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ABSTRACT 

After two “cold winters of artificial intelligence”, machine learning has once again entered the public’s vision in 

recent ten years, and has a momentum of rapid development. It has achieved great success in practical applications such 

as image recognition and speech recognition system. It is one of the main tasks and objectives of machine learning to 

summarize key information and main features from known data sets, so as to accurately identify and predict new data. 

From this perspective, the idea of integrating machine learning into climate prediction is feasible. Firstly, taking the 

adjustment of linear fitting parameters (i.e. slope and intercept) as an example, this paper introduces the process of 

machine learning optimizing parameters through gradient descent algorithm and finally obtaining linear fitting function. 

Secondly, this paper introduces the construction idea of neural network and how to apply neural network to fit nonlinear 

function. Finally, the framework principle of convolutional neural network for deep learning is described, and the 

convolutional neural network is applied to the return test of monthly temperature in winter in East Asia, and compared 

with the return results of climate dynamic model. This paper will help to understand the basic principle of machine 

learning and provide some reference ideas for the application of machine learning to climate prediction. 

Keywords: Machine Learning; Neural Network; Convolutional Neural Network; Climate Prediction; Winter 

Temperature in East Asia 
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1. Introduction

In 1956, McCarthy et al. (1956) put forward the concept of artifi-

cial intelligence. Three years later, Samuel (1959) proposed a way to 

realize artificial intelligence—machine learning. Subsequently, AI ex-

perienced two take-off times: the 1960s to 1970s and the 1980s. Nev-

ertheless, AI has not made satisfactory achievements. It has experi-

enced two “AI winter” in the late 1970s and early 1990s. Despite the 

ups and downs in the development of artificial intelligence, as a branch 

of artificial intelligence and a way to realize artificial intelligence, the 

development of machine learning (especially the updating of algo-

rithms) has never stopped, and has gradually developed into an inter-

disciplinary subject involving probability theory, statistics, approxima-

tion theory and so on. In recent years, with the significant 

improvement of the performance of computer hardware facilities, the 

massive growth of research data, the significant reduction of storage c- 
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ost and the obvious improvement of algorithms, 

machine learning, especially deep learning, has 

once again back to public’s focus and achieved a 

series of successes. Some machine models trained 

with a large amount of data can accurately predict 

new data, such as automatic driving, image recogni-

tion and speech recognition, which are successful 

applications of machine learning (Huntingford et al., 

2019). 

Human beings have always been committed to 

understanding and predicting the changes of the 

world, and the most successful example is numeri-

cal weather forecasting. Now, its prediction skills 

for 3–5 days of 500 hPa geopotential height field in 

the northern hemisphere have reached more than 90% 

(Bauer et al., 2015). However, climate prediction on 

seasonal scale and climate prediction on longer time 

scale are still great challenges (Hantson et al., 2016). 

Driven by the in-depth understanding of the climate 

system change mechanism, the observation data, 

reanalysis data and numerical simulation data of the 

earth system have increased rapidly in the past 40 

years. In particular, the fifth phase (CMIP5) and the 

sixth phase of the international coupled model 

comparison program (CMIP6) provide tens of bil-

lions of bytes of data resources for climate change, 

climate prediction and climate prediction research 

(Stockhouse & Lautenschlager, 2017). How to fully 

extract useful information and acquire new 

knowledge from “big data” poses a new challenge 

to traditional analysis methods. Machine learning 

and artificial intelligence bring new opportunities. 

Machine learning can discover and extract new in-

terrelated signals from the “big data” of the earth 

system. For example, the SST information of a key 

area can improve the climate prediction skills of a 

certain area on land in the coming months. On 

this basis, artificial intelligence can provide the so-

ciety with automatic early warning of extreme 

weather and climate events (Huntingford et al., 

2019). 

Nowadays, machine learning is gradually 

combined with climate prediction and weather pre-

diction, and a large number of innovative research 

results have emerged in related fields. Ham et al. 

(2019) constructed a machine prediction model for 

ENSO index by using deep neural network. The 

results show that the prediction skill of deep learn-

ing prediction model for ENSO 7–21 months in 

advance is higher than that of most current dynamic 

climate prediction models. The shallow neural net-

work machine model can also better distinguish the 

central and eastern ENSO events (Toms et al., 

2020). In addition, machine learning can also be 

applied to weather forecasting business (Men et al., 

2019). Weyn et al. (2019) constructed a machine 

prediction model of 500 hPa potential height grid 

field by using convolution neural network (deep 

learning). Its prediction skill of 3 days in advance is 

obviously better than that of the dynamic barotropic 

vorticity model, although its performance is still 

inferior to the current operational numerical weath-

er prediction system. The convolutional neural net-

work machine model can also predict the frontal 

system of weather scale (Lagerquist et al., 2019) 

The deep learning model can also auto-

matically identify extreme weather events without 

any threshold (Liu et al., 2016). In addition, ma-

chine learning can be used to reduce the uncertainty 

of future climate prediction (Kuang et al., 2020). 

