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ABSTRACT 
Reinforcement learning provides a cognitive science perspective to behavior and sequential decision making pro-

vided that reinforcement learning algorithms introduce a computational concept of agency to the learning problem. 
Hence it addresses an abstract class of problems that can be characterized as follows: An algorithm confronted with 
information from an unknown environment is supposed to find step wise an optimal way to behave based only on some 
sparse, delayed or noisy feedback from some environment, that changes according to the algorithm’s behavior. Hence 
reinforcement learning offers an abstraction to the problem of goal-directed learning from interaction. The paper offers 
an opinionated introduction in the algorithmic advantages and drawbacks of several algorithmic approaches to provide 
algorithmic design options. 
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Most readers are familiar with two different types of machine learning: On the 
one hand we have supervised learning. In supervised learning the algorithm learns 
from a training set of labeled examples provided by a knowledgeable external su-
pervisor. In a sense the known label y gives the right and unique answer for every 
input x of the machine learning algorithm. However, for many sequential decision 
making and other adaptive control problems, it is difficult to provide an explicit 
supervision to the algorithm[38]. On the other hand we have unsupervised learning, 
where the general task is to find hidden structures in unlabeled data. Surprisingly 
reinforcement learning (RL) is different from supervised and unsupervised learning, 
since it tries to maximize some utility function concurrent with learning a reward 
signal coming from an environment that is under the influence of the algorithm. 
Consequently every reinforcement learning algorithm has to exploit what it already 
knows about the environment in order to obtain more rewards, but it also has to 
explore a still incomplete known, i.e. stochastic or dynamic environment and its 
causal relations in order to choose better actions for future situations. Exploration 
can be done by Monte-Carlo-Methods, genetic algorithms or genetic programming. 
Exploitation uses statistical techniques and dynamic programming methods to es-
timate the utility of taking actions in states of the environment[54]. 

The obvious dilemma is that neither exploitation nor exploration can be 
done by any algorithm without systematically failing at that task. So the only algo-
rithmic solution here is to try a variety of different actions and progressively favor 
those that appear to be locally the best. Since this task of balancing simultaneously 
local exploration and exploitation does not arise in supervised and unsupervised 
learning, reinforcement learning is a generic type of machine learning[22]. The basic 
mathematical framework for reinforcement learning is the stochastic Markov deci-
sion process (MDP)[17]. A variety of reinforcement methods come up if we consider 
different types of underlying MDPs, auxiliary assumption, different reward
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functions as only implicit given learning models adapted 
to certain kinds of environments and different algorithms 
for exploration and identifying the strategy. Reinforce-
ment learning can generate global near-optimal solutions 
to large and complex MDPs.  

In sum, reinforcement learning is a general-purpose 
framework for weak, human-like artificial intelligence 
and dates back to the early days of cybernetics[68,33] and 
since then has been successful applied to a large number 
of different practical problems like e.g. inventory con-
trol[37], queuing systems[41], maintenance management[47], 
transportation problems[69], ecology[34], stochastic short-
est path problems[56], Atari video games[29], the board 
game Go[18], in controlling dynamic robotic systems for 
manipulation[26], locomotion[46], autonomous driving[45] 
and many others. Reinforcement learning algorithms 
have also been extensively used as tools for constructing 
autonomous systems that improve themselves making 
new experiences. 

During the decades reinforcement learning 
has been become a general framework of various tech-
niques with different origins: 
i)  The general model of model-based[43] or model-free 

RL is given by Markov decision processes and the 
recursive Bellman equations for the state and action 
value functions. Markov decision processes 
have been extend to partial observable Markov de-
cision processes in case of incomplete information 
from the responding environment. 

ii)  Algorithms for RL can be classified into critic-only, 
actor-only, and actorcritic methods. In every class 
there are model-based and model-free algorithms, 
depending on whether the algorithm needs or learns 
explicitly transition probabilities and expected re-
wards for state-action pairs. 

iii)  Iterative learning methods (value and policy itera-
tion) based on models for the environment 
have been developed and extended to large state 
spaces of the Markov decision processes using ap-
proximations of the value functions. 

iv)  Model-free iterative methods (several variants of 
Temporal Difference Learning) for unknown envi-
ronments have been developed and extended by 
new learning methodologies like the ac-
tor-critic-approach. 

Contribution of this paper: Recently many articles 
that aim to provide some guidance while introducing to 
reinforcement learning have been published. They are 
either focused on deep reinforcement learning e.g.[30] on 
applications of reinforcement learning e.g.[39] or on spe-
cial topics e.g.[24,51,36]. However from an algorithmic 
point of view finding the right design for a given prob-
lem requires the description of sufficient technical details 
as well as knowledge about their consequences for the 
numerical simulations. Very few articles of this sort are 
available. Hence the goal of this article is to provide the 
mathematical understanding of reinforcement learning 
that is needed from an engineering point of view. The 
first part of the article gives a sketch of existing classical 
approaches. However a comprehensive survey of 
RL-algorithms is far beyond the scope of this paper. The 
second part to be published in another article will focus 
on deep reinforcement learning and the analysis of cases 
where deep reinforcement learning is outperformed by 
other approaches. 

2. Markov Decision Processes 
This section briefly introduces into the mathemati-

cal framework behind reinforcement learning. To this 
end we denote by 𝔼𝔼[·] the expectation. Further let ℙ 
denote a probability measure and Rt a reward at time t, 
that can be observed or estimated. In this article all vec-
tors are column vectors. 

