[65]:

When the number of policies is small compared to

the number of states, it is not useful that the critic at-
tempts to compute the exact value function but a projec-
tion of the value function onto a low-dimensional sub-
space spanned by a set of basis functions determined by
the parametrization of the actor.

Actor-critic architectures tend to be unstable due to
an inaccurate step size adversely affecting the other and
thus destabilize the learning. Recently[27] propose to reg-
ularize the step size of the actor by penalizing the
TD-error of an highly inaccurate critic.

Advantage-Actor-Critic (A2C): A little more so-
phisticated actor-critic architecture emerges, if the critic
is supposed to compute e.g. using TD-learning an ad-
vantage function Aπ(s, a) already discussed above by
estimating some approximations

where 𝜙𝜙 and ψ denote the features. Since for the true
Vπ(s) the TD-error is an unbiased estimate of the ad-
vantage function, it can be used to compute the policy
gradient, which only requires the w’ parameters. What

comes up, is the well known REINFORCE algorithm
with the baseline correction described above.

Asynchronous Advantage-Actor-Critic (A3C):
Recently in[66] a third architecture was proposed based on
the idea that data sampling can be parallelized using sev-
eral copies of the same agent using the same basic ac-
tor-critic approach. In a second step all computed gradi-
ents were passed to a main network that updates another
actor-critic-pair using all these decorrelated gradients.
Furthermore different exploration policies may be in use
to maximize diversity.

There are further new actor-critic approaches pub-
lished e.g.[62,67,28] that to discuss in detail is beyond the
scope of this paper.

5.2 Model-free Algorithms

In[31] a robust Bootstrapped Dual Policy Iteration
(BDPI) for continuous states and discrete actions, with
an actor and several off-policy critics is introduced.

However, their approach uses a deep-Q-network.
Since the introduction of deep learning approaches to
reinforcement learning is postponed to the second part of
this paper, we will skip the characterization of their work
here and shift the discussion to the second part. Moreo-
ver[15] proposed an approach for an nonMarkovian do-
main, that also is beyond the here presupposed frame-
work and must be done in another paper.

Although reinforcement learning already is a rich
family of approaches and algorithms, obviously there are
many open opportunities for future research.

References
1. A. Barto & R. Sutton & C. Anderson. Neuronlike

adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems,
Man, and Cybernetics, pages 834 – 846, 1983.

2. H.v. Seijen & R. Sutton et. al. True online tem-
poral-difference learning. Journal of Machine
Learning Research, pages 1–40, 2016.

3. J. Baxter & P.L. Bartlett. Infinite-horizon poli-
cy-gradient estimation. Journal of Artificial Intelli-
gence Research, pages 319–350, 2001.

4. R. Sutton & A. Barto. Reinforcement Learning: An
Introduction. 2018.

5. R. E. Bellman. Dynamic Programming. 1957.
6. D. Bertsekas. Dynamic programming and optimal

control, Vol II. 2012.
7. D. P. Bertsekas. A new value iteration method for

the average cost dynamic programming problem.

39

Diederichs E.

SIAM Journal on Control and Optimization,
36:742– 759, 1998.

8. H. Yu & D. P. Bertsekas. Basis function adaptation
methods for cost approximation. Proc. of IEEE In-
ternational Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, 2009.

9. X.R. Cao. A basic formula for online policy gradi-
ent algorithms. IEEE Transactions on Automatic
Control, 50:696–699, 2005.

10. C. Coello Coello. Evolutionary Algorithms for
Solving Multi-Objective Problems. 2007.

11. F. Dayan. The convergence of td(λ) for general λ.
Machine Learning, 8:341– 362, 1992.

12. D. de Farias & B. V. Roy. On the existence of fixed
points for appproximate value iteration and tem-
poral-difference learning. Journal of Optimization
Theory and Applications, 105:589–608, 2000.

13. D. de Farias & B. V. Roy. The linear programming
approach to approximate dynamic programming.
Operations Research, 51:850–856, 2003.

14. C. Derman. Finite State Markovian Decision Pro-
cesses. 1970.

15. E. Mizutani & S. Dreyfus. Totally model-free ac-
tor-critic recurrent neuralnetwork reinforcement
learning in non-markovian domains. Annals of Op-
erations Research, pages 107–131, 2017.

16. M. Drugan. Reinforcement learning versus evolu-
tionary computation: A survey on hybrid algorithms.
Swarm and Evolutionary Computation, pages 228–
246, 2019.

17. O. Sigaud & O. Buffet (eds.). Markov Decision
Processes in Artificial Intelligence. 2010.

18. D. Silver & A. Huang & C. Maddison et al. Mas-
tering the game of go with deep neural networks
and tree search. Nature, 529:484–489, 2016.

19. J. Schulman & F. Wolski & P. Dhariwal et. al.
Proximal policy optimization algorithms. page
arxiv prepreint: https://arxiv.org/abs/1707.06347,
07 2017.