With the aggravation of climate change and its 

negative impacts (Pörtner et al., 2019), it is increas-

ingly important and urgent to improve the ability of 

climate prediction. However, this is still a severe 

challenge to the current dynamic climate prediction 

model. Machine learning, supported by high-

performance computers, “big data” and advanced 

algorithms, has improved new ideas and opportuni-

ties for improving the skills of climate prediction. 

This paper will briefly introduce the basic princi-

ples of machine learning centred on gradient de-

scent, the construction of neural network and the 

framework of deep learning. Finally, an example of 

applying deep learning to winter temperature pre-

diction in East Asia is introduced. 

2. Introduction to Artificial Intelli-

gence, Machine Learning and Deep 

Learning 

In the 1950s, John McCarthy and others 

launched the Dartmouth summer artificial intelli-

gence research program (McCarthy et al., 1956) to 
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explore topics such as automatic computers and 

neural networks. The concept of “artificial intelli-

gence” was born. “Artificial intelligence” aims to 

endow computers with the ability of “thinking”, 

which refers to the theory and development to real-

ize that computer systems can perform tasks that 

usually require human intelligence. Obviously, “ar-

tificial intelligence” is a concept or general term 

covering a wide range. The early “artificial intelli-

gence” was mainly realized through hard coding, 

that is, based on the existing knowledge system of 

human beings, the code program was designed 

manually to complete the tasks that challenge hu-

man beings. For example, the computer chess play-

er “Dark Blue” designed by IBM is to fully formal-

ize the rules of chess and then describe them to the 

computer through hard coding. “Dark blue” defeat-

ed world chess champion Gary Kasparov on May 

11, 1997. However, with the improvement of prac-

tical application requirements and the limitations of 

human cognitive system, the bottleneck of hard 

coded “artificial intelligence” began to show: It can 

not solve more complex problems. In order to make 

up for the disadvantage that hard coding has high 

requirements on human cognitive system, scientists 

put forward a new idea of building “artificial intel-

ligence”, that is, to make it the characteristic of 

computer to automatically generalizing and summa-

rizing information from big data, i.e. machine learn-

ing. Although machine learning still needs to be 

realized through coding, it has a feature that is ob-

viously different from the traditional hard coding 

method. In the early stage of task execution, the 

computer does not give specific rules to solve the 

problem (such as the known chess rules of 

“dark blue”), but uses a large amount of data and 

constantly “trains” the computer through some al-

gorithm. At the same time, a loss function is used to 

measure the learning effect of the computer, and the 

direction of “training” is adjusted through the opti-

mization algorithm. Through repeated iterative cal-

culation, the computer finally has the optimal 

scheme or rules to solve the problem (i.e. Parame-

ters, see Section II). In this way, the “trained” ma-

chine can be put into practical application, such as 

face recognition and speech recognition system, 

which are the results of machine learning. It can be 

seen that algorithm is the core of machine learning, 

and neural network is one of the classical algo-

rithms. Deep learning is to realize machine learn-

ing by using neural networks with more levels (i.e. 

the meaning of depth). 

3. Principles of Machine Learning 

Machine learning can be divided into super-

vised learning, unsupervised learning and rein-

forcement learning (Dougherty et al., 1995). This 

paper mainly focuses on supervised learning. The 

characteristic of supervised learning is that each 

“training data” has a clear output expectation (i.e. 

“label data”). In order to explain the “learning” pro-

cess of the machine simply and clearly, we take the 

simplest linear regression as an example to show 

how to continuously “train” the machine and finally 

obtain the parameters of the linear regression equa-

tion (i.e. slope θ1 and intercept θ2). Build a linear 

function: y = 2.5x + 3.5 + δ (x = 1, 2, 3, …, 20), 

among which δ represents the noise data conform-

ing to the random normal distribution. The mapping 

relationship between x and y is shown in the scatter 

diagram of Figure 1(A). From the perspective of 

machine learning, x is called “training data” and y 

“label data” (Table 1). 

Input the “training data” x into the computer 

and randomly give any two initial parameters of the 

computer, namely slope θ1 and intercept θ2. Since 

the goal of the computer is to “learn” a linear rela-

tionship, the “predicted value” �̂� of the correspond-

ing output should meet 𝑦 = 𝜃1
0 × 𝑥 + 𝜃2

0. In order 

to evaluate the “learning” effect of computer, that is, 

to measure the difference between �̂� and y, a cost 

function, also known as loss function, needs to be 

introduced. Root mean square error is selected here: 

∑ (ŷi − yi)
2m

i=1   
 (1) 

 

 

 

 

 



He S, Wang H, Li H, et al 

16 

Table 1. “Training data” denotes x, the “label data” 

denotes y, and “random noise data” denotes δ 

X Δ Y 

1 0. 57 6. 57 
2 -0. 39 8. 11 
3 0. 19 11. 19 
4 -0. 78 12. 72 
5 2. 5 18. 5 
6 1. 48 19. 98 
7 0. 27 21. 27 
8 -0. 82 22. 68 
9 -1. 58 24. 42 

10 -0. 86 27. 64 
11 -0. 31 30. 69 
12 -0. 91 32. 59 
13 -1. 64 34. 36 
14 0. 47 38. 97 
15 0. 63 41. 63 
16 0. 17 43. 67 
17 -0. 78 45. 22 
18 -0. 57 47. 93 
19 -0. 25 50. 75 

 

Of which M represents the number of data sets. 