2.1 Basic Definitions 

Intuitively spoken the general MDP-framework 
(𝒮𝒮,𝒜𝒜,𝒫𝒫,ℛ, γ) has the following components[4]: 

i)  a set of time depend states St of a dynamic and 
sometimes stochastic system with values 
s ∈ 𝑆𝑆 that reprsents the information used to 
determine what happens next in the environ-
ment. 

ii)  a finite set 𝓐𝓐 of deterministic actions At with 
values a that as a consequence causes a transi-
tion between s → 𝑠𝑠′. In the following let 𝑠𝑠′ 
always be a successor state of s. 

iii)  a not necessary stationary state transition ma-
trix 𝒫𝒫 ∈ 𝐑𝐑|𝑆𝑆|×|𝑆𝑆| where 

 
expresses the frequency of transitions between 
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different states s and 𝑠𝑠′. Hence our framework 
also models non-deterministic environments, 
where taking the same action from the same 
state could lead to two different outcomes. Ad-
ditionally it is assumed that in case of s → 𝑠𝑠′ 
the well known Markov property applies to 
𝑝𝑝𝑠𝑠,𝑠𝑠′
𝑎𝑎  . 

iv)  a scalar transition reward function ℛ𝑠𝑠
𝑎𝑎 ≔

𝔼𝔼[𝑟𝑟𝑡𝑡+1(𝑠𝑠′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎]  that defines the 
goal of the algorithm 

v)  a discount factor γ∈[0, 1] on the reward that 
represents the present value of future rewards, 
avoids infinite returns in cyclic processes and 
represents further fine-grained future uncer-
tainties. Only for stationary RL-problems, all 
rewards should have the same influence. 

vi)  a state value function 𝑣𝑣 ∶  𝒮𝒮 × 𝒜𝒜 →  𝐑𝐑 with 
𝑣𝑣(𝑠𝑠) ∶=  𝔼𝔼[𝑅𝑅𝑡𝑡|𝑆𝑆𝑡𝑡  =  𝑠𝑠] to be optimized over a 

series of system states, that can be considered 
as performance metric wrt. a chosen policy, 
that that defines behavior of the agent. 

Here 𝑅𝑅𝑡𝑡 ∶  𝓢𝓢 ×  𝓐𝓐 ×  𝓢𝓢 →  𝐑𝐑 is the immediate re-
turn such that 

        (1) 
where the algorithm receives a present or future, scalar 
(positive) reward or (negative) punishment 𝑟𝑟𝑡𝑡+1  ∈ 𝐑𝐑 
for choosing action at in state st. Hence in RL we always 
assume that a goal can be described by the maximization 
of expected reward. In a narrow sense 𝒫𝒫 can be consid-
ered as the model of the MDP and a full sequence of ob-
served quantities 

 
is called a trajectory 𝒯𝒯 . 

 
Figure 1. Scheme of a sequential decision process: the transfer 𝑠𝑠𝑖𝑖 ↦ 𝑠𝑠𝑖𝑖+1 by ai due to 𝛾𝛾𝑖𝑖+1,, γ𝑟𝑟𝑖𝑖+2,  γ2𝑟𝑟𝑖𝑖+3, . . . defines the policy π. 

In a more general setting where the information 
about the states si is incomplete, one has to substitute 
si by the partial observation ωi about si. 

For simplicity let us at first assume that 𝒫𝒫 and ℛ𝑠𝑠
𝛼𝛼 

are known and the number of is finite system states 
|S|.Then the environment can be modeled by an abstract 
stochastic process called first-order Markov chain: If we 
observe the changing environment, we observe the Mar-
kov chain, which is determined by the trajectory. Recall 
that the essential Markov property requires that the 
probabilities of arriving in a state 𝑠𝑠𝑡𝑡+1 and receiving a 
reward 𝑟𝑟𝑡𝑡+1 in the third assumption of the general 
framework only depend on the state st and the action at. 

The agent that interacts with the MDP is modeled in 
terms of a deterministic policy π ∶  𝒮𝒮 → 𝒜𝒜 or a sto-
chastic policy π(a|s) : 𝒮𝒮 ×𝒜𝒜 →[0, 1], where 

 
denotes the conditional probability to choose action a in 
state s. The general task for a reinforcement algorithm 
that aims to learn or to plan is to realize a series of ac-
tions according to a policy that leads to the emergence of 
a Markov chain of external states with maximum ex-

pected return i.e. 

 
Remarks: In general, there are different modes of 

reinforcement learning. First of all one can differenti-
ate between model based and model free RL: the first is 
concerned with problems from planning, where the algo-
rithm has full knowledge about the environment and in-
tends to improve the policy without interaction with the 
environment. The second one is concerned with prob-
lems of evaluating and optimizing the future: In predic-
tion problems the RL-algorithm tries to learn the optimal 
state value function from the responses to its own actions 
for the uniform random policy in an unknown environ-
ment. In adaptive control problems the RL-algorithm 
tries to learn the optimal value function over all possible 
policies in order to identify the optimal policy[75]. 

Recall that on-policy methods have to be separated 
from off-policy methods in RL. In the first case one at-
tempts to evaluate or improve the policy that currently 
guides the decisions of the agent influencing the re-
sponding environment. In the second case the agent tries 
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to learn from series of states that are obtained from other 
policies that are only intended to generate trajectories in 
a state space. Non-policy based methods usually intro-
duce a bias when used with a replay buffer since the tra-
jectories are usually not obtained solely under the current 
policy. This makes off-policy methods sample efficient 
as they are able to make use of any experience. 

2.2 The Bellman Equations 

A Bellman equation expresses some recursive rela-
tionship e.g. between the value of a state and the value of 
its successor states and it can be used to efficiently solve 
RL-problems. It averages over all possibilities 
weighted by their probability of occurrence. Starting 
from v(s) := 𝔼𝔼[Rt|St = s] we can decompose the state 
value function in the immediate reward rt and the dis-
counted value of successor states 𝛾𝛾𝛾𝛾(𝑆𝑆𝑡𝑡+1): 

       (2) 
Using matrix notation the linear Bellman-type equa-

tion (3) follows, that obviously relates the state value 
function to itself via the problem dynamics: 

        (3) 
where v ∈ R|S| and 1 is the unit matrix in R|S|×|S|. For a 
finite state space, (3) yields a finite set of |S| linear equa-
tions, which obviously can be solved using standard nu-
merical methods having computational complexity of 
𝒪𝒪(|S|3). 

A cheaper alternative for large MDPs up to certain 
accuracy is the use of dynamic programming[6]. To that 
end we consider the right hand side of (3) as contractive 
operator T(v) mapping one state value function v to an-
other state value function. From that point of view v is 
the unique fixed point of a contraction mapping T in a 
metric and complete space[64]. Due to Banach’s fixed 
point theorem we can find the optimal v at a linear con-
vergence rate of γ by iteratively applying T to some ini-
tial state value function. Recall that in dynamic pro-
gramming one assumes full knowledge of the transition, 
environment and reward models. A drawback of DP is 
that they involve operations over the entire state set of 
the MDP. If the state space is very large, this becomes 

computationally prohibitive. 
Now we let things become a little bet more complex. 