20. J. Schulman & P. Moritz & Pieter Abbeel et. al.
High-dimensional continuous control using gener-
alized advantage estimation. ICML, 2016.

21. J. Schulman & S. Levine & P. Abbeel et. al. Trust
region policy optimization. ICML, pages 1889 –
1897, 2015.

22. L. Busoniu & R. Babuka et. al. Reinforcement
learning and dynamic programming using function
approximators. 2009.

23. L. C. Thomas & R. Harley et. al. Computational
comparison of value iteration algorithms for dis-
counted markov decision processes. Operations
Research Letters, 2:72–76, 1983.

24. M. Ghavamzadeh & S. Mannor et. al. Bayesian
reinforcement learning: A survey. Foundations and
Trends in Machine Learning, 8:359–492, 2015.

25. R.S. Sutton & D. McAllester et. al. Policy gradient
methods for reinforcement learning with function
approximation. Advances in Neural Information
Processing Systems, pages 1057–1063, 2000.

26. S. Levine & C. Finn et. al. End-to-end training of
deep visuomotor policies. Journal of Machine
Learning Research, 17:1–40, 2016.

27. S. Parisi & V. Tangkaratt & J. Peters et. al.
Td-regularized actor-critic methods. Machine
Learning, pages 1–35, 2019.

28. T. Haarnoja & A. Zhou & P. Abbeel et. al. Soft ac-
tor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. Pro-
ceedings of the International Conference on Ma-
chine Learning (ICML), 2018.

29. V. Mnih & K. Kavukcuoglu et. al. Playing atari
with deep reinforcement learning. Technical report,
Google DeepMind, page
http://arxiv.org/abs/1312.5602, 2013.

30. Vincent Franc¸ois-Lavet & Peter Henderson et. al.
An introduction to deep reinforcement learning.
Foundations and Trends in Machine Learning, page
DOI: 10.1561/2200000071, 2018.

31. D. Steckelmacher & H. Plisnier & M. Diederik et.al.
Sample-efficient modelfree reinforcement learning
with off-policy critics. European Conference on
Machine Learning, 2019.

32. D. Moriarty & A. Schultz & J. Grefenstette. Evolu-
tionsary algorithms for reinforcement learning.
Journal of Artificial Intelligence Research, pages
241–276, 1999.

33. R.A. Howard. Dynamic Programming and Markov
Processes. 1960.

34. S. Kim & M. E. Lewis & C. C. White III. Optimal
vehicle routing with realtime traffic information.
IEEE Transactions on Intelligent Transportation
Systems, 6:178–188, 2005.

35. H. J. Kushner & A. J. Kleinman. Accelerated pro-
cedures for the solution of discrete markov control
problems. IEEE Transactions on Automatic Control,
16:147–152, 1971.

36. V. Krishnamurthy. Partially Observed Markov De-
cision Processes. 2016.

37. Y. Adachia & T. Nosea & S. Kuriyama. Optimal
inventory control policy subject to different selling
prices of perishable commodities. International
Journal of Production Economics, 60-61:389–394,
1999.

38. D. Vrabie & K. G. Vamvoudakis & F. L. Lewis.
Optimal Adaptive Control and Differential
Games by Reinforcement Learning Principles.
2013.

39. Yuxi Li. Deep reinforcement learning: An overview.
CoRR, abs/1701.07274, 2017.

40. S. Luke. Essentials of Metaheuristics. Lulu, second
edition, 2013.

41. R.-R. Chen & S. Meyn. Value iteration and optimi-
zation of multiclass queueing networks. Queueing
Systems, 32:65–97, 1999.

42. K. Stanley & R. Mikkulainen. Evolving a roving
eye for go. 2004.

43. L. Kaelbling & M. Littman & A. Moore. Rein-
forcement learning: A survey. Journal of Artificial

40

Reinforcement Learning: A Technical Introduction - Part I

Intelligence Research, 4:237–285, 1996.
44. M. L. Littman & J. Goldsmith & M. Mundhenk.

The computational complexity of probabilistic
planning. Journal of Artificial Intelligence Research,
9:1–36, 1998.

45. J. Kober & J. Peters. Policy search for motor primi-
tives in robotics. Advances in neural information
processing systems, pages 849–856, 2009.

46. M. Deisenroth & G. Neumann & J. Peters. A survey
on policy search for robotics. Robotics: Founda-
tions and Trends, 2:1–142, 2013.

47. S. V. Amari & L. McLaughlin & Hoang Pham.
Cost-effective condition-based maintenance using
markov decision processes. Proceedings of the
RAMS. Annual Reliability and Maintainability
Symposium, pages 464–469, 2006.

48. M. Potter. The Design and Analysis of a Computa-
tional Model of Cooperative Coevolution. George
Mason University, 1997.