Since “training data” x and “label data” y are de-

termined data sets, and only parameters θ1 and in-

tercept θ2 are uncertain, so the loss function written 

as f(θ1, θ2) is actually about θ1 and θ2. For the con-

venience of description, the parameters are ex-

pressed in the form of vectors Θ(θ1, θ2). In other 

words, the ultimate goal of “training” the machine 

is to adjust the parameters Θ and make the value 

of f(Θ) reaches the minimum. 

According to the principle of derivative func-

tion, that is, f(Θ)’ derivative function ∇𝑓(Θ)|(𝜃1
0,𝜃2

0) 

at certain point Θ0(𝜃1
0, 𝜃2

0)  represents the fastest 

direction that f(Θ) increases. In order to effectively 

“learn” towards the minimum value of f(Θ), the 

machine can adjust parameters along the opposite 

direction of the derivative function to obtain new 

parameters Θ1(𝜃1
1, 𝜃2

1), namely: 

𝛩1 = 𝛩0 − 𝛼 × ∇𝑓(𝛩)|𝛩0 

 (2) 

If 𝛩1is not the parameter when f(Θ) reaches its 

minimum value, then the machine continue to ad-

just the parameter along the opposite direction of 

the derivative function to obtain new parameters θ2, 

namely: 

𝛩2 = 𝛩1 − 𝛼 × ∇𝑓(𝛩)|𝛩1 

 (3) 

Among them, α∈(0,1) is called “learning effi-

ciency”. By iterating the above calculation process 

repeatedly, the computer will continuously reduce 

the loss function f(Θ), and lock the parameter until 

it is less than a critical value Θ. At this time, the 

parameter Θ(𝜃1
𝑛, 𝜃2

𝑛) (n represents the final number 

of iterations) “learned” by the computer will make 

the “predicted value” �̂� approach the “label data” y 

optimally. The above process of adjusting parame-

ters along the opposite direction of derivative func-

tion is called “gradient descent” method (Ruder, 

2016); The module similar to adjusting parameters 

is called “optimizer”. 

Return to the problem of machine learning to 

solve the above linear regression. In order to make 

the description easier, the above “predicted value” �̂� 

“training data” x, parameters (θ1, θ2) and “label data” 

y are expressed in the form of matrix respectively: 

�̂� = (

�̂�1
�̂�2

⋮
�̂�20

), 

 

X= (

𝑥1 1
𝑥2 1
⋮ ⋮

𝑥20 1

), 

 

Θ= (𝜃1
𝜃2

), 

 

Y= (
𝑦1
𝑦2
⋮

𝑦20

). 

Therefore, the loss function can be expressed 

as: 

𝑓(𝛩) =
1

2𝑚
(𝑋 ∙ 𝛩 − 𝑌)T(𝑋 ∙ 𝛩 − 𝑌) 

 (4) 

Of which: m is the number of each data set, i.e. 

20, and the constant 1/2 is to avoid redundant con-

stants in the subsequent derivation function. The 

derivative function of the loss function is: 

∇𝑓(𝛩) =
1

𝑚
𝑋T(𝑋 ∙ 𝛩 − 𝑌) 

 (5) 

Firstly, the initial parameter of the computer 

given randomly 𝛩0(20, −20)  is substituted into 

formula (4) and formula (5) together with “training 

data” x and “label data” y (Table 1), and the loss 

function and its derivative can be obtained: 

𝑓(20. −20) = 17 934.65, 
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∇𝑓(𝛩)|𝛩0(20,−20) = (
𝜕𝑓

𝜕𝜃1
,

𝜕𝑓

𝜕𝜃2
)|𝛩0(20,−20)

= (2264.65,160.25) 
 

At the same time, the “learning” efficiency of 

the machine α is set to 0.01. According to formula 

(2), the machine updates the parameters to: 

(𝜃1, 𝜃2) = (20, −20) − 0.01 × (2264.65,160.25)

= (−2.646, −21.603) 

The machine continuously updates the parame-

ter (θ1, θ2) through the above “learning” process 

(Figure 1B), and the value of the loss function con-

tinues to decrease (as shown by the red line in Fig-

ure 1(C). After about 3000 iterative calculations, 

the parameter (θ1, θ2) basically tends to be stable 

(Figure 1B), indicating that the loss function has 

approached its minimum value, and this point 

(𝜃1
𝑛, 𝜃2

𝑛) is also the position where the derivative of 

the loss function is the smallest (i.e. The slope is the 

smallest). Set the critical value ∇𝑓(𝜃1
𝑛, 𝜃2

𝑛) of the 

derivative function to 10 × 10-5, that is, when the 

value of the derivative function is less than the crit-

ical value, the machine will stop “learning” and 

lock the parameter ( 𝜃1
𝑛, 𝜃2

𝑛 ) at this time, i.e. 