In order to model the behavior of the algorithm, we in-
troduce the policy π : S → 𝒜𝒜 and define 

             (4) 
then we can derive some Bellman equations analogously: 

      
(5) 

In (5) it is not assumed that the policy is probabilis-
tic, only the transitions 𝑠𝑠 →  𝑠𝑠′ have a distribution. 

Let us consider the case of a stochastic policy π(a|s) 
= ℙ[At = a|St = s]. Additionally we introduce the ac-
tion-value or quality function qπ : S × 𝒜𝒜 → R with qπ(s, 
a) as the expected return starting from state s, taking 
action a in following policy π: 

   (6) 
From that we conclude from (4) with (6): 

        (7) 
Now if we decompose (6) as in (2), we find: 

 
(8) 

Now (8) and (7) give us: 

    (9) 
This is the Bellman expectation equation for the 

state-value function that allows us to rewrite the ac-
tion-value function as: 

 
     (10) 

This is the Bellman expectation equation for the ac-
tion-value function. The optimal action value function 
specifies the best possible performance in the MDP and 
can be considered as the solution of the RL-problem. So 
finally we are interested in the following optimal value 
functions: 
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It is well known that for any finite MDP, that there 
is an optimal, deterministic policy π* s.t. ∀s ∈ S, ∀π : 

vπ(s) ≤ vπ* (s). In that case we also have vπ*(s) = v*(s) and 
qπ*(s, a) = q*(s, a)[58]. Here 𝑞𝑞𝜋𝜋∗ (s, a) can be considered as 
optimal control policy. An optimal policy π* can be 
found by 

       (11) 
Both optimal value functions are recursively relat-

ed by the Bellman optimality equation[5] 

 
Obviously one can use numerical expensive Monte 

Carlo methods by performing several simulations from 
the state space while following π to get some empirical 
estimates for qπ(s, a) and vπ(s). In practice for limited 
data the performance of this approach is low. 

Extensions: In the past different types of MDPs 
have been characterized. MDPs have be classified as 
stationary if 𝒫𝒫, 𝒜𝒜 and the immediate rewards are not 
Time dependent. Otherwise the MDP is called 
non-stationary[50]. The number of states and actions 
can be finite, countable and simply Borel measurable[14]. 
The planning horizon |S| can be either finite or infinite[57]. 
The system states can be partially, only indirect or fully 
observable and the decision epochs can be discrete or 
continuous[70]. A partially observable Markov decision 
process (POMDP) is an MDP with hidden states. 
Roughly spoken it is a Hidden Markov model with ac-
tions[36]. Moreover semi-MDPs have been introduced, 
where an additional parameter of interest is the time 
spent in each transition. In practice optimal control pri-
marily deals with continuous MDPs. 

In the following this paper only considers stationary, 
discrete and complete observable MDPs with finite 
horizon. This is the most frequent case from an engi-
neering point of view. The next chapters discuss different 
algorithmic, modelbased and model-free approaches to 
exploit information that can represented as MDP. 

3. Critic-Only Methods for finite 
MDPs 

Value Iteration and Policy Iteration are both mod-
el based critic-only algorithms, which are based on the 
idea to first find the optimal value function using ℙ and 

then to derive an optimal policy from this value function. 
Examples are numerical methods to solve the system of 
S linear equations generated by the Bellman-equations 
directly. Fixpoint methods, that will be described below, 
are critic-only methods also. 

3.1 Model-based Algorithms 

Due to the nonlinearity of the Bellman optimality 
equations, there are in general no closed form solutions 
for MDP-problems, but many iterative schemes exist, 
that have to cope with different numerical and stochastic 
problems. 

3.1.1 Value Iteration 

The advantages of policy-based schemes are well 
known: They show better convergence properties and are 
effective even in higher dimensions. The bad news is that 
the evaluation of a policy is inefficient and comes with a 
high variance[64,50,23,70]. In the literature RL-problems 
with known MDP are based on a model of the environ-
ment. Hence criteria for the best policy π are known and 
such problems are called planning problems. Since in 
practice there are only finitely many policies in a fi-
nite-state, finite-action MDP, we expect termination of 
such algorithms in a finite number of iterations. 

Let us introduce the value iteration[53] that also 
works with loopy, stochastic MDPs and compare it to the 
so called policy iteration. 

Algorithm 1: Scheme of Value Iteration for RL (syn-
chronous backups)  

input: 𝒫𝒫,ℛ,𝒮𝒮 
k=0 
Initialize ∀s : v(k)(s) := 0. 
while no uniform convergence in v(s) do 

k=k+1 
for t=1 to |S| do 

Compute the Bellman expectation backup: 

 
end  

end 
The optimal value function v* can also be found by 

solving a linear programming problem[64]. 
Recall that asynchronous algorithms back up the 

values of states in any order whatsoever, using whatever 
values of other states happen to be available. In particu-
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t  
 

lar the values of some states may be backed up several 
times before the values of others are backed up once. In 
the case of a synchronous update, the algorithm can be 
viewed as implementing a ”Bellman backup operator” 
that takes a current estimate of the value function, and 
maps it to a new estimate. Alternatively, we can also 
perform asynchronous updates where we would loop 
over the states (in some order), updating the values one 
at a time. 

Note that here there is no explicit π* and the opti-
mality of the state value function is always restricted to 
the so called horizon |S| < ∞. However the corresponding 
optimal policy can be generated from 

 
The value iteration needs more iterations than the 

policy iteration but only a complexity of 𝒪𝒪(|𝒜𝒜||𝒮𝒮|2) 
per iteration. It converges exponentially fast to the opti-
mal value function, but only asymptotically for the dis-
counted infinite horizon. 

3.1.2 Function Approximation 

Recall that for large state spaces the value functions 
can not have the form of a lookup table due to memory 
limitations. Then function approximation is the method 
of choice[25]. Its error reads as: 

      (12) 
where θ ∈ RK with K < |S| is a parameter or weight 
vector, the estimator 𝑣𝑣�(s, θ) is assumed to be differentia-
ble wrt. θ and the occupation frequency d(s) denotes the 
fraction of time the agent spent in s according to π: 

   (13) 
In (13) h(s) denotes the probability that an epi-

sode begins in states s and e(s) the average time steps 
spent in s according to π in a single episode. One option 
to minimize (12) is the local converging gradient method. 
Then we get: 

 
with 𝔼𝔼[u(st)] = vπ(st) since vπ(st) is not available during 
computation. Here α is the step size parameter. If u(st) is 
an unbiased estimator for every t than θt is guaranteed to 
converge to a local optimum for a decreasing series of 

values of α. A special and often used representation of 
u(st) is given by linear projections: 

 
where 𝜙𝜙(s) is a feature vector. For most tasks the fea-
tures are hand picked. 