49. A. George & W. Powell. Adaptive stepsizes for
recursive estimation with applications in approxi-
mate dynamic programming. Machine Learning,
65:167– 198, 2006.

50. M. L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. 1994.

51. Reazul Hasan Russel. A short survey on probabilis-
tic reinforcement learning. arxiv, page
1901.07010v1, 2019.

52. J. Peters & S. Schaal. Natural actor-critic. Neuro-
computing, 71:1180–1190, 2008.

53. C. W. Zobel & W. T. Scherer. An empirical study of
policy convergence in markov decision process
value iteration. Computers and Operations Re-
search, 32:127–142, 2005.

54. J. Schmidhuber. A general method for multi-agent
learning and incremental selfimprovement in unre-
stricted environments., chapter Yao, X. (ed.), Evo-
lutionary Computation: Theory and Applications.
1996.

55. D. Wingate & K. D. Seppi. Prioritization methods
for accelerating mdp solvers. Journal of Machine
Learning Research, 6:851–881, 2005.

56. M. L. Puterman & M. C. Shin. Modified policy
iteration algorithms for discounted markov decision
problems. Management Science, 64:1127–1137, 78.

57. E.A. Feinberg & A. Shwartz. Handbook of Markov
Decision Processes: Methods and Applications,
chapter Total Reward Criteria. Kluwer, 2007.

58. M. Sugiyama. Statistical Reinforcement Learning.
2015.

59. R. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating dy-
namic programming. Proceedings of the Seventh
International Conference on Machine Learning,
1990.

60. S. Singh & R. Sutton. Reinforcement learning with
replacing eligibility traces. Machine Learning,
22:123–158, 1996.

61. C. Szepesvari. Algorithms for Reinforcement
Learning. 2010.

62. A. Pritzel et al. T. Lillicrap & J. Hunt. Continuous
control with deep reinforcement learning. Interna-
tional Conference on Learning Representations,
2016.

63. C. H. Paradimitriou & J. N. Tsitsiklis. The com-
plexity of markov decision processes. Mathematics
of Operations Research, 12:441–450, 1987.

64. D.P. Bertsekas & J.N. Tsitsiklis. Neuro-Dynamic
Programming. 2006.

65. V.R. Konda & J.N. Tsitsiklis. On actor-critic algo-
rithms. SIAM Journal on Control and Optimization,
pages 1143–1166, 2003.

66. A.Badia & M.Mirza et. al. V. Mnih. Asynchronous
methods for deep reinforcement learning. Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, pages 1928–1937, 2016.

67. S. Fujimoto & H. van Hoof & D. Meger. Address-
ing function approxima approximation error in ac-
tor-critic methods. in proceedings of the interna-
tional conference on machine learning. Conference
paper ICML, 2018.

68. M. Wiering & M. van Otterlo (eds.). Reinforcement
Learning. 2012.

69. N. Gans & G. van Ryzin. Dynamic vehicle dis-
patching: Optimal heavy traffic performance and
practical insights. Operations Research, 47:675–
693, 1999.

70. D. J. White. Markov Decision Processes. 1994.
71. S. Whiteson. Evolutionary Computation for Rein-

forcement Learning, pages 325–355. Springer,
2012.

72. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8:229 – 256, 1992.

73. Y. Ye. A new complexity result on solving the mar-
kov decision problem. Mathematics of Operations
Research, 2005:733–749, 38.

74. M. Herzberg & U. Yechiali. A k-step look-ahead
analysis of value iteration algorithms for markov
decision processes. Europian Jornal of Operations
Research, 88:622–636, 1996.

75. Q. Hu & W. Yue. Markov Decision Processes with
Their Applications. 2008.

76. M. A. Trick & S. E. Zin. Spline approximations to
value functions. Macroeconomic Dynamics, 1:255–
277, 1997.

41

	1. Introduction
	2. Markov Decision Processes
	2.1 Basic Definitions
	2.2 The Bellman Equations
	3. Critic-Only Methods for finite MDPs
	3.1 Model-based Algorithms
	3.1.1 Value Iteration
	3.1.2 Function Approximation
	3.1.3 Policy Iteration
	3.1.4 Dyna-Q
	3.2 Model-free Algorithms
	3.2.1 Temporal Difference Learning
	3.2.2 Q-Learning
	3.2.3 State-Action-Reward-State-Action
	4. Actor-Only Methods for finite MDPs
	4.1 Model-free Methods
	4.1.1 Evolutionary Algorithms
	4.2 Model-based Methods
	4.2.1 Policy Gradient Methods
	4.2.2 Reinforce
	4.2.3 Trust-Region Policy Optimization
	4.2.4 Proximal Policy Optimization
	5. Actor-Critic Methods for finite MDPs
	5.1 Model-based Algorithms
	5.2 Model-free Algorithms
	References