(2.50,3.53). Therefore, the linear fitting curve final-

ly “learned” by the machine is: �̂� = 2.50𝑥 + 3.53 

(Figure 1A: red line), which basically conforms to 

the linear relationship between “training data” x and 

“label data” y (Figure 1A: scattered points). 

Of course, the above is only the process of 

“training” the machine. The ultimate goal of ma-

chine learning is to use the “trained” machine (i.e. 

complete the optimization of parameters) to predict 

the new data (commonly referred to as “test data”) 

that the machine has never engaged before. It 

will be described in detail in section III and section 

IV. 

4. The Idea of Applying Neural 

Network to Climate Prediction 

Linear regression is a common method in cli-

mate prediction and climate change research. Of 

course, the linear regression function can be calcu-

lated quickly without machine learning. However, 

in the process of practical research and application, 

we often face a large number of observation and 

numerical simulation data. Due to the complexity of 

the climate system, there may be some nonlinear 

relationship between the data, and the above ma-

chine learning model based on linear relationship 

will lose its function. At this time, deep learning can 

give play to its great advantages. Deep learning 

is based on neural network, which usually includes 

one input layer, several hidden layers and one out-

put layer. Each neural layer contains several neu-

rons (in fact, it represents the node containing a 

specific data). The input layer is responsible for 

receiving “training data” or “test data”, and the out-

put layer is responsible for exporting “prediction 

data”. The main function of the hidden layer is to 

connect the input layer and the output layer through 

a large number of parameters. The loss function 

can be constructed by using the “prediction data” of 

the output layer and the known “label data”, and 

then the loss function can be reduced and the pa-

rameters can be adjusted through the optimizer. 

When the loss function reaches the minimum value, 

the parameters will be locked, that is, complete the 

“training” of the machine (see Section 2). The key 

question here is: how do neurons connect between 

input layer, hidden layer and output layer? The an-

swer is: matrix multiplication. 
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Figure 1. (A) Scatters indicate the mapping relationship between the ‘train data’ x and ‘labeled data’ y, the 

red line indices the linear fitting by machine linear; (B) the updating of weights along the iteration; (C) the 

gradient descent of machine learning.

For simplicity, first build a shallow neural 

network: an input layer containing a neuron node; 

two hidden layers, including 4 and 5 neuron nodes 

respectively; an output layer contains a neuron node 

(Figure 2A). We will gradually analyze the connec-

tion mode between neurons from the perspective of 

matrix multiplication. 

1). Input layer to first hidden layer 

Because the input layer has only one neuron, 

i.e. only one data, it can be regarded as a matrix 

𝑿 = [𝑥1
1] with one row and one column. The sub-

script of 𝑥𝑖
𝑗
 here represents the j-th characteristic 

data of the i-th sample. 𝑥1
1and 𝑥1

2 for example, can 

represent the temperature and precipitation of an 

observation station at the first observation time, and 

so on (the same below). The hidden layer contains 4 

neurons, i.e. 4 data, which can be expressed as a 

matrix with one row and four columns 𝒀 =
[𝑦1

1, 𝑦1
2, 𝑦1

3, 𝑦1
4]. In order to realize the mapping be-

tween matrices 𝑿 and 𝒀, a parameter matrix with 

one row and four columns 𝝎 =
[𝜔11, 𝜔12, 𝜔13, 𝜔14] can be constructed. Therefore, 

the 𝑿 ∙ 𝝎 = 𝒀 connection between the input layer 

and the neurons of the first hidden layer is realized 

(Figure 2B). 

2). First hidden layer to second hidden layer 

There are five neurons in the second hidden 

layer, which can be expressed as a matrix with one 

row and five columns 𝒁 = [𝑧1
1, 𝑧1

2, 𝑧1
3, 𝑧1

4, 𝑧1
5]. Ac-

cording to the above ideas, a new parameter matrix 

with five rows and five columns θ needs to be con-

structed. So 𝒀 ∙ 𝜽 = 𝒁  realizes the connection be-

tween the neurons of the first hidden layer and the 

second hidden layer (Figure 2B). 

3). Second hidden layer to output layer 

There is only one predicted value P1 in output 

layer, so it is only necessary to build a new parame-

ter matrix with five rows and one column μ and the 

connection between hidden layer 2 and output layer 

neurons can be realized (Figure 2B). 

After the above neural network is constructed, 

a batch of “training data” sets (assuming n samples) 

can be input into the neural network to obtain n 

numbers of “prediction data” sets. Combined with 

the corresponding n number of “tag data”, we can 

get the information about ω,θ and μ of the loss 

function 𝑓(𝝎, 𝜽, 𝝁) . Then, the optimizer continu-

ously reduces the loss function and updates the pa-

rameters ω,θ and μ at the same time (Figure 2B); 

see Section IV). It is worth noting that in order to 

explore the nonlinear relationship between the hid-
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den layer and its front and rear layers, the neural 

network will introduce a nonlinear “excitation func-

tion” into the hidden layer. This is also the reason 

why the neural network algorithm is superior to the 

linear model (Specht, 1991). 