3.1.3 Policy Iteration 

The pseudocode of policy iteration[7] reads as fol-
lows: 

Algorithm 2: Scheme of Policy Iteration for RL (syn-
chronous backups)  
input: 𝒫𝒫,ℛ,𝒮𝒮 
Initialize π(k)(s) randomly for all states s. Set k = 0. 
while no uniform convergence in π(s) do 

k=k+1 
1.evaluation of π(k)(s): iterative application of Bell-
man expectation backup: 
for t=1 to |S| do 

 
end 
and solve directly for vπ(k) with complexity O(|S|3). 
2. Improve the current policy by acting greedily with 
respect to vπ(k): 
for t=1 to |S| do 

evaluate 𝑞𝑞𝜋𝜋(𝑘𝑘)(st, a) using (8) 
solve π(k)(st ) = arg max𝑎𝑎∈𝒜𝒜𝑞𝑞𝜋𝜋(𝑘𝑘)(𝑠𝑠𝑡𝑡 , 𝑎𝑎). 

end 
end 

 
Policy iteration needs fewer iterations than the value 

iteration[53], but comes with a higher complexity O(|S|3) 
per iteration. Another advantage is that there is no re-
striction to a horizon. Policy iteration is guaranteed to 
converge and at convergence, the current policy and its 
value function are the optimal policy and the optimal 
value function. 

A more detailed discussion of the complexity of it-
erative methods of MDP can be found in[5,44,63,73]. Due to 
higher numerical costs several variants of policy iteration 
were discussed e.g. the modified policy iteration and 
asynchronous backups e.g.[56]. Both value iteration and 
policy iteration are standard algorithms for solving 
MDPs. 

Approximation & Acceleration: Recently several 
new methods for finding optimal or approximately opti-
mal policies for the MDP were invented, that intend to 
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cope with large system state spaces S, since these stand-
ard methods require excessive computation to get 
close-to-optimal solutions. Accelerating methods speed 
up the convergence of exact iterative methods by reduc-
ing the computational complexity e.g.[7,73,74,35,55]. Ap-
proximation methods give us the possibility to solve a 
wider class of MDP problems e.g.[13,12, 49, 76,8]. 

3.1.4 Dyna-Q 

The Dyna-Q algorithm[59] integrates learning, acting, 
and planning, by not only learning from real experi-
ence, but also planning with simulated trajectories from a 
learned model. In this case the learning step uses real 
experience from the environment and planning step uses 
experience simulated by a model. This leads to the fol-
lowing architecture: 

 
This idea leads to the following pseudocode: 

Algorithm 3: Scheme of Dyna-Q  
input: ℙ,ℛ,𝒮𝒮 
Initialize Q(s, a). 
while no uniform convergence in Q(s, s) do 

a ← action for s, derived by Q, s, a e.g. ϵ-greedy 
observe r’ and s’ 
direct reinforcement learning step: 

 
model learning step: 
M(s, a) ← r, s’ 
planning step: 
for i=1 to N do 

a ← random state previously observed 
s ← random action previously 
r, s’ ← M(s, a) 

 
 

i + + 
end 

end 

Recall that in the planing step, the algorithm ran-
domly samples only from stateaction pairs that have pre-
viously been experienced. Hence the learning model is 
never queried with a pair about which it has no prior 
information. 

3.2 Model-free Algorithms 

Obviously in real applications 𝒫𝒫 or even ℛ are 
unknown but must instead be estimated them from data. 
In other words the agent must learn from his experiences 
without having a model from the environment. But how 
do we know whether the action just taken is a good one, 
when it might have far reaching effects? How can we 
solve the prediction problem without MC-simulations? 

3.2.1 Temporal Difference Learning 

An obvious way of estimating the value function is 
to compute an average over multiple independent reali-
zations started from the given state i.e. to use a Mon-
teCarlo method (MC method). However the variance of 
the returns can be very high for MC methods. A second 
drawback is the interaction of algorithm and system: 
when estimation happens while interacting with the sys-
tem, it might be impossible to reset the state of the sys-
tem to some new state that is stochastically independent 
of its predecessor state. Hence a MC-method cannot be 
applied without introducing additional bias. Temporal 
Difference Learning (TD) address these issues by com-
bining the dynamic programming approach with the 
MC-approach: there is no need for a model of the envi-
ronment and updates are available at each state of the 
incremental procedure. 

The stochastic approximation algorithm TD learns 
online and iteratively variants of the value functions di-
rectly from incomplete experience with some TD error. 
This methods differs from other approaches as it tries to 
minimize the error δt of temporal consecutive predictions 
instead of an overall prediction error. To that end TD 
uses some variance reducing bootstrap-methodology wrt. 
the sample data, since the update is based on an existing 
estimate. The simplest update rule for a value function in 
every state s is called TD(λ = 0) and is for the case of the 
state value function given by: 

  (14)  
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where αt = ct−η with η ∈ [0.5,1], v(𝑠𝑠𝑡𝑡+1) − v(st) is the 
temporal difference and c ≥ 0 denotes a learning rate at 
time t. The case of waiting only one step until the update 
is computed, is denoted by λ = 0. This parameter deter-
mines the trade-off between bias and variance of the up-
date target and the trade-off has a large influence on the 
speed of learning. In (14) the state st+1 can also be chosen 
according to some policy. Recall that TD(λ = 0) must be 
computed after each transition between states. Obviously 
the choice of αt determines the convergence behavior 
since for (14) a fixpoint equation can be derived also[61]. 

Algorithm 4: Scheme of TD (λ = 0)  
input: 𝜋𝜋,ℛ,𝒮𝒮 
k=0 
Initialize 𝑣𝑣𝜋𝜋

(𝑘𝑘)(𝑠𝑠) arbitrarily, but according to π. 
while no uniform convergence in v(s) do 

k=k+1 
for t=1 to |S| do 

Choose at according to π for st. 

 
end 

end 
 

In practice a constant step-size is used often a 
choice that is justified based on two grounds: First, the 
algorithm is often used in a non-stationary environment 
and second, for a small sample regime the algorithm the 
parameters converge in distribution. Hence the variance 
of the limiting distribution will be proportional to the 
step-size chosen. For methods that tune step-sizes auto-
matically, see[49]. Here we introduce 

 
denotes the so called TD error, that in fact is the target of 
the update rule. However it is always required that the 
reward or at least some utility of s → s’ for the user is 
known. The obvious advantage is that TD can learn 
online after every step without knowing the final out-
come. It is well known that TD has a low variance, but 
some bias and is sensitive to the initial values. 