In order to intuitively show the learning effect 

of neural network, a nonlinear function 𝑦′ =

sin (3.5 × cos (2.5𝜃))  is constructed. θ is 300 

equally spaced data between –1 and 1, i.e. the 

“training data” set; the function curve between 𝑦′ 

and θ is shown in the blue line of Figure 3(A). A 

certain random noise is superimposed on the non-

linear function to obtain 300 “tag data” y. The map-

ping result between θ and y is shown in Figure 

3(A). Building a neural network includes one input 

layer, two hidden layers (including 16 neurons re-

spectively) and one output layer. Input the “training 

data” θ into the neural network and use the hyper-

bolic tangent function (TANH) excitation function 

in the hidden layer (Figure 3B). When the machine 

goes through 6000 iterations, the output value 

learned by the machine is shown in the yellow line 

in Figure 3(A). At this time, the value of the loss 

function is 0.01. It can be seen that neural network 

machine learning has a good performance in solv-

ing nonlinear problems. When the rectified linear 

unit (RELU) “excitation function” (Figure 3C) is 

adopted, the output value of the machine after 6000 

iterations is as the red line in Figure 3(A), and the 

value of the loss function is 0.052. 

The neural network constructed above aims at 

the input layer with only one eigenvalue [𝑥1
1] (Fig-

ure 2A). If the input layer needs to process multiple 

eigenvalues, such as the East Asian winter tempera-

ture index predicted with the autumn Arctic sea ice 

index and the autumn Eurasian snow index (i.e. the 

two eigenvalues of the input layer correspond to 

one output value), how to build a neural network? 

At this time, it is only necessary to increase the 

number of neurons in the input layer to two (i.e. the 

input layer matrix is two columns [𝑥1
1, 𝑥1

2]) and the 

parameter matrix multiplied by it to two rows (Fig-

ure 2B), so as to complete the construction of neu-

ral network with two eigenvalues in the input layer, 

and the process goes on. Due to the complexity and 

diversity of climate systems and the nonlinear inter-

action between climate systems (Hasselmann, 

1999), machine learning will be used to build cli-

mate prediction models in the future to further im-

prove the skills of climate prediction.

 

 
Figure 2. (A) A shallow neural network; (B) illustrating the architecture of neural network. 
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Figure 3. (A) Non-linear fitting by neural network with different activation functions; the blue curve indi-

cates the ‘true’ curve of non-linear function; scatters indicate the non-linear function f(θ) = sin(3.5 cos(2. 5 θ)) 

overlapped by random noise; the yellow and red curves are results of machine learning with activation func-

tion of tanh and relu, respectively; (B) and (C) illustrate the activation function of tanh and relu, respectively.

5. Deep Learning: Convolutional 

Neural Network and Its Application 

to Winter Temperature in East Asia 

Convolutional neural network (CNN) adds one 

or more convolutional layers and pooling layers on 

the basis of ordinary neural network, including 

maximum pooling and average pooling (Goodfel-

low et al., 2016). The process of convolution is as 

follows. Firstly, a convolutional kernel, i.e. a weight 

matrix, is randomly given, whose dimension is the 

same as that of the convoluted data, but the hori-

zontal resolution is smaller. The convolution kernel 

extracts data subsets from the convoluted data in a 

fixed step according to its own resolution, multi-

plies them correspondingly, and then sums them, 

until the retrieval of all data is completed. In order 

to consider the nonlinearity of the data, the convo-

luted data will go through an “excitation function”, 

and the final output result will enter the pooling 

layer (see “step 1” in Figure 4). 

Pooling (taking the maximum pooling as an 

example) is based on the specified horizontal reso-

lution (such as 2 × 2) retrieve the output data of the 

convolution layer according to the specified step 

size, and output the maximum value within the 

range of the grid point every time until the retrieval 

of all data is completed (see “step 2” in Figure 4). 

Two points need to be pointed out. 

1). Only one convolution kernel is used in 

Figure 4, so the data after convolution is still two-

dimensional. In fact, multiple different convolution 

check data can be used for convolution, and each 

convolution kernel convolutes the data according to 

the above process. Therefore, when all convolution 

cores complete the convolution process, the hori-

zontal resolution of the output data will be signifi-

cantly reduced and one dimension will be added 

(equal to the number of convolution cores). 

2). In Figure 4, there is only one convolution 

layer and one pool layer. In practical application, 

the above convolution and pooling process can be 

repeated for many times, i.e. the pooled data will 

undergo convolution and pooling. Convolution ker-

nel, convolution layer and the number of pool lay-

ers need to be adjusted according to specific prob-

lems and test results. Convert the pooled data into 

one-dimensional data and input it into the input lay-
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er of ordinary neural network, then the construction 

of convolutional neural network can be completed 

(see “step 3” in Figure 4). Convolutional neural 

network has achieved great success in computer 

vision (such as image classification and recognition) 

and natural language processing (Goodfellow et al., 

2016; Huntingford et al., 2019). Two dimensional 

or three-dimensional data are often used in climate 

prediction research and application. Therefore, in 

theory, convolutional neural network can be applied 

to the field of climate prediction. In addition, the 

abundance of climate system observation data and 

numerical simulation data provides sufficient train-

ing data for machine learning. In order to try to ap-

ply convolutional neural network to climate predic-

tion, this paper uses convolutional neural network 

method and uses the historical simulation data of 

the fifth stage coupled model comparison program 

(CMIP5) to construct a machine prediction model 

for the monthly temperature index in winter in East 

Asia. Then input the trained machine prediction 

model with the historical observation data to carry 

out the return test on the historical observation time 

series of monthly temperature in winter in East Asia. 

The research data, modeling methods and return 

results are as follows.

 

Figure 4. The architecture of revolutionary neural network.
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5.1 Research data 

The historical simulation data of 21 climate 

models are taken from CMIP5 from 1861 to 2005, 

and variables include surface temperature T2m, sea 

surface temperature SST and 0–300m average 

ocean temperature T300 (https://esgf-

node.llnl.gov/projects/cmip5/). The historical re-

turn test results of dynamic climate model CanCM 

4i are taken from 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/

NMME/.Observation data include the following. 1). 

SST data from the global ocean data assimilation 

system (GODAS) of the National Center for Envi-

ronmental Prediction (NCEP) 

(https://psl.noaa.gov/data/gridded/data.godas.html; 

Behringer & Xue, 2004) from 1982 to 2018. 2). The 

surface temperature T2m in the reanalysis data 

(ERA5) of the European Center for medium and 

long term forecasting is from 1982 to 2018 (C3S, 

2017). In order to save the training time of the ma-

chine, the SST and T300 of CMIP5 and GODAS 

are interpolated to 5° × 5° horizontal resolution, 

ranging from 60° s to 60° n, 0°–360°, i.e. the grid 

resolution is 24 (Zonal) × 72 (meridional direction). 

5.2 Modeling method 

1). Build machine “training data” Train_data, 

“label data” Labeled_data and “test data” Test_data 

(Table 2). 

Firstly, T2m, SST and T300 in all data are 

transformed into anomaly fields (minus the climate 

state in the corresponding data period), and the 

anomaly fields in CMIP5, GODAS and EAR5 are 

recorded as CMIP_SSTA, CMIP_T300A, 

CMIP_T2mA, GODAS _SSTA, GODAS_T300A, 

ERA5_T2Ma respectively. It is planned to forecast 

East Asia winter month by month (i.e. December, 

January and February) with one month in advance. 

The prediction factors are SST and T300 anomaly 

field for three consecutive months in the early stage.

Table 2. Machine learning model and its training data (Train_data), labeled data (Labeled_data), testing data 

(Test_data) and prediction (Prediction) 
Machine 

model 
Training data Lable data Test data Estimate 

ML1 

CMIP_SSTA and 

CMIP_T300A of Sep-

tember, October and 

November 1861–2004, 

recorded as Train_data1 

The regional average value of 

CMIP_T2mA of a region in 

East Asia (100° ~ 140°E, 10° 

~ 30°N) in December 1861–

2004 is recorded as 

CMIP_T2m_Dec 

GODAS_SSTA and GO-

DAS_T300A of Septem-

ber, October and Novem-

ber 1982–2017, recorded 

as Test_data1 

The regional average val-

ue T2mA in a region of 

East Asia (100° ~ 140°E, 

10° ~ 30°N) in December 

1982–2017 is recorded as 

Pre_T2m_Dec 

ML2 

CMIP_SSTA and 

CMIP_T300A of Octo-

ber, November and De-

cember 1861–2004, 

recorded as Train_data2 

The regional average value of 

CMIP_T2mA of a region in 

East Asia (100° ~ 140°E, 10° 

~ 30°N) in January 1862–

2005 is recorded as 

CMIP_T2m_Jan 

GODAS_SSTA and GO-

DAS_T300A of October, 

November and December 

1982–2017, recorded as 

Test _data2 

The regional average val-

ue T2mA in a region of 

East Asia (100° ~ 140°E, 

10° ~ 30°N) in January 

1983–2018 is recorded as 

Pre_T2m_Jan 

ML3 

CMIP_SSTA and 

CMIP_T300A of No-

vember and December 

1861–2004 and January 

1862–2005, recorded as 

Train_data3 

The regional average value of 

CMIP_T2mA of a region in 

East Asia (100° ~ 140°E, 10° 

~ 30°N) in February 1862–

2005 is recorded as 

CMIP_T2m_Feb 

GODAS_SSTA and GO-

DAS_T300A of November 

and December 1982–2017 

and January 1983–2018, 

recorded as Test_data3 

The regional average val-

ue T2mA in a region of 

East Asia (100° ~ 140°E, 

10° ~ 30°N) in February 

1983–2018 is recorded as 

Pre_T2m_Feb 

In order to test the prediction effect of the machine 

prediction model, the regional average value of 

ERA5_T2mA in East Asia (100° ~ 140°E, 10° ~ 

30°N) from 1982 to December 2017, 1983 to Janu-

ary 2018 and 1983 to February 2018 were further 

calculated, and they are recorded as 

ERA5_T2m_Dec, ERA5_t2m_Jan and 

ERA5_T2m_Feb respectively. It is worth noting 

that in order to obtain enough training data samples 

as much as possible, the full-time data of CMIP5 

historical simulation test is used, resulting in a cer-

tain overlap between the training data and the test 

data. However, considering that the correlation co-

efficient between the climate interannual variability 

simulated by CMIP5 coupling model and the obser-

vation results is very weak, the above overlap will 
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not have a significant impact on the prediction ef-

fect of machine learning. 