As a way to unify the Monte-Carlo-approach and 
TD(λ = 0), λ can be chosen from [0, 1] that allows one to 
interpolate between the Monte-Carlo and TD(λ = 0) ap-
proach[4]. This is helpful, when only partial knowledge of 
the state space is available or when function approxima-
tion is used to approximate the value functions in very 

large state spaces. 
Multi-Step Bootstrapping: As a new feature TD(λ) 

for λ ≠ 0 considers the so called multi-step return pre-
dictions 

       (15) 
where the mixing coefficients γ are functions of the ex-
ponential weights (1 −λ)λk with k ≥ 0. TD(λ = 0) con-
verges to solution of max likelihood Markov model. Ob-
viously by (15) so called eligibility traces of states s are 
introduced. The eligibility trace works as a short-term 
memory, usually lasting within an episode and assists the 
learning process, by affecting the weight vector. It helps 
with the issues of long-delayed rewards and non-Markov 
tasks. 

Eligibility traces are used to speed up the slow con-
vergence of the TD(λ). The slow convergence is due to 
the fact that only a single state-action pair is updated per 
time step. However in eligibility traces the value function 
is updated for all earlier states in the trajectory. Eligibil-
ity traces z(s) are not unique. Hence TD(λ) exists in cor-
respondingly many multiple forms. As an example we 
note the TD(λ) update rule of the so called accumulating 
traces: 

 
The role of zt(s) is to modulate the influence of the 

TD error on the update of the value stored at state s. Re-
call that for λ = 0 we get 

 
i.e. TD(0). On the other hand TD(1) corresponds to the 
Monte-Carlo-method. In practice, the best value of λ is 
determined by trial and error and can be changed even 
during the algorithm, without impacting convergence[64]. 
It is well known that TD(λ = 0) converges in mean with 
probability equal one at higher rate than Mon-
te-Carlo-Methods if α decreases sufficiently fast with the 
number of iterations[11]. 

Note that a new variant of temporal difference 
learning, the true online TD(λ) algorithm[2], has recent-
ly been proposed, that has better theoretical properties 
than conventional TD(λ) and has in faster learning also. 
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3.2.2 Q-Learning 

Analogously, off-policy TD for control problems, 
the so called Q-learning, learns an optimal policy by ap-
proximating for a given a some variant of the well 
known action value function, with the following update 
rule for all states s∈S : 

Q(st, at)←Q(st, at) + αt[rt+1 +  

       (16) 
It is well known[4], that for an operator B : (𝒮𝒮 ×𝒜𝒜 

→ R) → (𝒮𝒮 ×𝒜𝒜 → R) with Qt+1 = BQt, B is a contrac-
tion mapping with ||BQt+1−BQt||∞ ≤ γ||Qt+1−Qt||∞. This 
guarantees algorithmic convergence exponentially fast. 

Obviously (16) can be interpreted as stochastic gra-
dient descent where δt = rt+1 + γ maxa’ Q(st+1, a’) − Q(st, 
at)] is the derivative of the Bellman error that measures 
the discrepancy between Q* (s, a) and 

 
The learning rate αt should decay (e.g., as αt = 1/t) 

as the number of updates goes to infinity[61]. The key 
observation is that unlike the optimal state values, the 
optimal action-values can be expressed as expectations, 
that allows one to estimate the action-values in an incre-
mental manner. Also multi-step versions of Q-learning 
exist[4]. In a closed-loop situation, some frequently used 
strategies are to sample the actions following e.g. the 
s-greedy action selection scheme. 

Recall that in an ϵ-greedy approach, an agent real-
izes a tradeoff between exploitation and exploration by 
selecting a so called greedy action s.t. a = arg maxa Q(s, 
a) with probability 1 − 𝜖𝜖, 𝜖𝜖 ∈ [0, 1] and selects in s a 
random action with probability 𝜖𝜖. Thus the agent ex-
ploits the current value function estimation with proba-
bility 1 − 𝜖𝜖 and explores with probability 𝜖𝜖. Hence in 
the 𝜖𝜖 -greedy procedure, exploration and exploitation 
can be easily balanced. The disadvantage of the 𝜖𝜖 
-greedy method is that very unfavorable actions can oc-
cur by chance. One way to avoid this is to select actions 
according to a probability distribution based on the al-
ready estimated q(x, a) values. Greedy actions should 
have the highest execution probabilities. Procedures of 
this kind are called softmax procedures. At this time the 
action a is chosen according to the Boltz-
mann-distribution 

 
where τ > 0. If τ is large, then the action is chosen almost 
according to the uniform distribution. For τ → 0, the 
softmax procedure becomes the greedy procedure. The 
𝜖𝜖-greedy approach is motivated by the following theorem: 

For every 𝜖𝜖-greedy policy π, the s-greedy policy π’ 
wrt. qπ is an improvement i.e. vπ’ (s) ≥ vπ(s) . 

3.2.3 State-Action-Reward-State-Action 

SARSA is an iterative TD-control method that 
learns a Q-function via action selection. Moreover 
SARSA balances between exploration and exploitation. 
The update rule for all states S reads as: 

 
Note that if st+1 is the last state, then Q(st+1, at+1) is 

set to zero. SARSA is an onpolicy algorithm which 
means that while learning the optimal policy it uses the 
current estimate of the optimal policy to generate 
the behavior. For a RobbinsMonroe sequence of 
step-sizes SARSA converges in the limit to an optimal 
policy as long as all state-action pairs are visited an infi-
nite number of times. There are some modifications of 
that method in order to reduce its variance, see e.g.[60]. In 
comparison on-policy methods typically outperform 
off-policy methods. 

Algorithm 5: Scheme of SARSA for On-Policy Control  

input: ℛ,𝒮𝒮 
Initialize Q(k)(s, a) arbitrarily. Set k = 0. 
while no uniform convergence in Q(s, a) do 

k=k+1 
Choose at according to π derived from Q(s, a) (e.g. 
𝜖𝜖-greedy). 
for t=1 to |S| do 

Take at and observe rt and s’. 
Choose at according to π derived from Q(s, a) 
(e.g. 𝜖𝜖-greedy). Q(k)(st, at) ← Q(k)(st, at) + αt[rt+1 
+ γQ(k)(st+1, at+1) −Q(k)(st, st)] 
st = st+1, at = at+1 

end  
end 
SARSA converges to the optimal action-value function 

under the following conditions: all state-action pairs are 
explored infinitely many time, the policy converges in a 
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greedy policy 

 
and the learning rate behaves like 

 
In simulations it may become very difficult to fulfill 

these requirements. 

4. Actor-Only Methods for finite 
MDPs 

Actor-only methods search directly in policy space. 
Typically a class of policies is parameterized by a re-
al-valued parameter vector θ. Fortunately a definition of 
such a class allows to integrate prior knowledge about 
the task and thus reduce the search complexity. 

4.1 Model-free Methods 

There are three major classes which emerged inde-
pendently: genetic algorithms, evolutionary strategies[10], 
and genetic programming. Here for the sake of transpar-
ency we focus on the most popular genetic algorithms. 

4.1.1 Evolutionary Algorithms 

There are many classical, deep learning and hybrid 
combinations of evolutionary algorithms as a tool for 
finding good representations with polynomial complexity 
and approaches from the reinforcement learning algo-
rithmic family, since they sometimes outperform 
TD-algorithms[42], can deal with partial observability and 
are in contrast to TD-methods independently from the 
Markov property. In this first part of the paper we restrict 
ourselves to classical approaches.[71] gives a survey of 
evolutionary methods to deep reinforcement learning 
approaches. 

Evolutionary algorithms are randomized direct sto-
chastic optimization algorithms inspired by concepts of 
evolution theory. They are robust methods dealing with a 
stochastic population of solution candidates, called phe-
notypes, that can be adapted by the suitable choice to 
evolutionary operators to the domain of every discrete 
optimization problem where the solution has a strict 
compositional structure[40]. To this end every problem 
needs to be translated to the evolutionary framework 
where the representations of the solution candidates are 
called genotypes: 

 
Moreover the genetic operators selection, crossover 

and mutation must be tailored to the application on focus 
and convergence e.g. in genetic algorithms means an 
dramatic increase of homogeneity in the population of 
the solution candidates[10]. However the behavior of 
evolutionary algorithms heavily depends on the choice of 
the representation and the values of the hyperparameter 
that needs to be changed in every iteration. In fact their 
computation requires to solve a second optimization 
problem e.g. by an adaptive particle swarm method. 
The basic algorithms reads as: 

Algorithm 6: (offline) Basic Genetic Algorithm 

1)Encode the optimization problem f in terms of integer 
arrays. 
2)Initialize a population of N solution candidates (chro-
mosomes) randomly. 
3)Calculate a fitness Fi for every individual i from the 
population. 
4)Set population size, crossover and mutation rate and 
probability.while some fitness value != termination cri-
terion do 

i)Preserve the best chromosomes of current popula-
tion (elitism). 
ii)Selection of fitter chromosomes, skip unfit chro-
mosomes. 
iii)Crossover of fitter chromosomes. 
iv)Break the dominance of elitists by mutation of 
some chromosomes. 
v)Increase rate of convergence by applying local 
search (hybrid) to generate final offspring. 
vi)Compute fitness of next generation of all solution 
candidates. 

end 
Get acceptable approximation of global minimum in 
polynomial time. 
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The general approach of combining evolutionary 
computing with reinforcement learning is a direct sto-
chastic search in the space of policies for one the policy 
that maximizes the expected cumulative reward consid-
ered as objective. 

In an early example[32] shows that a genetic algo-
rithm can be applied to the problem of reinforcement 
learning by representing every action a in the language 
of the evolutionary framework by a gene’s value. Then 
the evolutionary fitness of a policy reflects the expected 
accumulated fitness of 𝑎𝑎 ∼  𝜋𝜋𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒.  Let k count the 
number of generations. Than the pseudocode reads as: 

Algorithm 7: EARL 

Initialize a population of policies P(k) randomly. 
Evaluate every policy from P(k) in the objective space 
and set k = 0. 
while termination criterion is not fulfilled do 

k = k + 1 
Select high-payoff policies for mating from P(k − 
1). 
Mate the selected policy according to some evolu-
tionary strategy. 
Mutate some policies such that they are still feasi-
ble solutions. Merge P(k − 1) and P(k) according to 
some evolutionary strategy. 
Evaluate the merged P(k). 

end 
In comparison to TD, that evaluates series of sub-

sequent individual decisions, in evolutionary computing 
every single decision of an agent is evaluated inde-
pendently. EARL is much better than a TD-method to 
cope with the occurence of rare states. However an ob-
vious disadvantage of EARL is that this algorithms only 
works in offline-learning. Note that this kind of approach 
can be extended to the problem of cooperative 
co-evolution[48], where each chromosome represents a set 
of rules and at least two populations are evolved sepa-
rately. 

A more detailed survey of extending reinforcement 
learning algorithms to vast state spaces, partially ob-
servable environments, rarely occurring events and non-
stationary environments is given in[16]. 

4.2 Model-based Methods 

4.2.1 Policy Gradient Methods 

Policy gradient methods learn a policy π parameter-
ized by θ ∈ Rd, i.e. 

 
that selects actions without using additional information 
about the MDP, computing approximate estimations of 
gradients with respect to policy parameters. To this end a 
performance measure 

 
is introduced. J(θ) is typically the value of the initial 
state vπ(θ)(st=0). Then the gradient is given by 

 
The policy is often approximated by the so called 

Gibbs policy 

 
For that case the policy gradient theorem holds: 
Let π and π’ be deterministic policies with Q(s, π’(s)) 

≥ vπ(s) for all s ∈ S, than vπ’(s) ≥ vπ(s) for all s. More-
over if Q(s, π’(s)) > vπ(s) for one s ∈ S, than vπ’(s’) > 
vπ(s’) for some s’∈ S. Particularly this is true for s’ = s. 