2). Structure of convolutional neural network 

prediction model. 

The convolutional neural network consists of 

three convolution layers and two maximum pooling 

layers. The last convolution layer is fully connected 

with the ordinary neural network. The ordinary neu-

ral network contains a hidden layer. The convolu-

tion kernel size of the first convolution layer is 8 × 

4, and the convolution kernel size of the second and 

third convolution layers is the grid resolution of 4 × 

2. The maximum pool level retrieves the maximum 

value from the convolution layer with its grid reso-

lution of 2 × 2. In order to obtain a more objective 

prediction structure, two different numbers (i.e. 30 

and 50) of convolution nuclei and hidden layer neu-

rons are tried. For example, C30H50 represents a 

Convolution Neural Network with 30 convolution 

nuclei and 50 hidden layer neurons, and so on. At 

the same time, each convolutional neural network 

adopts 10 different initial weights for training, and 

carries out the corresponding return test. 

5.3 Return results 

Figure 5 shows the temperature index of De-

cember, January and February in winter in East Asia 

which returned one month in advance by the convo-

lutional neural network machine model, which is 

recorded as Pre _T2m_Dec, Pre_T2m_Jan, 

Pre_T2m_Feb respectively. The results show that 

the correlation coefficients between the set average 

return result of convolutional neural network Pre 

_T2m_Dec, Pre_T2m_Jan, Pre_T2m_Feb and 

observation results in December, January and Feb-

ruary ERA5_T2m_Dec, ERA5_T2m_Jan, 

ERA5_T2m_ Feb are 0.77, 0.82 and 0.70 respec-

tively. At the same time, the amplitude of the return 

index is also close to the observation. It is worth 

noting that the prediction results of Convolution 

Neural Network with different numbers of convolu-

tion nuclei and hidden layer neurons are not very 

different. However, the prediction results of differ-

ent initial fields (shown in the shadow of Figure 5) 

are significantly different. The deepening of neural 

network can improve the prediction ability of the 

machine to a certain extent. For example, the return 

effect of C50H50 in figure 6A and figure 6B is 

slightly better than that of C50H30. However, when 

the neural network structure reaches a certain depth, 

it becomes particularly important to find the global 

optimal parameters of the neural network by con-

trolling the initial field. For example, take different 

initial parameters for the same machine prediction 

model to train the machine (Figure 6: C50H50), the 

difference between the return result and the ob-

served correlation coefficient can be up to about 

0.2 between different sets.
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Figure 5. Ensemble-mean time series of (A) December 1982-2017, (B) January 1983-2018, (C) February 

1983–2018 aera-averaged (10°-30°N,100°-140°E) T2m anomalies for one-month-lead hindcast using convo-

lutional neural network (CNN) model (blue solid curves) as well as the corresponding observed time series 

(red curves). Other curves represent results of CNN model with different numbers of convolutional filters 

and hidden layers; for example, C50H30 indicates the CNN model with 50 convolutional filters and 30 hid-

den layers, and so on; shading indicates±1 standard deviation of 40 ensemble members. 

 

Figure 6. Dataset are the same as Figure 5, but for the correlation coefficients of each ensemble members 

with the observation in (A) December, (B) January, and (C) February; the red bar indicates the results of en-

semble mean in each CNN model; the horizontal dashed line indicates the value at 95% confidence level.

It should be emphasized that the return effect 

of the in-depth learning model is better than that of 

the climate dynamic model. As shown in Figure 7, 

the correlation coefficient between the 40 collective 

return tests and the observation results of the Janu-

ary temperature in a region of East Asia (100° ~ 

140°E, 10° ~ 30°N) returned one month in ad-

vance by the deep learning model is 0.5–0.8. All 

passed the 95% reliability test. At the same time, it 

is also higher than the correlation coefficient 

(0.42) between the dynamic model CanCM 4i re-

turn results and observations. In addition, the tem-

perature skill of a region in East Asia (100° ~ 140°E, 

10° ~ 30°N) returned by the deep learning model 2–

3 months in advance is generally higher than the 

return effect of the dynamic model. 

 

Figure 7. Boxplot for correlation coefficients of 

observation with each ensemble member’s hindcast 

with one month,two months, and three months in 

advance; red dot indicate the correlation between 

the observation and the hindcast by cancm4i; the 

horizontal dashed line indicates the value at 95% 

confidence level. 