This theorem applied to the policy gradient method 
using little algebra and the so called derivative trick 
∇θπ(a|s, θ) = π(a|s, θ) ∇θ log π(a|s, θ) gives the exact ex-
pression for the gradient: 

   (17) 
The performance gradient with respect to the policy 

parameters is estimated from interaction with the envi-
ronment and the parameters are adapted by gradient as-
cent along ∇J(θ). According to (17) only a sampling of 
this expression is needed. 

Moreover the unknown value function Qπ(s, a) in 
(17) can be replaced some approximator fω :𝒮𝒮 × 𝒜𝒜 →
𝐑𝐑𝑚𝑚 with ω ∈ Rm that satisfies the convergence condi-
tion 

 
If fω satisfies the convergence condition and is 

compatible with the policy parametrization in the sense 
that it is linear in the corresponding features i.e. 

 
then 
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Different policy gradient methods[25,65,3] vary in the 
way the performance gradient is estimated and the value 
function is approximated. Cao provides an unified view 
of these effects based on a perturbation analysis[9]. 

Recall that at least an unbiased gradient can com-
pute the right solution. Sufficient conditions for being 
unbiased are: 

i) The value function approximator is compatible to 
the policy i.e. 

 
ii) The parameters w minimize the mean-squared 

error i.e. 

 
where w denotes the parameter of the value function. 

Compared with value-based methods, policy-based 
methods usually have better convergence properties, are 
more effective in high-dimensional or continuous action 
spaces, and can learn stochastic policies. However, poli-
cy-based methods usually converge at a speed that de-
pends on the direction of the gradient to some local op-
timum. Furthermore a bad chosen step size leads to a bad 
policy, that controls the data sampling. Hence recovering 
is not guaranteed. Policy methods depend not on the the 
policy parametrization, but on the policy itself, they are 
more inefficient to evaluate, and typically encounter a 
high variance[18]. Other optimization methods can be 
used e.g. hill climbing, simplex methods or genetic algo-
rithms. However gradient methods tend to be more suc-
cessful e.g. in the case of the so called natural gradient 
methods that are also independent from the parametriza-
tion. 

4.2.2 Reinforce 

The policy gradient method REINFORCE[72] up-
dates directly an deterministic or stochastic approxima-
tion π(a|s; θ) of the original policy in the direction of 

 
where θ is the parameter vector of the approximation. 
This algorithm uses Rt as an unbiased sample of Q(st, at). 
Given that the estimation of the gradient is unbiased, 
some advanced stochastic optimization techniques e.g. 
the stochastic gradient descent method converge to a 
local optimum. However trapping-problems and its nu-
merical complexity make the algorithm in its naive form 
less attractive. 

Since the rate of the convergence depends on the 
variance of the method a baseline bt(st), that is inde-
pendent from action a, is subtracted in order to reduce 
the variance and hence accelerate its convergence. This is 
motivated by 

 
Hence we get as update step: 

 
where bt(st) is chosen s.t. the expectation is shifted to 
zero. bt(st) can be estimated by Monte-Carlo-methods. 
This leads to the following pseudocode: 

Algorithm 8: REINFORCE with baseline (episodic)  

input: π(a|s; θ), 𝑣𝑣�(s, w) 

parameter: 0 < α, β 
output: π(a|s; θ) 
Initialize policy parameter θ and state value weights w 
while no uniform convergence do 

generate a random episode s0, a0, r1, . . . , sT−1, aT−1, 
𝑟𝑟𝑇𝑇 ∼ 𝜋𝜋(·|·, θ) 
for t=0 to T − 1 do 

Rt ← return from step t 
δ ← Rt − 𝑣𝑣�(s, w) 
w ← w + βδ∇w𝑣𝑣�(st, w) 
θ ← θ + αγtδ∇θ log π(at|st, θ) 

end 
end 

 

4.2.3 Trust-Region Policy Optimization 

In general abandoning the experience of former up-
dates is not advisable. Hence let us consider some former 
estimated policy πold and define the advantage functio 
wrt. π by Aπ(s, a) := Qπ(s, a) − Vπ(s). The advantage func-
tion can significantly reduce the variance of policy gra-
dient by the prize of some bias[20]. Additionally we can 
make another approach to the computation of the gradi-
ent of the performance measure using 

 
However the occupation frequencies are unknown. 

But we can compute the update in the quality measure. 
Then we get the main idea of the Trust-Region Policy 
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Optimization (TRPO)[21]: 

 

 

 
This is called the relative policy performance iden-

tity. It states that if we substitute the reward by the ad-
vantage function than independently of pi this will shift 
the objective by a constant. Using the discounted state 
visitation frequency 

 
where st is chosen according to π, i.e. 𝑇𝑇 ∼  𝜋𝜋, the rela-

tive policy performance identity can be rewritten as 

 
Now by applying importance sampling using the 

assumption d(s|πθ) = d(s|𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜), we get: 

 

 
The approximation quality of 𝐿𝐿𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝜃𝜃)  is deter-

mined by 

 

 (18) 
where KL is the Kullback-Laibler divergence. The im-
plication of (18) is 

 
which means that we are interested in solving the opti-
mization problem 

    (19) 
where C is unknown. The remaining task is to rewrite 
(19) as an constrained optimization problem, that can be 
solved by a trust-region method. Recall that here the 

Kullback-Laibler divergence can be sampled by a Mon-
te-Carlo-Method. 

4.2.4 Proximal Policy Optimization 

A second way to solve (19) was proposed in[19] by 
the Proximal Policy Optimization (PPO) approach: 

 
Since the computation of the Hessian is a numeri-

cal bad conditioned problem and the importance sam-
pling coefficients 

 
tend to an unbounded growth, PPO uses clipping as a 
penalty for importance sampling i.e. 

 
and switches to 

 

 
Then using a stochastic gradient method wrt. θ leads 

to a much more stable procedure. However numerical 
experiments show that the influence of the KLterm is 
rather small. 

5. Actor-Critic Methods for finite 
MDPs 

We have seen in the last sections, that on the one 
hand in actor-only methods policies were directly modi-
fied with high variance and value function evaluation is 
dispensed. In general there are two ways in policy-based 
approaches for improvement: greedy improvement, 
where the current policy is moved towards the greedy 
policy underlying the Q-function estimate obtained from 
the critic, and policy gradient, that perform stochastic 
gradient descent on the performance surface of the pa-
rameterized policy. On the other hand low-variance crit-
ic-only algorithms evaluate value functions and a policy 
is only implicitly used. One drawback of actor-only 
methods is, that a new gradient is estimated inde-
pendently of past estimates such that no learning in the 
sense of accumulation and consolidation of older infor-
mation occurs. A well known disadvantage of critic-only 
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methods is that they do not try to optimize directly over a 
policy space and hence lack reliable guarantees in terms 
of near-optimality of the resulting policy. 

Actor-critic architectures combine the 
vantages both approaches. They learn a value function 
and a policy, while the actor and critic are both repre-
sented explicitly and learned separately. The critic up-
dates action-value function parameters e.g. by TD(λ) and 
the actor updates policy parameters in a direction sug-
gested by the critic e.g. by policy gradient[65]. 

To be more precise about the general scheme the 
actor-critic algorithms implement a generalized policy 
iteration, alternating between a policy evaluation and a 
policy improvement step: Some critic evaluates the re-
sponses, estimates the value of the current policy and 
updates the action-value function: 

 
where w here denotes the parameter of the value function 
and where δ is the estimated error in evaluating the state 
s. The actor is responsible for generating control and 
updates the policy in the direction suggested by the crit-
ic: 

 
where Gt is the evaluation of long-term returned by the 
critic for st. In other words the role of the critic is to pre-
dict and the role of the actor is to evaluate and estimate 
the Q-function. This is illustrated in the next figure: 

 
Figure 2. Actor-critic RL-architecture. 

This architecture shows that in fact there are two 
different policies in use: the behavior policy of the actor 
is used to generate the samples and the typically stochas-
tic target policy is evaluated by the critic and im-

proved by the actor[1]. 
On the one hand these policies should not be iden-

tical. Hence update steps can make things worse. On the 
other hand this allows the critic to learn about the actions 
not preferred by the target policy and therefore improve 
the target policy. Since the actor uses Q-values to choose 
actions, the critic must estimate the Q-function. Note that 
the greater the difference between these policies is, 
the better is the performance of actor-critic method[52]. If 
the critic is modeled by a bootstrapping method this re-
duces the variance leading to a more stable behavior of 
the algorithm. 

For small 𝓢𝓢 the critic is a Q-function estimator and 
the actor is ϵ-greedy or a Boltzmann policy estimated 
using tabulars. For large 𝓢𝓢 the critic and the actor use 
function approximation. In general actor-critic methods 
work with deterministic and stochastic policies, 
have better convergence properties and are more effec-
tive in high dimensional spaces. Moreover the policy 
space can be tailored to the problem. Recall that ac-
tor-critic architectures are more like a framework and 
can be combined with other approaches. Combined e.g. 
with a policy gradient method they will also have a high 
variance and might be expensive to compute. 

Since the actor-critic architecture in fact is a special 
type of strategy that can be used to combine several 
types of already discussed approaches to solve subprob-
lems occurring in reinforcement learning, in this section 
we restrict ourselves to the structural changes in this 
strategy and refer the reader to the details in the sections 
above. 

5.1 Model-based Algorithms 

One-Step-Actor-Critic (QAC): Note that θ always 
denotes the parameter of the policy and w the value 
function. 
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Algorithm 9: basic actor-critic scheme (episodic)  

input: π(a|s; θ), vˆ(s, w), 0 < α, β 
output: π(a|s; θ) 
Initialize s, I ← 1 
while no uniform convergence do  

for t=0 to T − 1 do 
take action 𝑎𝑎 ∼ 𝜋𝜋 (·|s, θ), observe s’, r 
δ ← r + γ𝑣𝑣�(s’, w) − 𝑣𝑣� (s, w) (if s’ is terminal, 
𝑣𝑣�(s, w) = 0) 
w ← w + βδ∇w𝑣𝑣�(st, w) 
θ ← θ + αtIδ∇θ logπ(at|st, θ) 
I ← γI, s ← s’ 

end 
end 

 
Sometimes this scheme also is known as 

one-step-actor-critic (QAC). For convergence it is re-
quired that the critic’s estimate at least is asymptotically 
accurate. This condition is fulfilled if the step sizes are 
deterministic, non-increasing and satisfy the well known 
conditions[65]: 

 
When the number of policies is small compared to 

the number of states, it is not useful that the critic at-
tempts to compute the exact value function but a projec-
tion of the value function onto a low-dimensional sub-
space spanned by a set of basis functions determined by 
the parametrization of the actor. 

Actor-critic architectures tend to be unstable due to 
an inaccurate step size adversely affecting the other and 
thus destabilize the learning. Recently[27] propose to reg-
ularize the step size of the actor by penalizing the 
TD-error of an highly inaccurate critic. 

Advantage-Actor-Critic (A2C): A little more so-
phisticated actor-critic architecture emerges, if the critic 
is supposed to compute e.g. using TD-learning an ad-
vantage function Aπ(s, a) already discussed above by 
estimating some approximations 

 
where 𝜙𝜙 and ψ denote the features. Since for the true 
Vπ(s) the TD-error is an unbiased estimate of the ad-
vantage function, it can be used to compute the policy 
gradient, which only requires the w’ parameters. What 

comes up, is the well known REINFORCE algorithm 
with the baseline correction described above. 

Asynchronous Advantage-Actor-Critic (A3C): 
Recently in[66] a third architecture was proposed based on 
the idea that data sampling can be parallelized using sev-
eral copies of the same agent using the same basic ac-
tor-critic approach. In a second step all computed gradi-
ents were passed to a main network that updates another 
actor-critic-pair using all these decorrelated gradients. 
Furthermore different exploration policies may be in use 
to maximize diversity. 

There are further new actor-critic approaches pub-
lished e.g.[62,67,28] that to discuss in detail is beyond the 
scope of this paper. 

5.2 Model-free Algorithms 

In[31] a robust Bootstrapped Dual Policy Iteration 
(BDPI) for continuous states and discrete actions, with 
an actor and several off-policy critics is introduced. 

However, their approach uses a deep-Q-network. 
Since the introduction of deep learning approaches to 
reinforcement learning is postponed to the second part of 
this paper, we will skip the characterization of their work 
here and shift the discussion to the second part. Moreo-
ver[15] proposed an approach for an nonMarkovian do-
main, that also is beyond the here presupposed frame-
work and must be done in another paper. 

Although reinforcement learning already is a rich 
family of approaches and algorithms, obviously there are 
many open opportunities for future research. 
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