It is worth noting that although the above ex-
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amples show that machine learning can be applied 

to short-term climate prediction, however, it does 

not mean that give any “big data” to the machine, a 

climate prediction model with good performance 

can be established. In order to establish a machine 

learning climate prediction model with high predic-

tion skills, it is necessary to fully understand the 

climate dynamics behind “big data”. In other words, 

the establishment of machine learning model guid-

ed by climate dynamics is very important to give 

full play to the potential of machine learning in cli-

mate prediction. For example, using the same ma-

chine learning idea as Figure 5B, the return model 

is established for the average temperature in Janu-

ary at low latitude (100° ~ 140°E, 0° ~ 20°N) and 

middle latitude (100° ~ 140°E, 30° ~ 50°N). The 

correlation coefficient between the return result of 

collective average and the observation result is 0.89 

and 0.33 respectively (Figure 8). The main reason 

may be that compared with the climate in middle 

and high latitudes, the climate in low latitudes is 

more obviously affected by tropical and subtropical 

SST (Figure 9). The prediction factors in the ma-

chine learning prediction model in this paper are 

mainly the sea surface temperature anomaly of 60°S 

~ 60° N and the ocean heat content anomaly of 0 ~ 

300m. From the perspective of climate dynamics, 

the machine learning prediction model in this paper 

is more suitable for climate prediction in middle 

and low latitudes. If the machine learning prediction 

model of mid and high latitude climate is to be es-

tablished, the impact of mid and high latitude cli-

mate system needs to be considered more, such as 

Eurasian snow, Arctic sea ice, polar vortex, etc. (He 

et al., 2016; He et al., 2020). It should be empha-

sized that although the linear regression analysis 

shows that there is a significant statistical relation-

ship between the temperature anomaly in the low 

latitude of East Asia and the sea surface temperature 

in some parts of the world, the return result of the 

linear regression model based on sea surface tem-

perature is far less than that of machine learning 

(Figure omitted). It further shows the obvious ad-

vantages of machine learning in exploring nonlinear 

processes.

 

 

Figure 8. Same as Figure 5 (B), but for the hindcast of area-averaged T2m anomalies in January 1983—

2018 over (A) 0°—20°N,100°—140°E and (B) 30°—50°N,100°—140°E. 
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Figure 9. Correlation coefficients (SHADING) of area-averaged T2m anomalies over (0°—20°N,100°—

140°E) in January 1983—2018 with the preceding three months’mean (October,November,December) (A) 

sea surface temperature anomalies and (B) oceanic heat content anomalies from surface to 300m; regions 

with stippling indicate the values significant at 95% confidence level; (C) and (D) are the same as (A) and 

(B),respectively,but for the area-averaged T2m anomalies over (30°—50°N,100°—140°E) in January 1983–

2018.

6. Summary and Discussion 

With the vigorous development of machine 

learning, this paper focuses on the basic principle of 

supervised learning of machine learning and ana-

lyzes the potential application of machine learning 

in climate prediction through machine learning ex-

amples of linear, nonlinear and deep learning. 

Firstly, by introducing a simple example of 

machine learning to obtain the parameters of linear 

fitting function, this paper analyzes the significance 

of “training data”, “label data” and “loss function” 

in machine learning, and shows how machine learn-

ing reduces the loss function, updates and optimizes 

the parameters through “gradient descent” algo-

rithm, and finally obtains a reasonable linear fitting 

line (Figure 1). 

Secondly, from the perspective of matrix mul-

tiplication, the construction idea from the input lay-

er to the hidden layer and then to the output layer of 

neural network is analyzed (Figure 2). Taking the 

nonlinear data set as an example, the example of 

fitting the nonlinear function curve with the neural 

network machine model is shown, and the learning 

effects of neural networks with different “excitation 

functions” are also compared (Figure 3). 

Then, the basic framework of convolution neu-

ral network for deep learning is analyzed, including 

the function of convolution kernel, the working 

process of convolution layer and pooling layer, and 

how the pooling layer is connected to ordinary neu-

ral network (Figure 4). Finally, it introduces how 

to build the prediction model of winter monthly 

temperature in East Asia through CMIP5 “big data” 

and convolutional neural network, and carry out the 

return test using the observed data (Figure 5, Fig-

ure 6 and Figure 7). At the same time, the im-

portance of building machine learning prediction 

model guided by climate dynamics knowledge is 

discussed (Figure 8, Figure 9). 

It should be pointed out that machine learning 

is already a comprehensive discipline, including 

many algorithms, such as batch gradient descent 

method, random gradient descent method, 

small batch gradient descent method, linear regres-

sion, logical regression, decision tree, naive Bayes, 

k-proximity, learning vectorization, support vector 

machine, random forest, etc. Deep learning is only 

an important branch of machine learning. Its algo-

rithms include convolutional neural network, cyclic 

neural network, generative countermeasure network 

and deep reinforcement learning. This paper on-

ly briefly introduces the batch gradient descent al-

gorithm, shallow neural network and Convolution 
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Neural Network in machine learning, so as to pre-

liminarily understand the principle and function of 

machine learning and provide some basic 

knowledge for further understanding of machine 

learning. 
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